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Abstract

The hyperbolic system that describes heat conduction at low temperatures
and the relativistic Euler equations belong to a class of hyperbolic conservation
laws that result from an underlying kinetic equation. The focus of this study is
the establishment of an kinetic approach in order to solve initial and boundary
value problems for the two examples. The ingredients of the kinetic approach
are: (i) Representation of macroscopic fields by moment integrals of the kinetic
phase density. (ii) Decomposition of the evolution into periods of free flight,
which are interrupted by update times. (iii) At the update times the data are
refreshed by the Maximum Entropy Principle.

1 Introduction

In this article we study (i) initial value problems for kinetic equations and (ii) initial
and boundary value problems for the corresponding hyperbolic moment systems. We
consider two different physical phenomena that, however, lead to similar equations
which can be solved by kinetic schemes.

1. The evolution of heat in crystalline solids at low temperature is driven by the
transport of phonons, which form a gas like structure in the solid. The phonons be-
have as Bose particles and their evolution may be described by the Boltzmann-Peierls
equation (BPE), which is an integro-differential equation for the phase density of
the phonon gas. The entropy of a Bose gas and the Maximum Entropy Principle
(MEP) are used to derive a hierarchy of hyperbolic moment systems.

2. The evolution of transport processes in a gas, whose particles have velocities that
are comparable with the speed of light, is described by the relativistic Boltzmann
equation. In this study we consider the framework of special relativity and the
limiting case of small free flight times of the gas particles. Furthermore we restrict
the gas particles to obey Boltzmann statistics, so that local equilibrium is described
by the Jiittner phase density. The Maximum Entropy Principle (MEP) serves to
derive the relativistic Euler equations for the first five moments of the phase density.

Regarding their mathematical structure, the two examples have many similarities so
that we can apply the same numerical method to solve the two described problems.
There numerical method is a kinetic scheme which consists of periods of free flight
and update times.

In both examples, the periods of free flight is described by the same collision free
kinetic transport equation. The macroscopic fields appear as moments of the phase



density which are formed by integrals over the kinetic variable. In both cases, the
moment integrals may be reduced to integrals over the unit sphere.

The update procedure relies in its essential part on the MEP. Thus, we are confronted
with the problem whether the MEP exists at all. It was Junk who has pointed out,
that the MEP for the Boltzmann equation does not exist, because the moment
integrals have an infinite domain. Guided by Junk’s seminal contribution, Dreyer,
Junk and Kunik studied the Fokker-Planck equation and proved nonexistence also
in that case. However, we could prove the existence of the MEP, for the BPE as
well as for the ultra-relativistic Euler equations, because both cases lead to moment
integrals over the unit sphere.

The described kinetic approach lead to numerical schemes that are first order in
time. However, we will describe suitable correction terms that lead to second order
schemes.

The first part of this report deals with the BPE. At first we introduce a reduced ki-
netic equation which has a simpler structure than the BPE. Moreover, if we restrict
to the macroscopic 1D case, a further simplification of the kinetic equation is possi-
ble. Secondly we give a positive existence result for the MEP. Finally we establish
kinetic schemes for the kinetic equation as well as for the hierarchy of hyperbolic
moment systems.

In second part of this paper we apply the kinetic approach to the ultra-relativistic
Euler equations. We write these in terms of the particle density n, the spatial part
of the four-velocity u and the pressure p.

2 The Boltzmann-Peierls Equation

In this section we use kinetic schemes in order to solve the Boltzmann-Peierls Equa-
tions (BPE) as well as the moments systems that are derived by means of the
Mazimum Entropy Principle. Here we present a survey of results that are explained
in more detail in [9, 30, 17, 16]. Further results concerning the BPE and its moment
systems may be found in [14, 18] and the references therein.

First we give a brief summary on the kinetic theory of heat conduction in 2.1. In
2.2 we introduce a reduced model with a simplified kinetic variable. However, the
reduced equation contains all physically relevant information. Afterwards in 2.3 we
discuss the strategy of Eztended Thermodynamics and Mazximum Entropy Principle.
In particular, we derive the moment systems of hyperbolic pde’s that approximate
the kinetic equation. Finally, in 2.4 we present the kinetic schemes mentioned above.
We conclude with some illustrating numerical examples in 2.5.



2.1 The kinetic theory of heat conduction in solids

In 1929, Peierls [35] proposed his celebrated theoretical model to describe transport
processes of heat in solids. According to the model the lattice vibrations responsible
for the heat transport can be described as an interacting gas of phonons. An overview
on phonon theory and its applications is given by Dreyer and Struchtrup in [18].

The BPE is a kinetic equation that describes the evolution of the phase density
f(t, x, k) of a phonon gas. The microscopically three dimensional BPE reads
of of

L4k, —
ot Pigy

St (1)

where ¢, x = (z1, x2, 23), k = (k1, k2, k3) denote the time, the space and the wave
vector, respectively. The positive constant ¢ is the Debye speed and S abbreviates
the collision operator that will be defined below.

The moments of the phase density f reflect the kinetic processes on the scale of
continuum physics. The most important moments are the energy density e and the

heat flux Q = (Q1, @2, Q3) which are defined as

e(f) = he / K fk)dk, Q(f) = h / K/ (k) dk. (2)

R3

Since f depends on time and space the moments e(f) and Q(f) depend on ¢ and x,
too.

