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AbstractThe hyperbolic system that describes heat conduction at low temperaturesand the relativistic Euler equations belong to a class of hyperbolic conservationlaws that result from an underlying kinetic equation. The focus of this study isthe establishment of an kinetic approach in order to solve initial and boundaryvalue problems for the two examples. The ingredients of the kinetic approachare: (i) Representation of macroscopic �elds by moment integrals of the kineticphase density. (ii) Decomposition of the evolution into periods of free 
ight,which are interrupted by update times. (iii) At the update times the data arerefreshed by the Maximum Entropy Principle.1 IntroductionIn this article we study (i) initial value problems for kinetic equations and (ii) initialand boundary value problems for the corresponding hyperbolic moment systems. Weconsider two di�erent physical phenomena that, however, lead to similar equationswhich can be solved by kinetic schemes.1. The evolution of heat in crystalline solids at low temperature is driven by thetransport of phonons, which form a gas like structure in the solid. The phonons be-have as Bose particles and their evolution may be described by the Boltzmann-Peierlsequation (BPE), which is an integro-di�erential equation for the phase density ofthe phonon gas. The entropy of a Bose gas and the Maximum Entropy Principle(MEP) are used to derive a hierarchy of hyperbolic moment systems.2. The evolution of transport processes in a gas, whose particles have velocities thatare comparable with the speed of light, is described by the relativistic Boltzmannequation. In this study we consider the framework of special relativity and thelimiting case of small free 
ight times of the gas particles. Furthermore we restrictthe gas particles to obey Boltzmann statistics, so that local equilibrium is describedby the J�uttner phase density. The Maximum Entropy Principle (MEP) serves toderive the relativistic Euler equations for the �rst �ve moments of the phase density.Regarding their mathematical structure, the two examples have many similarities sothat we can apply the same numerical method to solve the two described problems.There numerical method is a kinetic scheme which consists of periods of free 
ightand update times.In both examples, the periods of free 
ight is described by the same collision freekinetic transport equation. The macroscopic �elds appear as moments of the phase1



density which are formed by integrals over the kinetic variable. In both cases, themoment integrals may be reduced to integrals over the unit sphere.The update procedure relies in its essential part on the MEP. Thus, we are confrontedwith the problem whether the MEP exists at all. It was Junk who has pointed out,that the MEP for the Boltzmann equation does not exist, because the momentintegrals have an in�nite domain. Guided by Junk's seminal contribution, Dreyer,Junk and Kunik studied the Fokker-Planck equation and proved nonexistence alsoin that case. However, we could prove the existence of the MEP, for the BPE aswell as for the ultra-relativistic Euler equations, because both cases lead to momentintegrals over the unit sphere.The described kinetic approach lead to numerical schemes that are �rst order intime. However, we will describe suitable correction terms that lead to second orderschemes.The �rst part of this report deals with the BPE. At �rst we introduce a reduced ki-netic equation which has a simpler structure than the BPE. Moreover, if we restrictto the macroscopic 1D case, a further simpli�cation of the kinetic equation is possi-ble. Secondly we give a positive existence result for the MEP. Finally we establishkinetic schemes for the kinetic equation as well as for the hierarchy of hyperbolicmoment systems.In second part of this paper we apply the kinetic approach to the ultra-relativisticEuler equations. We write these in terms of the particle density n, the spatial partof the four-velocity u and the pressure p.2 The Boltzmann-Peierls EquationIn this section we use kinetic schemes in order to solve the Boltzmann-Peierls Equa-tions (BPE) as well as the moments systems that are derived by means of theMaximum Entropy Principle. Here we present a survey of results that are explainedin more detail in [9, 30, 17, 16]. Further results concerning the BPE and its momentsystems may be found in [14, 18] and the references therein.First we give a brief summary on the kinetic theory of heat conduction in 2.1. In2.2 we introduce a reduced model with a simpli�ed kinetic variable. However, thereduced equation contains all physically relevant information. Afterwards in 2.3 wediscuss the strategy of Extended Thermodynamics and Maximum Entropy Principle.In particular, we derive the moment systems of hyperbolic pde's that approximatethe kinetic equation. Finally, in 2.4 we present the kinetic schemes mentioned above.We conclude with some illustrating numerical examples in 2.5.
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2.1 The kinetic theory of heat conduction in solidsIn 1929, Peierls [35] proposed his celebrated theoretical model to describe transportprocesses of heat in solids. According to the model the lattice vibrations responsiblefor the heat transport can be described as an interacting gas of phonons. An overviewon phonon theory and its applications is given by Dreyer and Struchtrup in [18].The BPE is a kinetic equation that describes the evolution of the phase densityf(t; x; k) of a phonon gas. The microscopically three dimensional BPE reads@ f@ t + cki @ f@ xi = Sf; (1)where t, x = (x1; x2; x3), k = (k1; k2; k3) denote the time, the space and the wavevector, respectively. The positive constant c is the Debye speed and S abbreviatesthe collision operator that will be de�ned below.The moments of the phase density f re
ect the kinetic processes on the scale ofcontinuum physics. The most important moments are the energy density e and theheat 
ux Q = (Q1; Q2; Q3) which are de�ned ase(f) = ~c ZR3 jkj f(k) dk; Q(f) = ~c2 ZR3 kf(k) dk: (2)Since f depends on time and space the moments e(f) and Q(f) depend on t and x,too.Phonons are identi�ed as Bose particles, see [35, 18]. Thus, the kinetic entropydensity-entropy 
ux pair (h; �) is given byh(f) = y ZR3 ��1 + fy� ln�1 + fy�� fy ln�fy�� dk; (3)'i(f) = y ZR3 c kijkj ��1 + fy� ln�1 + fy�� fy ln�fy�� dk; (4)where y = 38�3 . The kinetic equation (1) implies the following entropy inequality@ h(f)@ t + @ �j(f)@ xj � 0: (5)In contrast to ordinary gas atoms, phonons may interact by two di�erent collisionprocesses, called R- and N-processes. N -processes describe phonon-phonon interac-tions, while R-processes take care of interactions of phonons and lattice impurities.The N -processes conserve energy as well as momentum, while the R-processes con-serve only the energy. The Callaway approximation of the collision operator is asuitable simpli�cation of the actual interaction processes (cf. [2, 18]). The Callaway3



