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1. Introduction

We consider mechanical systems which can be described by the scalar
differential equation

mi+h(y, )+ r(y)=0, (1.1)

where mis the mass, 4 describes the damping force and r is the restoring
force.

We suppose that we have some preliminary knowledge about # and », e.g.
h has the form i(y, 7)=y g(y). Our goal is to get a more detailed description
of n and r by applying some periodic force (excitation) to (1.1), that means,
by studying the system

my+h(y.3)+r(y)=P(0), Pl+w)=Pl). (12)

The qualitative behaviour of the autonomous system (1.1) can be determined
by investigating the singular trajectories (equilibria, limit cycles,
separatrices) and their stability in the (y, y) - plane, the so called phase plane
[1]. The acceleration j is uniquely determined by the state y and the velocity
y according to equation (1.1). The qualitative study of the « - periodic
system (1.2) is based on the investigation of the Poincaré map in the phase
plane [3].

As mentioned above, our goal is to improve our knowledge of the functions
h and r by applying a periodic force to the equation under consideration.
In practice, we have to do measurements in order to identify unknown
parameters and functions. Usually, in this process the method of least
squares plays an imported role. The aim of this note is to show that there is
another approach in order to get more information about the unknown or
only partly known system characteristics, provided we are able to measure
not only state and velocity of the mechanical system under periodic
excitation but also the acceleration. The role of acceleration in studying
mechanical systems (1.1) has been demonstrated in [2]. In what follows we
emphasize its importance also in investigating inverse problems.



2. Test of non-linearity

If we do not know the function # and r, the first question is the following:

Can we conclude from measurements whether the system is linear or

non-linear?

We denote by {n,} ={3,.5,.5} , k=1....n, a sequence of points describing

the measured state, velocity and acceleration of system (1.2) at the moment
t=t,=t, +kw. If we represent these points in the extended phase space

(v, 7, ) we get a set of points parameterised by the time ¢, (see Fig.1).

Fig. 1: Set of measured points [], in the extended phase space

In the ideal case, when we have no measuring error, it holds

my, +h(5,.5,)+r(,)=C for k=1,..n, 2.1)

where C=P(r,)=P(t,) for all k. That mean, all points [], are located on the
surface defined by mw+h(u,v)+r(u)=C in the (u,v,w) - space. If » and r
are linear functions, then all points [], must be located in a plane E.
Therefore, if there are two numbers a, and a, such that all points T[],
satisfy

my, +a,y, +a,y, =C for k=1,...,n, (2.2)



then this is an indicator that (1.2) represents a linear system. If we replace
the force P(t) by BP(f), B>0, and the corresponding set [1, satisfies
M k(ﬁ =BT . » then this is another indicator of linearity.

Of course, in practice we have some measure error. If we can find constants
a, and a, so that all measured points are located near the plane defined by

a,,a,and C, then we can conclude that system (1.2) is linear or weakly
non-linear.
If we project the sequence {M1,} along the plane £ into the planes (5, 7),

(%, 7) and (5, 7), then all points are located on a straight line.
As an example, we consider the linear equation

$+0.15+y=0.

We assume that the behaviour of the system until the time =0 is
characterized by the stable equilibrium state y =0. At the moment =0 we
apply the external force cos(t) and investigate numerically the
corresponding initial value problem

j+0.15+y=cos , y(0)=7(0)=0. (2.3)

As result we obtain the sequence of points {1} ={7,.7,.5} describing
state, velocity and acceleration at the moment ¢=¢, =27k , k=0,1,2.... Itis
obvious that all these points satisfy the relationship

Y t0.1y, +y, =1.

If we introduce the notation F (k):= 3 +0.13 + 3« , then Fig.2. shows that the
points {1} define a straight line in the (k, F) - plane.
Next we investigate a system described by the equation

y+0.1y+y+ By’ =0. (2.4)

To test this system we apply the force cosz, investigate the initial value
problem
j+0.1y+y+ By =cos, y(0)=5(0)=0 (2.3)

and compute the corresponding sequence {I‘I ﬂk} satisfying
y, +01y, +y, =1 -85,



Fig.2. shows that in the cases 8=0.2;0.3;0.5 these points do not define a

straight line, and that the deviation from a straight line increases with
increasing f.
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Fig. 2: Representation of the sequences M7 in the (k,F ) - plane.

3. System with unknown damping force or unknown restoring force

We consider the differential equation
my+h(y, )+ r(y)=0, (3.1)

where one of the functions » and % is known. In order to determine the
unknown function we suppose that the system is in the stable equilibrium
state y =0 and apply at the moment /=0 the « - periodic force P (¢), thatis,
we consider the initial value problem

m3+h(y, )+ r(y)=P(), y(0)=0, 7(0)=0 (3.2)

and measure the acceleration i, the velocity y and the state y at the
moments ¢=¢, =kw , k=1,2,...n . The obtained result is denoted by

{n}={5..5.5}. Since P(t,)=P(0)=c, all points M, satisfy



h()_’ka );/k)+ r()_’k)zc _mj_}k 5
provided we have no measure error. In case that # is given we plot the result
in the (y, 7(v))- plane and get a parameterised representation of »(y). If the

obtained points are not enough to get a satisfactory representation of r(y) we
can also consider the initial value problem

m3+h(y, 3)+r(y)=a Pt)+ B, y(0)=0, y(0)=0, (3.3)

where a and B are any numbers. Analogously we can determine #
parametrically in the (y, y, A(y, 7)) - space.