Phonons are identified as Bose particles, see [35, 18]. Thus, the kinetic entropy
density-entropy flux pair (h, ®) is given by

w o f[(efel) fo@)a o
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R3
where y = 8%. The kinetic equation (1) implies the following entropy inequality

Oh(f)  0%;(f)
ot | oz

0. (5)

In contrast to ordinary gas atoms, phonons may interact by two different collision
processes, called R- and N-processes. N-processes describe phonon-phonon interac-
tions, while R-processes take care of interactions of phonons and lattice impurities.
The N-processes conserve energy as well as momentum, while the R-processes con-
serve only the energy. The Callaway approximation of the collision operator is a
suitable simplification of the actual interaction processes (cf. [2, 18]). The Callaway



collision operator is written as the sum of two relaxation operators modelling the
R- and N-processes separately. There holds

Sf = Srf+ Snf, SJ—%(Paff), ae{R,N}. (6)

The positive constants 7z and 7x are the relaxation times, Pr and Py are two
nonlinear projectors. The phase densities Prf and Py f are defined as solutions of
the two optimization problems

h(Prf) = mfgx{h(ff) : e(ff):e(f)}, (7)
h(Pwf) = max {h(f) : e(f') = e(f), QU = QY. (8)

These maximization problems may be solved explicitly. The resulting expressions
for Pr and Py in terms of e and Q may be found in [18, 30].

2.2 The reduced Boltzmann-Peierls Equation

In this section we recall results from [9, 30] in order to derive a reduced kinetic
equation for a reduced phase density. This procedure relies on the observation that
for any solution f of (1) there exists a corresponding solution of a reduced equation
that determines all physically important moments of f.

For any phase density f depending on the wave vector k € R® we define the reduced
phase density ¢; of f depending on a normal vector n € S? by

oo

o5(n) = e / kP f(k|n) dk], (9)
0
where n = (ny, ng, n3) = k/k|.

Let m be a homogeneous moment weight of degree 1, i.e. m(Ak) = Am(k) for all
A > 0, and let u be the corresponding moment function. Note that all physically
important moments are homogeneous of degree 1.

A straight forward calculation yields

u(f) = he f m(n)p;(n) dS(n), (10)

whereas dS(n) denotes the usual measure on the unit sphere S?. We conclude that
the moment of f is given by a respective moment of it’s reduced phase density ¢;.

In particular we find e(f) = e(¢s) and Q(f) = Q(p) with

e(p) = f o(n)dS(n), Q(p) = ¢ ]4 ne(n) dS(n). (11)
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Furthermore, we introduce an entropy density-entropy flux pair (h, ®) for reduced
phase densities by

h(g) = f oi(n)dS(n), ®i(p)=pc ]f ni o (n) dS(n), (12)

where p is a given constant. We summarize the main results in the following theorem.

Theorem 2.1 1. There exist two operators Or and Oy so that
Op.f) = Oalpy) for a€{R, N}. (13)

2. If f is a solution of the BPE, then its reduced phase density ¢; is a solution
of the following reduced BPE

- i = Uy, 14
ot Mgy — V¢ (14)

where U = Vg + Uy and Voo = L (040 — ).

Ta

3. O and O have similar properties as Py and Py, i.e.
hOrp) = max{h(e) : () = e(v)}, (15)
hOxe) = max{h(¢) : el¢) = e(e), QW) = Q)}.  (16)

4. There holds

Ory = i Ongp = 47;6((;1__22)4, F= 0 - ()
dce 1+4/1-38 (E)

5. The reduced BPFE implies the entropy inequality

0 h(p) N 0D (p)

6. The reduced BPE leads to an hierarchy of balance laws. For any vector of
moment weights m(n) we obtain

> 0. (18)

. () (19)
where
i(p) = f #(n)p(n) dS(n), (20)
Flp) = f enii(n)p(n) dS(n), (21)
fite) = () (¥e)m) dS(n), 22

denote the densities, the fluzes and the productions, respectively.



2.2.1 One-dimensional Reduced Kinetic Equation

To conclude this section we summarize results from [30] that allow a further simpli-
fication of the reduced BPE. In the macroscopically one dimensional case we have
x = (z,0,0) and Q = (Q, 0, 0). We introduce the new variables —1 < ¢ < 1,
0<d9 <27 by

ny =&, ny = /1 —&%sind, ng = /1 —&%cosd, (23)

with the surface element dS(n) = d€dy¥. Furthermore we eliminate the angle 4 by
setting

27
olt, o, €) = / o(t, 2, 0, 0, n) dv. (24)
0

The reduced BPE (14) then further reduces to

(o)) (o)) 1 1
r - _ _ _ 2
T +cé& ox  1n (Orp — p) + o~ (Onp — o), (25)

where Orp and Oy are given by expressions similar to (17).

2.3 The Maximum Entropy Principle
2.3.1 The strategy of Extended Thermodynamics

The objective of Fztended Thermodynamics is to solve initial and boundary value
problems for truncated moment systems instead of solving the kinetic equation. To
this end only the first N equations of the infinite hierarchy of moment equation
are used, and the Mazimum Entropy Principle (MEP) serves to close the truncated
system.

For the formulation of the MEP we start with a fixed N-dimensional vector m =
m(n) of moment weights. The vector 7 induces a vector @ of densities, cf. (20).
In the following we call the pair (m, @) a moment pair of dimension N. The MEP
corresponding to (m, i) can be formulated as follows.

For any given phase density ¢ we seek a phase density oy that maximizes the
entropy, i.e.

h(ew) = max {h(¢) : @(¢) =i(p) }. (26)

In order to indicate that ¢y, obviously depends on ¢, we write @y = Opp. The
MEP assumes, that for any reasonable phase density ¢ there always exists a phase
density ¢ = O that maximizes the entropy according to (26). Thus, the MEP
ends up with an operator ©,; with the following properties

1. ©y, is a nonlinear projector, i.e. ©2, = Q.



2. ©,,f depends only on the moments @ (), i.e. 4 (1) = U@ (p2) implies O 1 =
O pp2.