collision operator is written as the sum of two relaxation operators modelling theR- and N -processes separately. There holdsSf = SRf + SNf; S�f = 1���P�f � f�; � 2 nR; No: (6)The positive constants �R and �N are the relaxation times, PR and PN are twononlinear projectors. The phase densities PRf and PNf are de�ned as solutions ofthe two optimization problemsh(PRf) = maxf 0 nh(f 0) : e(f 0) = e(f)o; (7)h(PNf) = maxf 0 nh(f 0) : e(f 0) = e(f); Q(f 0) = Q(f)o: (8)These maximization problems may be solved explicitly. The resulting expressionsfor PR and PN in terms of e and Q may be found in [18, 30].2.2 The reduced Boltzmann-Peierls EquationIn this section we recall results from [9, 30] in order to derive a reduced kineticequation for a reduced phase density. This procedure relies on the observation thatfor any solution f of (1) there exists a corresponding solution of a reduced equationthat determines all physically important moments of f .For any phase density f depending on the wave vector k 2 R3 we de�ne the reducedphase density 'f of f depending on a normal vector n 2 S2 by'f(n) = ~c 1Z0 jkj3 f(jkjn) djkj; (9)where n = (n1; n2; n3) = k=jkj.Let m be a homogeneous moment weight of degree 1, i.e. m(�k) = �m(k) for all� � 0, and let u be the corresponding moment function. Note that all physicallyimportant moments are homogeneous of degree 1.A straight forward calculation yieldsu(f) = ~c IS2 m(n)'f(n) dS(n); (10)whereas dS(n) denotes the usual measure on the unit sphere S2. We conclude thatthe moment of f is given by a respective moment of it's reduced phase density 'f .In particular we �nd e(f) = e('f ) and Q(f) = Q('f) withe(') = IS2 '(n) dS(n); Q(') = c IS2 n'(n) dS(n): (11)4



Furthermore, we introduce an entropy density-entropy 
ux pair (h; �) for reducedphase densities byh(') = � IS2 ' 34 (n) dS(n); �i(') = � c IS2 ni ' 34 (n) dS(n); (12)where � is a given constant. We summarize the main results in the following theorem.Theorem 2.1 1. There exist two operators �R and �N so that'(P�f) = ��('f) for � 2 fR; Ng: (13)2. If f is a solution of the BPE, then its reduced phase density 'f is a solutionof the following reduced BPE@ '@ t + cni @ '@ xi = 	'; (14)where 	 = 	R +	N and 	�' = 1�� (��'� ').3. �R and �N have similar properties as PR and PN , i.e.h(�R') = max'0 nh('0) : e('0) = e(')o; (15)h(�N') = max'0 nh('0) : e('0) = e('); Q('0) = Q(')o: (16)4. There holds�R' = e4� ; �N' = 3e(4� F )34�F �1� F n�Q4 c e �4 ; F = 61 +r1� 34 � jQjc e �2 : (17)5. The reduced BPE implies the entropy inequality@ h(')@ t + @ �i(')@ xi � 0: (18)6. The reduced BPE leads to an hierarchy of balance laws. For any vector ofmoment weights ~m(n) we obtain@ ~u(')@ t + @ ~Fi(')@ xi = ~�('); (19)where ~u(') = IS2 ~m(n)'(n) dS(n); (20)~Fi(') = IS2 cni ~m(n)'(n) dS(n); (21)~�(') = IS2 ~m(n)�	'�(n) dS(n); (22)denote the densities, the 
uxes and the productions, respectively.5



2.2.1 One-dimensional Reduced Kinetic EquationTo conclude this section we summarize results from [30] that allow a further simpli-�cation of the reduced BPE. In the macroscopically one dimensional case we havex = (x; 0; 0) and Q = (Q; 0; 0). We introduce the new variables �1 � � � 1,0 � # � 2� byn1 = � ; n2 =p1� �2 sin# ; n3 =p1� �2 cos# ; (23)with the surface element dS(n) = d�d#. Furthermore we eliminate the angle # bysetting '(t; x; �) = Z 2�0 '(t; x; 0; 0; n) d#: (24)The reduced BPE (14) then further reduces to@'@t + c � @'@x = 1�R (�R'� ') + 1�N (�N'� ') ; (25)where �R' and �N' are given by expressions similar to (17).2.3 The Maximum Entropy Principle2.3.1 The strategy of Extended ThermodynamicsThe objective of Extended Thermodynamics is to solve initial and boundary valueproblems for truncated moment systems instead of solving the kinetic equation. Tothis end only the �rst N equations of the in�nite hierarchy of moment equationare used, and the Maximum Entropy Principle (MEP) serves to close the truncatedsystem.For the formulation of the MEP we start with a �xed N -dimensional vector ~m =~m(n) of moment weights. The vector ~m induces a vector ~u of densities, cf. (20).In the following we call the pair (~m; ~u) a moment pair of dimension N . The MEPcorresponding to (~m; ~u) can be formulated as follows.For any given phase density ' we seek a phase density 'M that maximizes theentropy, i.e. h ('M) = max'0 f h ('0) : ~u ('0) = ~u (') g : (26)In order to indicate that 'M obviously depends on ', we write 'M = �M'. TheMEP assumes, that for any reasonable phase density ' there always exists a phasedensity 'M = �M' that maximizes the entropy according to (26). Thus, the MEPends up with an operator �M with the following properties1. �M is a nonlinear projector, i.e. �2M = �M .6