As an example, we consider the non-linear equation
$+0.0155 +r(y) =0
with r(y)=y+y’ .
If we apply the force acost + 8 and study the initial value problem
§+0.0155 + r(y) =a cost + B, y(0)=0, 7(0)=0

we can compute the corresponding sequence {I1,} representing the function
r(y)=y+y’ (see Fig. 3 and Fig. 4).



“| )
15 -
10 1
5
2 : 1 é 3 ]

: ¥y
19 4
-5 4

- =] & =2

Fig. 3: Parametrised representation of (y) by MY with a=1;2 and 8=0.

r

15 4

Fig. 4: Parametrised representation of r (y) by M with S=-2; 2 and a =1.
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4. Systems with large mass

We consider the differential equation
my+h(y, 7)+r(y)=0, (4.1)

where we assume that m 1s given and that the damping force 4 has the form
h(y, 7)=7"g(y), k=1. We suppose that neither g nor r are known. To
determine the unknown function » we consider the initial value problem

my+3*g(y)+r(y)=P), »(0)=0, 7(0)=0, (4.2)

where P is «w - periodic with «w >> 1. Introducing the slow time 7 by
t =wr, and using the notation z(w7)= Z(r), we get from (4.2)

~rk

52 g(7)+r(7)=P (1) , 7(0)=0, 7(0)=0. (4.3)
Setting w=+/m,e=m™? we obtain
Vet g(3)+r(7)=P (). (4.4)

If we suppose that € is small (that is m is large), then we can study the
initial value problem

v +r(7)=P (r) , 7(0)=0, ¥(0)=0.
We denote the solution of this problem for =7, =k w by y,. Thus, we have
yi+r(3,)=P () =c for k=0,1,...n,

and we can determine r (y) parametrically from the relations

r(3,) =c- 3 L k=0,1,...n. 4.5)

As mentioned above, if we need more points to determine r (y), then we can
consider the modified problem



~

7 +r(F)=a P(r) + 8, 7(0)=0, 7(0)=0,

where a and S are real numbers.

If we have determined », we can use (4.4) to obtain a parameterised
representation of g(y).

As an example, we consider the non-linear equation
1007 +0.0157 + y + y* =0
According to our investigation above we arrive at the initial value problem
1005 +0.0155 + 5 + 5 =P(r),5(0)=0, 5(0)=0, (4.6)

as P(r) we choose acost+f.

The investigation of (4.6) yields the sequence of points {I‘I ph ‘3} . Representing
{ne# in the (y.7(5)) - plane for f=0 and a=10,20 we get the following
picture.

& g=10 & a=20

Fig. 5: Influence of the parameter @ to the dependency r (y) for the fixed value of

£=0.

This picture shows that the sequence {I‘I v ”} determines the behaviour of r
only for -0.45< 5 <0. To obtain more points we apply the force 20cos7 + 3.

Fig.6 shows the corresponding parametrical representation of » which
sufficiently accurate.



-II:hll --|1_"'u|i?'

Fig. 6: Influence of the parameter B on the dependency r (y) for the fixed value of
a =20.

As it seen from Fig. 7, the results obtained by the (4.5) are close to exact
soluton. All points lay in one curve.
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Fig. 7. Comparisson of the results obtained by exact formula and dependence (4.5).



5. System with a special damping force

We consider a mechanical system described by the differential equation
mj+ 5y g(v)+r(v)=0 (5.1)

with g(0)>0; ~(0)=0. We assume that m is given, and that y =0 is a stable
equilibrium state of (5.1). In order to determine g(y) and r(y) we apply an
« - periodic force to (5.1), that is, we investigate the initial value problem

mi+y*g(y)+r(v)=P), »(0)=0, y(0)=0. (5.2)
Using the transformation + =wr we get from (5.2)

~r12

22(7)+r(7)=PF (1) . 7(0)=0, 7(0)=0. (5.3)

If we assume that «w =m, then we obtain from (5.3)

7' +57g(7)+ wr(y)=wP (r) 7(0)=0, 7(0)=0. (5:4)

Now we suppose « << 1. In that case the initial value problem

7"+ 53¢ (3)=0,50)=0, 7(0)=0

is an approximation of the initial value problem (5.3). If we suppose that the
experimental investigation of (5.3) yields the sequence of measurements
{n}={5..5.5}, then we can get a parameterised representation of g(7) by

mean of the relation

~n

g(3)=-2% k=0,1,..n.

~r1 2

To obtain more points for parameterised representation of g(7) we may
proceed as in the section before, also in order to determine r(y).
As an example we consider the dynamical system described by the equation
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my+(0.1+100y>)+ y=0.

To test this system we apply the force acoswr+pB where
« =0.00001; 0.00005; 0.0001 and a =1; B=-1. According to our investigation
above we arrive at the initial value problem

F+52(0.1+10052)+ w5 =acost+ B, 7(0)=0, 7(0)=0, (5.4)
=B 1 g {I..J
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Fig. 8: Influence of the parameter c to the dependency g (y) for the fixed value of
B=-1and a=1.

Summary

We have considered mechanical systems which can be described by the
nonlinear differential equation mj+#a(y,y)+r(y)=0 and which are
characterized by the property that there exists no information or only partial
information on the damping force % or the restoring force ». We have
charaterized several classes of such systems where by applying a periodic
force and by measuring acceleration, velocity and displacement, the
functions / or r can be easily identified.
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