We call the operator ©,, the MEP projector corresponding to the moment pair
(m, ).

We mention that, according to (15) and (16), the operators ©x and ©y appearing
in the reduced collision operation ¥ are also MEP projectors.

Next we consider the closure problem of Fztended Thermodynamics. We start with
a finite number of balance equations derived from the kinetic equation, cf. (19).
As before we denote the corresponding vectors of densities and fluxes by 4 and F},
respectively. The densities are now considered as the independent variables. Since
in general the fluxes qu do not depend on the densities u, there arises the so called
closure problem. The closure problem is solved by a reasonable ansatz that provides
the fluxes and the productions as functions of the densities.

A very popular closure ansatz in Fxtended Thermodynamics is the MEP leading
to the so called MEP moment system, which is achieved from (14) by a formal
replacement of the phase density ¢ by the MEP density ©,,¢:

377(@M80) + BF} (@MQD)
Bt 6:13]'

= 4 (VO ). (27)

Since ©js¢ depends on ¢ via the densities @, the system (27) is in fact a closed
system with respect to the variables 4. The resulting system of PDE’s is symmet-
ric hyperbolic. For further details we refer to the standard textbook on Rational
Extended Thermodynamics by Miiller/Ruggeri ([33]) and to [9].

The existence of the MEP projector is a nontrivial and subtle problem, because
there are counterexamples in which the MEP fails. Junk has observed, that for the
Boltzmann Equation the corresponding MEP density does not exist in general. A
detailed discussion of this problem may be found in [24, 25, 11].

However, in the case of the reduced BPE these problems do not arise. This topic
will be discussed in the next subsection.

2.3.2 The MEP and the reduced equation

We apply the MEP to the reduced kinetic equation and to the entropy (12). In
particular, we give a positive existence result for MEP projectors ©,,.

Let (m, @) be a moment pair of dimension N. We call the pair (m, @) admissible,
if (i) the energy density e is among the components of « and if (ii) the components
of m are smooth (at least C?). In the following, we consider exclusively admissible
pairs (m, ).

For r € {1, oo} we define

L' (S?) = {tpELT(SZ) : 3(5:(5(@)>0withg02(5a.e.}. (28)
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For given ¢ € L!(5?) the MEP leads to the following optimization problem with
constraints.

Problem 2.2

hlou) = max{h(y) : ¢ € LL(S?), i(¢)) =) }. (29)

©p

Next we introduce the conjugate functional h* of the entropy h, that reads
* 1 3 ! -3
W) = 5 (Gn) [vPman. (30)
52

Note that h* is well defined for all ¢ € L (S?). Using this functional h* we formulate
the following dual problem of 2.2, namely

Problem 2.3
h(Aw) = mKin{iz(K) : [\'eDM}, (31)
Dy = {K eR" : A-me Lf(s2)}, (32)
h(A) = —h*(K-rﬁ) + (o) - A, (33)

which is an optimization problem without constraints. There is a close relation
between the Problems 2.2 and 2.3. In particular, the solution KM of Problem 2.3
are the Lagrange multipliers corresponding to the solution ¢,; of Problem 2.2. The
main results concerning the MEP are summarized in the following theorem.

Theorem 2.4 For any ¢ € L' (S?) there holds

1. There exists a unique solution s of problem 2.2.
2. There exists a unique solution KM of problem 2.3.

3. There holds the identity

o = (3 s >4. (34)

ZKM.m

The proof of a similar result for two dimensions is contained in [9].



2.4 Kinetic schemes
2.4.1 Kinetic solutions of the kinetic equation

In this section we derive kinetic schemes that allow the construction of approximate
solutions of (14) in the time interval [0, oo).

The solution of the Cauchy problem of the collisionless kinetic equation

0 0

— +cn; = 0, 35
is given by the free transport group T(t) acting on phase densities ¢ depending on
x and n according to

(T(t)go) (x,n) := ¢(x— ctn, n). (36)
In particular, T'(¢)¢" is a solution of (35) with initial data .
The solution of the corresponding Cauchy problem for the reduced BPE (14) can
be represented by means of Duhamel’s principle as
i
o) = T + [ T(t—5) (Urpls) + () ds. (37)
0
Note that for any ¢ the function ¢(t) is a phase density depending on x and n.
Obviously, the formula (37) is not explicit in ¢(¢). In order to find approximate

solutions, we shall replace the integrals in (37) by Riemann sums. If we introduce a
small parameter 7 > 0, we find

p(t) ~T(t)e" + > FT(t k7)(Vrp(k?) + Uno(k7)). (38)

k:0<k7<t

This approximate representation of solutions of (14) immediately gives rises to an
explicit semidiscret kinetic scheme. Using the abbreviations

Ort = lifﬁl o(kT £t) for k>0, (39)
i

and @y = ¢°, we find by a straight forward calculation, that (38) with equality
sign is equivalent to

kT +1t) = T{H)pry, 0<t<T, (40)
7 7 FooF
Yy = —Orpr + —Onpr + (1 - — - —>90k7- (41)
TR N TR TN
The time intervals (k7, k7 + 7) are called transport intervals, whereas the multiples
of 7 are called update times.

For any strictly positive initial datum ¢° and sufficiently small parameter 7, the
kinetic scheme (40)-(41) defines an approximate solution ¢ of (14) with the following
properties.



Lemma 2.5

1. @(t) is strictly positive for all t and there exist the left-hand and right-hand
limits at the update times.

2. ¢ satisfies exactly the conservation of energy, that is

de(p) L9 Qi(p)

= 0 42
3. The entropy production is nonnegative, i.e.
oh 0P,

The equation (42) and the inequality (43) are satisfied in the sense of distributions.

For further details again we refer to [9].