2. �Mf depends only on the moments ~u ('), i.e. ~u ('1) = ~u ('2) implies �M'1 =�M'2.We call the operator �M the MEP projector corresponding to the moment pair(~m; ~u).We mention that, according to (15) and (16), the operators �R and �N appearingin the reduced collision operation 	 are also MEP projectors.Next we consider the closure problem of Extended Thermodynamics. We start witha �nite number of balance equations derived from the kinetic equation, cf. (19).As before we denote the corresponding vectors of densities and 
uxes by ~u and ~Fj,respectively. The densities are now considered as the independent variables. Sincein general the 
uxes ~Fj do not depend on the densities ~u, there arises the so calledclosure problem. The closure problem is solved by a reasonable ansatz that providesthe 
uxes and the productions as functions of the densities.A very popular closure ansatz in Extended Thermodynamics is the MEP leadingto the so called MEP moment system, which is achieved from (14) by a formalreplacement of the phase density ' by the MEP density �M':@~u (�M')@t + @ ~Fj (�M')@xj = ~u (	�M') : (27)Since �M' depends on ' via the densities ~u, the system (27) is in fact a closedsystem with respect to the variables ~u. The resulting system of PDE's is symmet-ric hyperbolic. For further details we refer to the standard textbook on RationalExtended Thermodynamics by M�uller/Ruggeri ([33]) and to [9].The existence of the MEP projector is a nontrivial and subtle problem, becausethere are counterexamples in which the MEP fails. Junk has observed, that for theBoltzmann Equation the corresponding MEP density does not exist in general. Adetailed discussion of this problem may be found in [24, 25, 11].However, in the case of the reduced BPE these problems do not arise. This topicwill be discussed in the next subsection.2.3.2 The MEP and the reduced equationWe apply the MEP to the reduced kinetic equation and to the entropy (12). Inparticular, we give a positive existence result for MEP projectors �M .Let (~m; ~u) be a moment pair of dimension N . We call the pair (~m; ~u) admissible,if (i) the energy density e is among the components of ~u and if (ii) the componentsof ~m are smooth (at least C3). In the following, we consider exclusively admissiblepairs (~m; ~u).For r 2 f1; 1g we de�neLr+(S2) = n' 2 Lr(S2) : 9 Æ = Æ(') > 0 with ' � Æ a.e.o: (28)7



For given ' 2 L1+(S2) the MEP leads to the following optimization problem withconstraints.Problem 2.2h('M) = max'0 nh('0) : '0 2 L1+(S2); ~u('0) = ~u(')o: (29)Next we introduce the conjugate functional h? of the entropy h, that readsh?( ) = �13 �34��4 ZS2  �3(n) dn: (30)Note that h? is well de�ned for all  2 L1+ (S2). Using this functional h? we formulatethe following dual problem of 2.2, namelyProblem 2.3 ~h(~�M) = min~� n~h(~�) : ~� 2 DMo; (31)DM := n~� 2 Rn : ~� � ~m 2 L1+ (S2)o; (32)~h(~�) = �h?�~� � ~m� + ~u('0) � ~�; (33)which is an optimization problem without constraints. There is a close relationbetween the Problems 2.2 and 2.3. In particular, the solution ~�M of Problem 2.3are the Lagrange multipliers corresponding to the solution 'M of Problem 2.2. Themain results concerning the MEP are summarized in the following theorem.Theorem 2.4 For any ' 2 L1+(S2) there holds1. There exists a unique solution 'M of problem 2.2.2. There exists a unique solution ~�M of problem 2.3.3. There holds the identity 'M = �34 �~�M � ~m�4 : (34)The proof of a similar result for two dimensions is contained in [9].
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2.4 Kinetic schemes2.4.1 Kinetic solutions of the kinetic equationIn this section we derive kinetic schemes that allow the construction of approximatesolutions of (14) in the time interval [0; 1).The solution of the Cauchy problem of the collisionless kinetic equation@ '@ t + cni @ '@ xi = 0; (35)is given by the free transport group T (t) acting on phase densities ' depending onx and n according to �T (t)'�(x; n) := '(x� ctn; n): (36)In particular, T (t)'0 is a solution of (35) with initial data '0.The solution of the corresponding Cauchy problem for the reduced BPE (14) canbe represented by means of Duhamel's principle as'(t) = T (t)'0 + tZ0 T (t� s)�	R'(s) + 	N'(s)� ds: (37)Note that for any t the function '(t) is a phase density depending on x and n.Obviously, the formula (37) is not explicit in '(t). In order to �nd approximatesolutions, we shall replace the integrals in (37) by Riemann sums. If we introduce asmall parameter ~� > 0, we �nd'(t) ' T (t)'0 + Xk : 0� k ~� < t~� T (t� k~� )�	R'(k~�) + 	N'(k~� )�: (38)This approximate representation of solutions of (14) immediately gives rises to anexplicit semidiscret kinetic scheme. Using the abbreviations'k� = limt#0 '(k~� � t) for k � 0; (39)and '0� = '0, we �nd by a straight forward calculation, that (38) with equalitysign is equivalent to'(k~� + t) = T (t)'k+; 0 < t < ~� ; (40)'k+ = ~��R�R'k� + ~��N�N'k� + �1� ~��R � ~��N �'k�: (41)The time intervals (k~� ; k~� + ~� ) are called transport intervals, whereas the multiplesof ~� are called update times.For any strictly positive initial datum '0 and suÆciently small parameter ~� , thekinetic scheme (40)-(41) de�nes an approximate solution ' of (14) with the followingproperties. 9



Lemma 2.51. '(t) is strictly positive for all t and there exist the left-hand and right-handlimits at the update times.2. ' satis�es exactly the conservation of energy, that is@ e(')@ t + @ Qi(')@ xi = 0: (42)3. The entropy production is nonnegative, i.e.@ h(')@ t + @ �i(')@ xi � 0: (43)The equation (42) and the inequality (43) are satis�ed in the sense of distributions.For further details again we refer to [9].2.4.2 Kinetic solution of the MEP moment systemsIn this section we shall brie
y describe how kinetic schemes can be used in order tosolve moment systems of the reduced kinetic equation that are derived by means ofthe MEP. It will turn out, that there is a close relationship between kinetic schemesfor the kinetic equation and kinetic schemes for its moment systems. A more detaileddiscussion is contained in [9].In the following we consider an admissible moment pair (~u; ~m) together with the re-sulting MEP projector �M (cf. Subsection 2.3). The moment system correspondingto ~u is given by @ ~u(�M')@ t + @ ~Fj(�M')@ xj = ~u(	�M'): (44)The standard kinetic approach of the Cauchy problem for this moment system canbe summarized as follows.1. We start with initial data of the form �M'0 that correspond to the givenmacroscopic initial data ~u0, i.e. ~u0 = ~u(�M'0).2. For a small but �xed time �M we solve the kinetic equation (14) for in thetime interval [0; �M ], at least approximately.3. The resulting phase density will be used to calculate the moments ~u.4. At the time �M the phase density '(�M ) will be replaced by the MEP phasedensity �M'(�M) and we restart the scheme.10



Kinetic schemes of this kind are well known and studied by many authors for momentsystems relying on various kinetic equations ( see [10, 12, 13, 24, 36] for momentsystems of the Boltzmann Equation, [14, 15] for a moment system of the BPE).In view of this standard approach we consider the following kinetic equation@ '@ t + cni @ '@ xi = 	R'+	N'+	M' (45)The newly introduced quantity is	M' = 1�M ��M'� '� (46)that is again a relaxation operator with an arti�cial relaxation time �M .If we apply the moment maps ~u to (45), we formally obtain for the limiting case�M!0 the system (44). We can thus interpret equation (45) as a kinetic approxi-mation of the moment system (44).Next we apply the approach from above to the kinetic equation (45). There resultthe following kinetic scheme'(k~� + t) = T (t)'k+; 0 < t < ~� ; (47)'k+ = ~��R�R'k� + ~��N�N'k� + ~��M�M'k� +�1� ~��R � ~��N � ~��M �'k�: (48)This scheme di�ers from (40)-(41) just in the update rule (48). However, all asser-tions of Lemma 2.5 remain valid.2.4.3 Fully Discretized First Order SchemeIn order to get a fully discretized piecewise constant solution of the reduced BPE(25), we �rst de�ne a grid in the reduced phase-space consisting of cells Ci;j = Ii�Jjcentered around (xi = i�x; �j = j��),Ci;j = �(x; �) 2 R2 ����jx� xij � �x2 ; j� � �jj � ��2 � ;where �x = xi+ 12 �xi� 12 and �� = �j+ 12 � �j� 12 . The cell-average of ' at time t = tnover the cell Ci;j is given by'ni;j = 1�x�� xi+12Zxi� 12 �j+12Z�j� 12 '(t; x; �) d�dx : (49)
11