2.4.2 Kinetic solution of the MEP moment systems

In this section we shall briefly describe how kinetic schemes can be used in order to
solve moment systems of the reduced kinetic equation that are derived by means of
the MEP. It will turn out, that there is a close relationship between kinetic schemes
for the kinetic equation and kinetic schemes for its moment systems. A more detailed
discussion is contained in [9].

In the following we consider an admissible moment pair (@, ) together with the re-
sulting MEP projector @, (cf. Subsection 2.3). The moment system corresponding
to 4 is given by

617(@M€0) n BF}'(@M@)

57 92, = u(¥YOyp). (44)

The standard kinetic approach of the Cauchy problem for this moment system can
be summarized as follows.

1. We start with initial data of the form ©;,¢" that correspond to the given
macroscopic initial data @°, i.e. ©° = @(Op").

2. For a small but fixed time 73, we solve the kinetic equation (14) for in the
time interval [0, 7], at least approximately.

3. The resulting phase density will be used to calculate the moments u.

4. At the time 7); the phase density (7)) will be replaced by the MEP phase
density ©,0(7ar) and we restart the scheme.

10



Kinetic schemes of this kind are well known and studied by many authors for moment
systems relying on various kinetic equations ( see [10, 12, 13, 24, 36] for moment
systems of the Boltzmann Equation, [14, 15] for a moment system of the BPE).

In view of this standard approach we consider the following kinetic equation

(X%
£ Rt A/ U W 45
atJrcna:ci re + Vo + Ve (45)

The newly introduced quantity is

1
U = — (®Ms0 = 90) (46)
™
that is again a relaxation operator with an artificial relaxation time 7.

If we apply the moment maps @ to (45), we formally obtain for the limiting case
T —0 the system (44). We can thus interpret equation (45) as a kinetic approxi-
mation of the moment system (44).

Next we apply the approach from above to the kinetic equation (45). There result
the following kinetic scheme

kT +t) = Ter, 0<t<T, (47)

T T T
Oy = —Oppr- +—0Onpr + —Oypi +
TR ™~ ™
T T T

(1-Z-Z- Zon. (48)

TR ™~ ™

This scheme differs from (40)-(41) just in the update rule (48). However, all asser-
tions of Lemma 2.5 remain valid.

2.4.3 Fully Discretized First Order Scheme

In order to get a fully discretized piecewise constant solution of the reduced BPE
(25), we first define a grid in the reduced phase-space consisting of cells C; ; = I; x J;
centered around (z; = iAz, §; = jAE),

Az A€
o —zif < =, [€-&] < 7} :

Cij = {(x,f) e R’

where Az = Tip1 —T; 1 and A¢ = §j+% — fjfé- The cell-average of ¢ at time t = ¢,
over the cell C; ; is given by

Tird &4l

A;Ag / / ot o, €) dédz . (49)

.

j—

n N
Pij —

N
[V

7

11



With the characteristic function x; ;(z,€) of the cell C;; we can write the desired
piecewise constant phase density in the form ) o7 .x; ;(z, ).

Integrating (40)-(41) over {xifé,:cpr%} X {fjf%’ H%} and dividing by AzAg, we get
for a time step 7 = At

g = oty M (Fy - L) AL O(Al, (50)
where A = %, and for the CFL condition At < % we have
n 1 n n
Sij = Z — (Ga%,j - Qoi,j) ; (51)
acR,N @
(3 c n n n
‘7:1'+%,j = 2 (fj‘Pi,j + fj‘Pi+1,j - |fj|A90i,j) ) (52)

where Apl'; = @7y, ; — ¢p;. In order to get the average values of the moments from
this discrete phase density at any time %,, in each cell /; we use the Riemann sums
as

Ne Ne Ne
er=AEY gl Qr=cAEY ok, NP=AEY e, (53)
7j=1 j=1 7j=1
where N¢ is the number of elements in the interval —1 < ¢ < 1.

2.4.4 Second Order Extension of the Scheme

For the second order accuracy in space and time we have the following three steps.

(I) Data Reconstruction: Starting with a piecewise-constant solution in time
and PhaS('a—spjdce, >_ @i ixi(T), one reconstruct a piecewise linear (MUSCL-type) ap-
proximation in space, namely

ACEDY [%’ij + wij% Xij(2,€). (54)

Here, o7 ; abbreviates a first order discrete slope.

The extreme points £ = 0 and z = Az, in local coordinates correspond to the
intercell boundaries in general coordinates T 1 and Tiyls respectively, see Figure 1.
The values of ¢; ; at the extreme points are

QDiI:j = Qi 5%‘,]' ) ()ij = Qi; T 5901,3' ) (55)

and are usually called boundary extrapolated values. A possible computation of these
slopes, which results in an overall non-oscillatory schemes (consult [39]), is given by

12



1
T Az APt

Tit+1 T
Tivl T
. n+1
i i
R
Pi—1,5
:UF% 1
n
Ti-1 T Pi—15
L -
Pi-1,j .

Figure 1: Second order reconstruction

family of discrete derivatives parameterized with 1 < 6 < 2, i.e., for any grid function
i ; we set

o 4 .
i = MM <9A90i+§,ja §(A¢i7§,j +Ap; 1), 9A¢i%:]> :

Here, A denotes the forward differencing, AtpH%J = Qit1,; — @i,j, and M M denotes
the min-mod nonlinear limiter
min;{z;} ifz; >0 Vi,
MM{zy,zs,..} = max;{z;} ifz; <0 Vi, (56)
0 otherwise .

The interpolant (54), is then evolved exactly in time and projected on the cell-
averages at the next time step.