With the characteristic function �i;j(x; �) of the cell Ci;j we can write the desiredpiecewise constant phase density in the form P'ni;j�i;j(x; �).Integrating (40)-(41) over hxi� 12 ; xi+ 12i�h�j� 12 ; �j+ 12 i and dividing by �x��, we getfor a time step ~� = �t'n+1i;j = 'ni;j � ��Fni+ 12 ;j � Fni� 12 ;j�+�tSni;j +O(�t)2 ; (50)where � = �t�x , and for the CFL condition �t � �x2 we haveSni;j = X�2R;N 1�� ���'ni;j � 'ni;j� ; (51)Fni+ 12 ;j = c2 ��j'ni;j + �j'ni+1;j � j�jj�'ni;j� ; (52)where �'ni;j = 'ni+1;j �'ni;j. In order to get the average values of the moments fromthis discrete phase density at any time tn in each cell Ii we use the Riemann sumsas eni = �� N�Xj=1 'ni;j; Qni = c�� N�Xj=1 �j'ni;j; Nni = �� N�Xj=1 �2j'ni;j ; (53)where N� is the number of elements in the interval �1 � � � 1.2.4.4 Second Order Extension of the SchemeFor the second order accuracy in space and time we have the following three steps.(I) Data Reconstruction: Starting with a piecewise-constant solution in timeand phase-space, P'ni;j�i(x), one reconstruct a piecewise linear (MUSCL-type) ap-proximation in space, namely'nj (x) =X�'ni;j + 'xi;j (x� xi)�x ��i;j(x; �) : (54)Here, 'xi;j abbreviates a �rst order discrete slope.The extreme points x = 0 and x = �x, in local coordinates correspond to theintercell boundaries in general coordinates xi� 12 and xi+ 12 , respectively, see Figure 1.The values of 'i;j at the extreme points are'Li;j = 'ni;j � 12'xi;j ; 'Ri;j = 'ni;j + 12'xi;j ; (55)and are usually called boundary extrapolated values. A possible computation of theseslopes, which results in an overall non-oscillatory schemes (consult [39]), is given by12
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Figure 1: Second order reconstructionfamily of discrete derivatives parameterized with 1 � � � 2, i.e., for any grid function'i;j we set 'xi;j =MM ���'i+ 12 ;j; �2(�'i� 12 ;j +�'i+ 12 ;j); ��'i� 12 ; j� :Here, � denotes the forward di�erencing, �'i+ 12 ;j = 'i+1;j �'i;j, and MM denotesthe min-mod nonlinear limiterMMfx1; x2; :::g = 8<: minifxig if xi > 0 8i ;maxifxig if xi < 0 8i ;0 otherwise : (56)The interpolant (54), is then evolved exactly in time and projected on the cell-averages at the next time step.(II) Evolution: For each cell Ii, the boundary extrapolated values 'Li;j, 'Ri;j in (55)are evolved for a time 12�t by'̂Li;j = 'Li;j � �2 �FRi;j � FLi;j�+ �t2 Sni;j ; (57)'̂Ri;j = 'Ri;j � �2 �FRi;j � FLi;j�+ �t2 Sni;j ;where FLi;j = c�j'Li;j and FRi;j = c�j'Ri;j. Also to calculate source term at half timestep we use '̂i;j = 'ni;j � �2 �Fni+1;j �Fni;j�+ �t2 Sni;j ; (58)13



where Fni;j = c�j'ni;j and̂ei = �� N�Xj=1 '̂i;j; Q̂i = c�� N�Xj=1 �j'̂i;j : (59)(III): Finally we use the conservative formula (50) in order to get the discrete phasedensity at next time step'n+1i;j = 'ni;j � ��Fn+ 12i+ 12 ;j �Fn+ 12i� 12 ;j� + X�2R;N �t�� (��'̂i;j � '̂i;j) ; (60)where the numerical 
uxes are de�ned byFn+ 12i+ 12 ;j = c2 ��j'̂Ri;j + �j'̂Li+1;j � j�jj('̂Li+1;j � '̂Ri;j)� : (61)2.5 Numerical ExamplesThe results of the preceding section shall be illustrated by some numerical examples.2.5.1 Example 1: The phenomenon of second soundThe �rst two examples we have taken from [9] allthough there we rely on the mi-croscopic two dimensional version of the BPE. However, the qualitative behaviordoes not depend on the number of microscopic dimensions. For both examples weassume that �R =1. Further we assume that the phase density only depends on x1.In order to simulate interesting phenomena, we consider the following macroscopicinitial data for energy density e and the momentum density Q.e0(x1) = n 1:5 if jx1j � 0:011:0 if jx1j > 0:01 ;Q1(x1) = 0:
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Figure 2: Example 1. Evolution of the energy pulse for �N = 2:014
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Figure 3: Example 1. Evolution of the energy pulse for �N = 1:0
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Figure 4: Example 1. Evolution of the energy pulse for �N = 0:5We study the evolution of the initial energy pulse according to di�erent values of�N (�N = 2:, �N = 1: and �N = 0:5). The Figures 2-4 show the spatial dependenceof the energy density at di�erent times (t = 1:2, t = 1:6 and t = 2:0). According to[18] we can interpret the results as follows. For large values of �N , as in Figure 2, thepulse is ballistic and its fronts move with the Debye speed c to the left and to theright. Figure 4 illustrates the case of small �N . Here, the shape of the pulse re
ectsthe characteristic behaviour of the so called second sound, that propagates with aspeed less than c. In Figure 3 we observe a transition regime. The pulse starts as aballistic pulse. After about 1:6 time units it changes its shape and becomes secondsound.2.5.2 Example 2: Kinetic equation versus MEP moment systemsThis example illustrates the relationship between solutions of the kinetic equationand solutions of the moment systems. The initial data are the same as in the �rstexample, the relaxation time �N is set to 0:7. The energy density corresponding tothe reduced BPE is depicted in Figure 5, whereas Figure 6 show the evolution ofthe initial energy pulse according to various moment systems. We mention, thatthe moment system of order n consists of 2n + 1 independent balance equations.For the details we refer to [9]. The Figures 5 and 6 reveal, that moment systems
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Figure 5: Example 2. Evolution of the energy pulse according to the kinetic equationwith a small number of moments produce quite bad approximations. However, theresults become better if the number of moments is increased. Finally we have a15



good correspondence of the kinetic equation and of the moment system of order40 in Figure 6. Furthermore, the Figures exhibit, how the number of appearingwaves increases with the order of the moment system. Finally we mention, that
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Figure 6: Example 2. Evolution of the energy pulse according to various momentsystemsthe numerical e�ort for calculating the MEP projectors �M increases tremendouslywith the number of moments. A detailed discussion of this problem is contained in[9].2.5.3 Example 3: Two Interacting Heat PulsesThis test problem demonstrates the interaction of two heat pulses, which leads to alarge increase of the energy density at the collision point during a short time interval.The initial data aree(0; x) = 8>>>><>>>>: 1 ; x � 0:32 ; 0:3 � x � 0:41 ; 0:4 � x � 0:62 ; 0:6 � x � 0:71 ; x � 1:0 ; Q(0; x) = 8>>>><>>>>: 0 ; x � 0:31 ; 0:3 � x � 0:40 ; 0:4 � x � 0:6�1 ; 0:6 � x � 0:70 ; x � 1:0 : (62)We solve the BPE for the above problem at time t = 0:2 for two values of �N ,i.e., �N = 1 and �N = 0:1, while �R = 1:0. Figure 7 shows the results. Fromthe comparison of the initial and �nal curves of energy density, we observe a largeincrease of the energy density e at the collision point x = 0:5. We have also compared16
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Figure 7: Example 3: Evolution of energy and heat 
ux.our results from the kinetic scheme with central schemes of Nessyahu and Tadmor,see [34, 23].2.5.4 Example 4: Heat Pulse in 2DIn this example we solve a two-dimensional hyperbolic moment system. We considera two-dimensional energy pulse inside a square box of sides length 0.02 with out-
ow boundaries. Initially the heat 
uxes are zero. The energy density is 1.5 insidea small square box of sides length 0.02 in the center of the large box, while energydensity is unity elsewhere. The results are shown at t = 1:2 in Figure 8. In all theresults we have used 200� 200 mesh points. We take �R =1.2.5.5 Example 5: Explosion in a Box.Here we also solve a two-dimensional hyperbolic moment system. We consider atwo-dimensional energy pulse inside a square box of sides length 2.0, with periodicboundaries. Initially the heat 
uxes are zero. The energy density is 2.0 inside asmall square box of sides length 0.5 in the center of the large box, while energydensity is unity elsewhere. The results are shown in Figures 9 at t = 0:5, t = 1:5and t = 2:0. In all the results we have used 300�300 mesh points. We take �R =1.
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Figure 8: Example 4: Evolution of energy density and heat 
ux in 2D.3 Part II: Relativistic Euler Equations3.1 IntroductionWe consider gas 
ows with thermal and macroscopic velocities that both are com-parable with the speed of light. In this case, space and time are coupled and therelativistic Euler equations of gas dynamics become more complicated as comparedto the classical ones. However, in some �xed reference frame it is still possible towrite the relativistic Euler equations as a �rst order hyperbolic system.Relativistic gas dynamics plays an important role in areas of astrophysics, highenergy particle beams, high energy nuclear collisions, and free-electron laser tech-nology. Here we consider exclusively the ultra-relativistic limit within the frameworkof special relativity.Kinetic approaches to solve the classical Euler equations of gas dynamics were suc-cessfully applied to several initial- and boundary value problems, see for exampleReitz [38], Deshpande [7, 8], Xu [41, 42], Dreyer and Kunik [12], Dreyer, Herrmann,Kunik [10], and Qamar [37]. Some interesting links between the Euler system andthe so called kinetic BGK-model, which was introduced by Bhatnagar, Gross andKrook [1], are discussed in the textbooks by Cercignani [3] as well as by Godlewskiand Raviart [22]. 18
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Figure 9: Example 5: Explosion in a box problem.J�uttner [26] extended the non-relativistic kinetic theory of gases, which was devel-oped by D. Bernoulli, Clausius, Maxwell and Boltzmann, to the domain of relativity.He succeeded in deriving the relativistic generalization of the Maxwellian equilib-rium phase density. Later on this phase density and the whole relativistic kinetictheory was structured in a well organized Lorentz-invariant form, see Chernikov [4],[5], M�uller [32] and the textbook of deGroot, van Leeuven and van Weert [6]. In thetextbook of Weinberg [40] one can �nd a short introduction to special relativity andrelativistic hydrodynamics with further literature also on the imperfect 
uid (gas),see for example Eckart's seminal papers [19, 20, 21].In [29, 27, 28, 31, 37] Kunik, Qamar and Warnecke have formulated two di�erentkinetic schemes in order to solve the initial and boundary value problems for theultra-relativistic Euler equations as well as in the general case.The �rst kind of kinetic schemes are discrete in time but continuous in space. Theseschemes are explicit and unconditionally stable. Furthermore, the schemes are multi-dimensional and satisfy the weak form of conservation laws for mass, momentum,and energy, as well as an entropy inequality. The schemes preserve the positivity ofparticle density and pressure for all times and hence they are L1�stable. Moreover,these schemes may be extended to account for boundary conditions, see [29, 27, 31,37].The second kind of kinetic schemes are discrete both in time and space, see [28, 37]and have an upwind conservative form. We use 
ux vector splitting in order to19