(IT) Evolution: For each cell I;, the boundary extrapolated values ¢f;, ¢f; in (55)
are evolved for a time %At by

A At
AL _ L R L n
Piy = iy — 5 [Fis — Fisl + = Si
(57)
A At
R _ R R L n
iy = viy — 5 [Fig — Fisl + 5 S
where .7:1%]- = cé}goﬁj and .7:1% = cfjgof'j. Also to calculate source term at half time
step we use
~ n )\ n n At n
Pijg = Pij 5 [Py — Fis] + 731-,]-, (58)

13



mn n
where F}; = c€;p;'; and

N¢ Ne
& = A¢ Z Gij, Qi =cAf Z §iPij - (59)
j=1 Jj=1

(III): Finally we use the conservative formula (50) in order to get the discrete phase
density at next time step

n n n+2 n+3 At ~ ~
ot = e A (FL S F) Y T (Oaii— 6, (60)
? ? a€R,N ©
where the numerical fluxes are defined by
Frte = S (60f + €0k, — 610k, — 95)] (61)
i+l 9 [Si%Pij T SiPit1 il\Pit1,j = Pijl] -

2.5 Numerical Examples

The results of the preceding section shall be illustrated by some numerical examples.

2.5.1 Example 1: The phenomenon of second sound

The first two examples we have taken from [9] allthough there we rely on the mi-
croscopic two dimensional version of the BPE. However, the qualitative behavior
does not depend on the number of microscopic dimensions. For both examples we
assume that 7z = co. Further we assume that the phase density only depends on z;.
In order to simulate interesting phenomena, we consider the following macroscopic
initial data for energy density e and the momentum density Q.

Initial energy density

{ 1.5 if |zy| <0.01
1.0 if |z, >0.01"

-1.01 [ 1.01

For the details of discretization we refer to [9].

Energy density, t = 1.2 Energy density, t = 1.6 Energy density, t = 2.
1.02

1.02

1.00 —] \— 1.00 :

-1.01 [9) 1.01 -1.01 o 1.01 -1.01 [9) 1.01

Figure 2: Example 1. Evolution of the energy pulse for 7y = 2.0

14



Energy density, t = 1.2 Energy density, t = 1.6 Energy density, t = 2.

1.00
1.01 -1.01 o) 1.01

Figure 3: Example 1. Evolution of the energy pulse for 7y = 1.0

Energy density, t = 1.2 Energy density, t = 1.6 Energy density, t = 2.

‘ 1. 00 1.00
-1.01 [9) 1.01 -1.01 o 1.01 -1.01 [9) 1.01

Figure 4: Example 1. Evolution of the energy pulse for 7y = 0.5

We study the evolution of the initial energy pulse according to different values of
T~ (Tv = 2., 7v = 1. and 7y = 0.5). The Figures 2-4 show the spatial dependence
of the energy density at different times (¢ = 1.2, ¢ = 1.6 and ¢ = 2.0). According to
[18] we can interpret the results as follows. For large values of 7y, as in Figure 2, the
pulse is ballistic and its fronts move with the Debye speed ¢ to the left and to the
right. Figure 4 illustrates the case of small 7. Here, the shape of the pulse reflects
the characteristic behaviour of the so called second sound, that propagates with a
speed less than c¢. In Figure 3 we observe a transition regime. The pulse starts as a
ballistic pulse. After about 1.6 time units it changes its shape and becomes second
sound.

2.5.2 Example 2: Kinetic equation versus MEP moment systems

This example illustrates the relationship between solutions of the kinetic equation
and solutions of the moment systems. The initial data are the same as in the first
example, the relaxation time 7y is set to 0.7. The energy density corresponding to
the reduced BPE is depicted in Figure 5, whereas Figure 6 show the evolution of
the initial energy pulse according to various moment systems. We mention, that
the moment system of order n consists of 2n + 1 independent balance equations.
For the details we refer to [9]. The Figures 5 and 6 reveal, that moment systems

Ki netic Equation, t = 0.6 Kinetic Equation, t = 1.3 Ki netic Equation, t = 2.
T T

Figure 5: Example 2. Evolution of the energy pulse according to the kinetic equation

with a small number of moments produce quite bad approximations. However, the
results become better if the number of moments is increased. Finally we have a
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good correspondence of the kinetic equation and of the moment system of order
40 in Figure 6. Furthermore, the Figures exhibit, how the number of appearing
waves increases with the order of the moment system. Finally we mention, that

Monent system of order 2, t = 0.6 Monent system of order 2, t = 1.3 Monent system of order 2, t = 2.
1.11 5 ¥ 1.07 T T 1.05 1 T
H H H H g
1.00 1. 00 Jj L 1.00 J L
-1.01 1.01 -1.01 o 1.01 -1.01 [9) 1.01
Monent system of order 3, t = 0.6 Monment system of order 3, t = 1.3 Monment system of order 3, t = 2.
1.09 T T 1.05 1 ¥ 1.03 [y 1
o i R - 1MJL\A___A/JL
-1.01 [9) 1.0 -1.01 [ 1.01 -1.01 [9) 1.01
Moment system of order 20, t = 0.6 Monment system of order 20, t = 1.3 Monent system of order 20, t = 2.
1.04 T T 1.02 1.01
i t
i H
1. 00 ; 1. 00 i i 1.00
-1.01 [9) 1.0 -1.01 [ 1.01 -1.01 [9) 1.01
Monment system of order 40, t = 0.6 Monment system of order 40, t = 1.3 Monment system of order 40, t = 2.
1.04 1.01 1.01
1.00 : B 1. 00 ] i 1.00
-1.01 [9) 1.01 -1.01 [ 1.01 -1.01 [9) 1.01

Figure 6: Example 2. Evolution of the energy pulse according to various moment
systems

the numerical effort for calculating the MEP projectors ©,, increases tremendously
with the number of moments. A detailed discussion of this problem is contained in
[9]-

2.5.3 Example 3: Two Interacting Heat Pulses

This test problem demonstrates the interaction of two heat pulses, which leads to a
large increase of the energy density at the collision point during a short time interval.
The initial data are

1, 2<0.3 0, <03

2, 03<z<04 1, 03<z<04
e(0,2)={ 1, 04<z<06 , QO0,z)=¢ 0, 04<z<06 . (62)

2, 06<z<07 1, 06<z<07

1, z<1.0 0, z < 1.0

We solve the BPE for the above problem at time ¢ = 0.2 for two values of 7y,
ie, 7w = 1 and 7y = 0.1, while 7 = 1.0. Figure 7 shows the results. From
the comparison of the initial and final curves of energy density, we observe a large
increase of the energy density e at the collision point x = 0.5. We have also compared
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energy density at t=0.0 energy density, T, =05, T, =1.0, t=02 energy density, 1, =0.1, 1, =10, t=02

3. - -
- - first order upwind scheme == first order upwind scheme
o first order central scheme + first order central scheme
— second order upwind scheme || 351 = second order upwind scheme
3 +== second order central scheme += = second order central scheme

3k

251

05 05 . . . . 05 . . . .
0 0.2 0.4 0.6 0.8 1770 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X-axis x-axis x-axis
heat flux at t=0.0 heat flux, 1, =05, 1,=1.0 , t=0.2 heatflux, 1, =0.1, 1, =10 , t=0.2
1.5 T T T
== first order upwind scheme = = first order upwind scheme
+vv first order central scheme < first order central scheme
n 1 o3r — second order upwind scheme 01 — second order upwind scheme
+= = second order central scheme - +=+= second order central scheme

0.5r

-0.05

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
x-axis x-axis x-axis

Figure 7: Example 3: Evolution of energy and heat flux.

our results from the kinetic scheme with central schemes of Nessyahu and Tadmor,
see (34, 23|.

2.5.4 Example 4: Heat Pulse in 2D

In this example we solve a two-dimensional hyperbolic moment system. We consider
a two-dimensional energy pulse inside a square box of sides length 0.02 with out-
flow boundaries. Initially the heat fluxes are zero. The energy density is 1.5 inside
a small square box of sides length 0.02 in the center of the large box, while energy
density is unity elsewhere. The results are shown at £ = 1.2 in Figure 8. In all the
results we have used 200 x 200 mesh points. We take 7z = oc.

2.5.5 Example 5: Explosion in a Box.

Here we also solve a two-dimensional hyperbolic moment system. We consider a
two-dimensional energy pulse inside a square box of sides length 2.0, with periodic
boundaries. Initially the heat fluxes are zero. The energy density is 2.0 inside a
small square box of sides length 0.5 in the center of the large box, while energy
density is unity elsewhere. The results are shown in Figures 9 at ¢t = 0.5, t = 1.5
and ¢ = 2.0. In all the results we have used 300 x 300 mesh points. We take 7z = co.
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energy density, t=15 energy density at y=1.0 energy density at y=1.0

1.002,

1.005

—_ firét order KF\/S scheme —_ secoﬁd order KF\/S scheme
=== first order central scheme === second order central scheme
1.0015 1.004
15 1 1.003
1.001]
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) heat flux Q', t=15 x10?  heatflux at y=1.0 x10°  heatflux at y=1.0
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=== first order central scheme == second order central scheme
15
R}
§ 1
>
0.5
G0 05 1 15 20 0.5 1 15 2 0 0.5 1 15 2

X-axis X-axis X—axis

Figure 8: Example 4: Evolution of energy density and heat flux in 2D.

3 Part II: Relativistic Euler Equations

3.1 Introduction

We consider gas flows with thermal and macroscopic velocities that both are com-
parable with the speed of light. In this case, space and time are coupled and the
relativistic Fuler equations of gas dynamics become more complicated as compared
to the classical ones. However, in some fixed reference frame it is still possible to
write the relativistic Euler equations as a first order hyperbolic system.

Relativistic gas dynamics plays an important role in areas of astrophysics, high
energy particle beams, high energy nuclear collisions, and free-electron laser tech-
nology. Here we consider exclusively the ultra-relativistic limit within the framework
of special relativity.

Kinetic approaches to solve the classical Euler equations of gas dynamics were suc-
cessfully applied to several initial- and boundary value problems, see for example
Reitz [38], Deshpande [7, 8], Xu [41, 42], Dreyer and Kunik [12], Dreyer, Herrmann,
Kunik [10], and Qamar [37]. Some interesting links between the Euler system and
the so called kinetic BGK-model, which was introduced by Bhatnagar, Gross and
Krook [1], are discussed in the textbooks by Cercignani [3] as well as by Godlewski
and Raviart [22].
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energy density at t=0.5 energy density at t=1.5 energy density at t=2.0

<«

15

y—axis
-
y—axis

05

15
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-

0.5

0‘.5 1 115 2
Figure 9: Example 5: Explosion in a box problem.

Jittner [26] extended the non-relativistic kinetic theory of gases, which was devel-
oped by D. Bernoulli, Clausius, Maxwell and Boltzmann, to the domain of relativity.
He succeeded in deriving the relativistic generalization of the Maxwellian equilib-
rium phase density. Later on this phase density and the whole relativistic kinetic
theory was structured in a well organized Lorentz-invariant form, see Chernikov [4],
[5], Miiller [32] and the textbook of deGroot, van Leeuven and van Weert [6]. In the
textbook of Weinberg [40] one can find a short introduction to special relativity and
relativistic hydrodynamics with further literature also on the imperfect fluid (gas),
see for example Eckart’s seminal papers [19, 20, 21].