calculate the free 
ight moment integrals. The structure of the light cone impliesa natural CFL condition. These schemes are called kinetic 
ux vector splitting(KFVS) schemes which we have extended to the two-dimensional case by dimen-sion splitting. We use a MUSCL-type data reconstruction to obtain second orderaccuracy.In the following we restrict to the ultra-relativistic limit, where we meet a sim-pler mathematical structure. In particular, all moments are completely determinedby surface integrals with respect to the unit sphere. Due to this fact, the ultra-relativistic Euler equations may be treated similar to the moment systems of theBoltzmann-Peierls equation.3.2 The ultra-relativistic Euler equationsThe coordinates with respect to a �xed reference frame are given by the 4-vectorx�, � 2 f0; 1; 2; 3g, where x0 = t is the observer time. The three vector x = xi,i 2 f1; 2; 3g, denotes the spatial coordinates of any event x�. For simplicity we setc = ~ = kB = 1. Furthermore we assume that the metric tensor g�� is given by adiagonal matrix g�� = g�� = diag(1; �1; �1; �1).The kinetic variable the 4-momentum of the gas particles q� = (q0; q) with q = qi,i 2 f1; 2; 3g. However, not all components of the 4-momentum are independent,because q�q� = m2; (63)where m is the rest mass of the particles. The invariant volume element d! of themomentum space is given byd! = 1q0dq1dq2dq3 = 1q0d3q: (64)The phase density f(x�; qm) � f(t; x; q) gives the number density of particles inthe element d! at x�.From now on we consider exclusively particles without rest mass, i.e. m = 0, so thatq0 � jqj and d! = d3qjqj (65)This is the ultra-relativistic limit, and the macroscopic quantities that appear inthe relativistic Euler equations can be calculated from the following moments of thephase density N� = N�(t; x) = Z3 q�f(t; x; q) d3qjqj and (66)T �� = T ��(t; x) = Z3 q�q�f(t; x; q) d3qjqj ; (67)20



which give the particle 4-vector and the energy-momentum tensor, respectively.Furthermore we consider exclusively non-degenerate gas particles so that the entropyfour vector is given byS� = S�(t; x) = � Z3 q�f(t; x; q) ln (f(t; x; q)) d3qjqj : (68)There are conservation laws for N�, T �� and an inequality in conservative form forS�, viz. @N�@x� = 0 ; @T ��@x� = 0; @S�@x� � 0: (69)We read o� from (66)-(69) the interpretations: N0 - particle density, N i - particle
ux vector, T 0j - momentum density, T ij - momentum 
ux, T 00 - energy density,T i0 - energy 
ux, S0 - entropy density, and Si - entropy 
ux, where i; j 2 f1; 2; 3g.We conclude from the symmetry T �� = T �� that the momentum 
ux is equal tothe energy 
ux. Note that the particle 
ux vector is not equal to the momentumdensity, as it is the case in the non-relativistic limit.Next we introduce the macroscopic 4-velocity u� byu� = 1nN�; n =pN�N� ; (70)so that u�u� = 1. We de�ne the local rest frame of the gas by u� = (1; 0; 0; 0).We can use u� and the combination h�� = (u�u� � g��) to de�ne further macrospic�elds that have a suggestive meaning in the local rest frame. These are e = u�u�T ��- internal energy density, p = 1=3h��T �� - pressure, Q� = �h��u�T �� - heat 
ux,and p<��> = (h��h��� 1=3h��h��)T �� - pressure deviator, where p<��> denotes thetrace free part of p�� . There followsN� = nu� and T �� = eu�u� + ph�� +Q�u� +Q�u� + p<��>: (71)In the ultra-relativistic limit we have g��q�q� = 0 and (67)2 and (71)2 imply e = 3p.In the ultra-relativistic case, the phase density that maximizes the entropy density(68) in the local rest frame under the constraints of given values for n and e is calledthe ultra-relativistic J�uttner phase density, cf. [26, 27]. It readsfJ (n; T; u; q) = n8�T 3 exp��u�q�T �= n8�T 3 exp��jqjT �p1 + u2 � u � qjqj�� : (72)Herein T denotes the temperature, which is de�ned by T = p=n.Next we calculate the particle 4-vector and the energy-momentum tensor from theJ�uttner phase density. We obtain Q� = 0 and p<��> = 0 and the conservation laws21



(69) formally transform into the ultra-relativistic Euler equations@@t (np1 + u2) + 3Xk=1 @@xk (nuk) = 0;@@t(4puip1 + u2) + 3Xk=1 @@xk (p Æik + 4puiuk) = 0; (73)@@t (3p+ 4pu2) + 3Xk=1 @@xk (4pukp1 + u2) = 0:3.3 Kinetic SchemesAs mentioned in the introduction, the kinetic approach for the ultra-relativisticEuler equations consists of periods of free 
ight and update times. In particular,we prescribe a time step �M > 0 and de�ne the update times tm = m�M for m =0; 1; 2; 3::.The evolution during the periods of free 
ight is given by the collision transportequation which reads in the ultra-relativistic case@f@t + 3Xk=1 qkjqj @f@xk = 0: (74)Since we cannot expect the phase densities to be continuous at the update times,we have to distinguish between the left-hand and right-hand limits w.r.t. time. Wethus de�ne f�m(x; q) := lim�&0+ f(tm�� ; x; q): (75)Within the m-th period of free 
ight, i.e tm�1 < t � tm, the moments of f are givenby N�(tm�1 + � ; x) = Z3 q� f+m�1(x� � qjqj ; q) d3qjqj ; (76)T ��(tm�1 + � ; x) = Z3 q�q� f+m�1(x� � qjqj ; q) d3qjqj ; (77)whereas the �elds n, u, T , and p are determined by the algebraic equationsn =pN�N�; u� = 1nN�; T = 13nu�u� T �� ; p = nT: (78)At the update time tm we use the free 
ight density f�m in order to calculate f+m asa J�uttner phase densityf+m(x; q) = fJ�~nm(x); ~Tm(x); ~um(x); q�: (79)22