In [29, 27, 28, 31, 37] Kunik, Qamar and Warnecke have formulated two different
kinetic schemes in order to solve the initial and boundary value problems for the
ultra-relativistic Euler equations as well as in the general case.

The first kind of kinetic schemes are discrete in time but continuous in space. These
schemes are explicit and unconditionally stable. Furthermore, the schemes are multi-
dimensional and satisfy the weak form of conservation laws for mass, momentum,
and energy, as well as an entropy inequality. The schemes preserve the positivity of
particle density and pressure for all times and hence they are L' —stable. Moreover,
these schemes may be extended to account for boundary conditions, see [29, 27, 31,
37].

The second kind of kinetic schemes are discrete both in time and space, see [28, 37]
and have an upwind conservative form. We use flux vector splitting in order to
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calculate the free flight moment integrals. The structure of the light cone implies
a natural CFL condition. These schemes are called kinetic flux vector splitting
(KFVS) schemes which we have extended to the two-dimensional case by dimen-
sion splitting. We use a MUSCL-type data reconstruction to obtain second order
accuracy.

In the following we restrict to the ultra-relativistic limit, where we meet a sim-
pler mathematical structure. In particular, all moments are completely determined
by surface integrals with respect to the unit sphere. Due to this fact, the ultra-
relativistic Euler equations may be treated similar to the moment systems of the
Boltzmann-Peierls equation.

3.2 The ultra-relativistic Euler equations

The coordinates with respect to a fixed reference frame are given by the 4-vector
z#, u € {0, 1, 2, 3}, where z° = ¢ is the observer time. The three vector x = z°,
i € {1, 2, 3}, denotes the spatial coordinates of any event z#. For simplicity we set
c = h = kp = 1. Furthermore we assume that the metric tensor g,, is given by a
diagonal matrix g,, = ¢*¥ = diag(1, —1, —1, —1).

The kinetic variable the 4-momentum of the gas particles ¢* = (¢°, q) with q = ¢,
i € {1, 2, 3}. However, not all components of the 4-momentum are independent,
because

¢"q, = m’, (63)

where m is the rest mass of the particles. The invariant volume element dw of the
momentum space is given by
Loy 0,3 14
dw = —dq dg¢°dq® = —d°q. (64)
do do
The phase density f(z*, ¢™) = f(¢, x, q) gives the number density of particles in
the element dw at z*.

From now on we consider exclusively particles without rest mass, i.e. m = 0, so that

d3
@ =|q] and dw= c4 (65)

q|

This is the ultra-relativistic limit, and the macroscopic quantities that appear in
the relativistic Euler equations can be calculated from the following moments of the
phase density

3
N =Nt =[x ) L and (66)
3 q
v v v d3q
T =TH (t, X) == [q”q f(ta X, q) Ha (67)
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which give the particle 4-vector and the energy-momentum tensor, respectively.
Furthermore we consider exclusively non-degenerate gas particles so that the entropy
four vector is given by

d3

St =8H(t, x) = —[q“f(t, x, q)In (f(t, x, q)) |qu' (68)

There are conservation laws for N#, T and an inequality in conservative form for
S, viz.

N o, 91 9575 (69)
OzH OzH T Ozr T
We read off from (66)-(69) the interpretations: N° - particle density, N* - particle
flux vector, 7% - momentum density, 7% - momentum flux, 7% - energy density,
T - energy flux, S° - entropy density, and S* - entropy flux, where 4, j € {1, 2, 3}.
We conclude from the symmetry T#” = T"* that the momentum flux is equal to
the energy flux. Note that the particle flux vector is not equal to the momentum
density, as it is the case in the non-relativistic limit.

b

Next we introduce the macroscopic 4-velocity u* by

ut = %N”, n=+/N"N,, (70)
so that ufu, = 1. We define the local rest frame of the gas by u* = (1,0,0,0).
We can use u* and the combination h,, = (u,u, — gu) to define further macrospic
fields that have a suggestive meaning in the local rest frame. These are e = u,u,T"”
- internal energy density, p = 1/3h,,T"" - pressure, Q, = —h, u,T* - heat flux,
and p<ys = (huahye — 1/3hu,hae) T - pressure deviator, where p<#*> denotes the
trace free part of p*”. There follows

N* =nu* and T" = eu’u” + ph* + Q"u” + Q"u* + p<*~. (71)

In the ultra-relativistic limit we have g,,¢"¢” = 0 and (67), and (71), imply e = 3p.

In the ultra-relativistic case, the phase density that maximizes the entropy density
(68) in the local rest frame under the constraints of given values for n and e is called
the ultra-relativistic Jiittner phase density, cf. [26, 27]. It reads

n u,q”
fJ (n’ Ta u, q) = 87TT3 €xXp ( T >
= 87rnT3 exp (% <v1+u2u-%|>> . (72)

Herein T' denotes the temperature, which is defined by 7' = p/n.

Next we calculate the particle 4-vector and the energy-momentum tensor from the
Jittner phase density. We obtain @, = 0 and p.,,~ = 0 and the conservation laws
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(69) formally transform into the ultra-relativistic Euler equations

2(n\/l—l—u2)—i-zi(nuk) = 0,

ot Ox*
k=1
5 3
a(llpu'\/ 1+u?)+ Z (P 6 +4pu'u®) = 0, (73)
k=1
5 3
5 (3p + 4pu?) + pys (4pufFv/14+u2) = 0
k=1

3.3 Kinetic Schemes

As mentioned in the introduction, the kinetic approach for the ultra-relativistic
Euler equations consists of periods of free flight and update times. In particular,
we prescribe a time step 73y > 0 and define the update times t,, = m 1), for m =
0,1,2,3...

The evolution during the periods of free flight is given by the collision transport
equation which reads in the ultra-relativistic case

(74)

Since we cannot expect the phase densities to be continuous at the update times,
we have to distinguish between the left-hand and right-hand limits w.r.t. time. We
thus define

fal(x, q) = lim f(tmt7, %, q). (75)

Within the m-th period of free flight, i.e t,,_1 <t < t,,, the moments of f are given
by

d3
N”(tm,1—|—7', X) = /qu f;il(X—Ti, q)—q) (76)
3 lal” ™ [a|
v v et q  d’%q
" (tmfl + 7, X) = qﬂq fmfl(x — Ty q) T (77)
3 lal” ™ |q
whereas the fields n, u, 7', and p are determined by the algebraic equations
1 1
n=/NtN,, u'=—-N' T= 3, Uty ™, p=nT. (78)
n n

At the update time ¢,, we use the free flight density f,. in order to calculate f; as
a Jittner phase density

£ @) = £ (i (), Ton(x), (%), @) (79)
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We choose the fields n,,, Tm, and 1,, so that the densities N° and 7% are conserved
across the update times. In particular, for all ¢,, and all x we have to ensure the
continuity conditions

a3 a3
/ AT ea L / O holxa) 2l (80)
5 q| 3 q|
d3q _ d3q
0. v p+ X -t _ 0 v X _ -
ﬁqq fo(x, q) q ﬁqq fm(x, ) al (81)

It is important to note that the conditions (80) and (81) guaranty the continuity of
the densities N and 7% at the update times, but they do not imply the continuity
of the fields n, T, p, and u at the update times. We mention that the fields 7, Tin
Pm, and 4, turn out be the right-hand limits of n, T', p, and u, respectively.

The update procedure maximizes the entropy in any point (¢,,, x) under the con-
straints of prescribed densities. For this reason we call the update times mazimiza-
tion times.

From (79), (80), and (81) we may derive the following explicit expressions for @,,,

N, and T;,

TOk NO _ ~m
m S S — (82)
VAP (b + TY) Vit T
Here N2 (x) = N%(t,,, x) and T2 (x) = T"(t,,, x) are the densities at the update
time t,, and p,, is given by

~k
U, =

1
Pm = 3 —To + | A(TR)? —3) " (T%)? | . (83)

3.3.1 Reduction to surface integrals

The moment integrals (76) and (77) may be simplified as follows. We split the
microscopic variable q into its length |q| and into its direction

w = (w',w?, w*)T = q ¢ s?, (84)

l
where S? denotes the unit sphere. Due to the ultra-relativistic structure of the
moment integrals in (76) and (77), we may carry out the integration with respect
to |q|. There result the following expressions

Nty + 7, %) = ]{w“ D, (x — 7w, w)dS(w), (85)
TH (tm +7,x) = ]{w“w”\llm(x —Tw, w)dS(w), (86)
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where w’ = 1 and u,v € {0, 1, 2, 3} and

1 o (X)

¢m(xa W) = - 3 (87)
4”( T+ 82,(x) — Wi (x))

U, (x, w) — % P (X) | (88)

(VITEE - w-iux)’

The functions ®,, and ¥, are the counterparts to the reduced phase densities for
the Boltzmann-Peierls equation, cf. Section 2.2.

The surface integrals in (85) and (86) reflect the fact that in the ultra-relativistic
case the particles are moving on the surface of the light cone.

3.3.2 Kinetic scheme in one space dimension

Here we consider phase densities f that do not depend on z? and z*, and we will
show that this restriction gives rise to a further simplification of the kinetic scheme.

In the following we write z = z',
n=n(t,z), u=(u(t,z),0,0), p=pt z), T=T(, ), (89)
and so on. Next we introduce new variables —1 < ¢ <1 and 0 < ¢ < 27 by
w' =€, w2:ﬂsin¢, w3:\/1—752c0sg0. (90)

The surface element then becomes dS(w) = dédyp. Now we can carry out the
integration with respect to the angular ¢ in (85) and (86) and we obtain

Nty 47, ) = /w"(I)m(:C e €)de, (91)
TR (1 47, 7) = / whw U, (z — 7€, €)dE, (92)
where

bule §) = | e, (99

(VI+ (@) - €iin(a))

3 P ()

Up(z, §) = - 7 (94)

2 ( 1+ a2 (z) - gam(x))
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3.4 Numerical Examples
3.4.1 Problem 1: Relativistic shock tube

The initial data are

(mu,p)— | (:0,00,100) ifz <05,
P 0(1.0,0.0,0.5) ifz>05.

The spatial domain is taken as [0, 1] with 400 mesh elements and the final time is
t = 0.5. For the kinetic scheme we consider 100 maximization times. This problem
involves the formation of an intermediate state bounded by a shock wave propagating
to the right and a transonic rarefaction wave propagating to the left. The fluid in
the intermediate state moves at a mildly relativistic speed (v = 0.58¢) to the right.
Flow particles accumulate in a dense shell behind the shock wave compressing the

fluid and heating it. Figures 10 show the particle density n, fluid velocity v = i
and pressure p.

3.4.2 Problem 2: Implosion in a box

reflecting
In this example we consider a two- ’
dimensional Riemann problem inside
a square box of sides length 2, with
reflecting walls. Initially the velocities are 201251 n =1 = %0
zero. The pressure is 10 and density is 4 & ur=0 |u =0 §
inside a small square box of sides length % uy =0 | %2 = ?O qqé
0.5 in the center of the large box, while = o7} p= p=
pressure and density are unity elsewhere.
The results are shown at ¢ = 3.0 in Figure
11. We have used 400 x 400 mesh points.
0 6.75 i.25 2
reflecting
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Problem 1: Comparison of the results at time ¢ = 0.5.
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