We choose the �elds ~nm, ~Tm, and ~um so that the densities N0 and T 0� are conservedacross the update times. In particular, for all tm and all x we have to ensure thecontinuity conditionsZ3 q0 f+m(x; q) d3qjqj = Z3 q0 f�m(x; q) d3qjqj ; (80)Z3 q0q� f+m(x; q) d3qjqj = Z3 q0q� f�m(x; q) d3qjqj (81)It is important to note that the conditions (80) and (81) guaranty the continuity ofthe densities N0 and T 0� at the update times, but they do not imply the continuityof the �elds n, T , p, and u at the update times. We mention that the �elds ~nm, ~Tm~pm, and ~um turn out be the right-hand limits of n, T , p, and u, respectively.The update procedure maximizes the entropy in any point (tm; x) under the con-straints of prescribed densities. For this reason we call the update times maximiza-tion times.From (79), (80), and (81) we may derive the following explicit expressions for ~um,~nm, and ~Tm~ukm = T 0kmp4~pm (~pm + T 00m ) ; ~nm = N0mp1 + ~u2m ; ~Tm = ~pm~nm : (82)Here N0m(x) = N0(tm; x) and T 0�m (x) = T 0�(tm; x) are the densities at the updatetime tm and ~pm is given by~pm = 130@�T 00m +vuut4(T 00m )2 � 3 3Xk=1 (T 0km )21A : (83)3.3.1 Reduction to surface integralsThe moment integrals (76) and (77) may be simpli�ed as follows. We split themicroscopic variable q into its length jqj and into its directionw = (w1; w2; w3)T = qjqj 2 S2; (84)where S2 denotes the unit sphere. Due to the ultra-relativistic structure of themoment integrals in (76) and (77), we may carry out the integration with respectto jqj. There result the following expressionsN�(tm + � ; x) = IS2 w� �m(x� �w; w) dS(w); (85)T ��(tm + �;x) = IS2 w�w�	m(x� �w; w) dS(w); (86)23



where w0 = 1 and �; � 2 f0; 1; 2; 3g and�m(x; w) = 14� ~nm(x)�p1 + ~u2m(x)�w � ~um(x)�3 (87)	m(x; w) = 34� ~pm(x)�p1 + ~u2m(x)�w � ~um(x)�4 : (88)The functions �m and 	m are the counterparts to the reduced phase densities forthe Boltzmann-Peierls equation, cf. Section 2.2.The surface integrals in (85) and (86) re
ect the fact that in the ultra-relativisticcase the particles are moving on the surface of the light cone.3.3.2 Kinetic scheme in one space dimensionHere we consider phase densities f that do not depend on x2 and x3, and we willshow that this restriction gives rise to a further simpli�cation of the kinetic scheme.In the following we write x = x1,n = n(t; x); u = (u(t; x); 0; 0); p = p(t; x); T = T (t; x); (89)and so on. Next we introduce new variables �1 � � � 1 and 0 5 ' 5 2� byw1 = � ; w2 =p1� �2 sin' ; w3 =p1� �2 cos': (90)The surface element then becomes dS(w) = d�d'. Now we can carry out theintegration with respect to the angular ' in (85) and (86) and we obtainN�(tm + � ; x) = 1Z�1 w��m(x� ��; �) d�; (91)T ��(tm + � ; x) = 1Z�1 w�w�	m(x� ��; �) d�; (92)where �m(x; �) = 12 ~nm(x)�p1 + ~u2m(x)� �~um(x)�3 ; (93)	m(x; �) = 32 ~pm(x)�p1 + ~u2m(x)� �~um(x)�4 : (94)
24



3.4 Numerical Examples3.4.1 Problem 1: Relativistic shock tubeThe initial data are(n; u; p) = � (5:0; 0:0; 10:0) if x < 0:5 ;(1:0; 0:0; 0:5) if x � 0:5 :The spatial domain is taken as [0; 1] with 400 mesh elements and the �nal time ist = 0:5. For the kinetic scheme we consider 100 maximization times. This probleminvolves the formation of an intermediate state bounded by a shock wave propagatingto the right and a transonic rarefaction wave propagating to the left. The 
uid inthe intermediate state moves at a mildly relativistic speed (v = 0:58c) to the right.Flow particles accumulate in a dense shell behind the shock wave compressing the
uid and heating it. Figures 10 show the particle density n, 
uid velocity v = up1+u2and pressure p.3.4.2 Problem 2: Implosion in a boxIn this example we consider a two-dimensional Riemann problem insidea square box of sides length 2, withre
ecting walls. Initially the velocities arezero. The pressure is 10 and density is 4inside a small square box of sides length0.5 in the center of the large box, whilepressure and density are unity elsewhere.The results are shown at t = 3:0 in Figure11. We have used 400� 400 mesh points.
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Figure 10: Problem 1: Comparison of the results at time t = 0:5.
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Figure 11: Problem 2: Implosion in a box at t = 3:0.
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