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Bifurcation Analysis for Spherically 
Symmetric Systems Using Invariant 

Theory 

R. Lauterbach J .A. Sanders 

1 Introduction 
We reconsider steady-state bifurcation in the five dimensional irreducible 
representation of 0(3). This problem has been studied by GoL UBITSKY & 
SCHAEFFER [11 ]. They used a geometric approach reducing the five dimensi-
onal problem to a two dimensional D3-equivariant problem. This reduction 
process is very special to the five dimensional representation. A similar pro-
cess does not exist in the higher dimensional representations. In our study 
we derive all the results from the Poincare-series, yielding the degrees of the 
generators of the ring of invariant functions and the module of equivariant ~ 

polynomial maps respectively. The special representation is used only to 
show that a certain scaling is natural. The final results do not depend on 
this scaling. 

General results about bifurcation with higher representations are due to 
IHRIG & GoL UBITSKY [12]. Only in a few cases the bifurcations and the 
local dynamics are understood, see 0HOSSAT, LAUTERBACH & MELBO-
URNE [6], FIEDLER & MISCHAIKOW (10] for the seven and nine dimensional 
representations. The fact that the local bifurcation scenario in the nine di-
mensional case is complete is shown in CHOSSAT & LAUTERBACH [5]. In 
all these papers the main emphasis is the use of the equivariant branching 
lemma, which guarantees the existence of solutions with isotropy subgroup 
'E. if 'E has a one-dimensional fixed point subspace. With the exception of 
FIEDLER & MISCHAIKOW [10], LAUTERBACH [13], [14) the dynamics of the 
problem was not considered. In this paper we use invariant theory to under-
stand the dynamics near the bifurcation point more completely. We restrict 
ourselves to the simplest case, the five dimensional irreducible representation 
of 0(3). Among other things, we find the existence of a heteroclinic cycle. 
Heteroclinic cycles have been observed in mode interactions involving the 
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£ = 2 representation. In the interaction of the £ = 1 and £ = 2 modes ARM-
BRUSTER & CHOSSAT [2) and CHOSSAT & ARMBRUSTER [4) have shown 
the existence of a structurally stable heteroclinic cycle. In CASTRO [7] a 
heteroclinic cycle occurs in the interaction of the£= 0 and the£= 2 modes. 
The heteroclinic cycle in CASTRO [7] seems to be closely related to our cycle, 
however, the precise relation is not clear. 

Acknowledgement This work has been made possible by the support of 
the European Community granted to the EBTG. We have to thank Y. Kuz-
netsov (Dynamical Systems.Lab, CWI, Amsterdam) for helpful discussions 
and last not least for preparing the figures 2, 3 using LOCBIF. Since we have 
a very sensitive dependence on parameters this turned out to be a formidable 
ask, which we did not succeed to do ourselves. 

2 Invariant theory 
We use the standard notation: 0(3) is the group of all orthogonal linear 
mappings on IR3 . As is well known there exist irreducible representations of 
this group in all odd dimensions 2£ + 1. They can be visualized as the action 
on the space of homogeneous, harmonic polynomials P: IR3 --+ IR by 

(T, P)(x) = P(T-1x ). (1) 

Let Vt be the corresponding space. There is a litle subtlety concerning the 
actions of 0(3). If the elements of S0(3) act as in (1) then -ll. can act as 
plus or minus identity. If the action of -ll. is given by (1 ), then we call it 
the natu~al representation of 0(3). Given such a representation R denotes 
the ring of invariant polynomials p : Vi --+ IR. We write M for the module 
of equivariant polynomial mappings Vi --+ Vt. Hilbert's theorem guarantees 
that R and M are finitely generated. Observe that a theorem of SCHWARZ 
[18] proves that the generators for the polynomial invariants also generate 
the smooth invariants. The precise number of generators can be read off from 
the Poincare-series, see SPRINGER [19]. The Poincare-series for the ring of 
invariant functions is defined as the formal power series 

00 

p'R(t) =I: aiti, 
j=O 

where ai = dimm. 'Rj and 'Rj is the real vector space of homogeneous invariant 
polynomials of degree j. Similar the formal power series 

00 

pM(t) = Lf3iti, 
j=O 
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with f3i = dimm. Mi, where Mi is the real vectorspace of homogeneous 
equivariant polynomial mappings of Vt into itself, is called the Poin.care-
series for M. 

Theorem 2.1 (Springer (19]) We have 

p'R( ) f d1 
t = Jo(3) det(l - t1) 

and 

pM t _ { tr(r)dr 
( ) - Jo(3) det(l - t1) 

In order to simplify the calculations of these integrals one can use the 
Weyl integral formula, see BROCKER & TOM DIECK [3] IV 1.11. Since de-
terminant and trace are class functions one is left with an integral over the 
maximal torus, here S0(2). Identifying this group with the unit circle in 
(IJ one has to compute some residues to obtain the Poincare series. Apply-
ing this procedure to representations of 0(3) we obtain for the irreducible 
representation on Vt the following formulae for the respective Poincare-series 

and 

M 1 { ( _1 ) f tr(g-1 hg) 
P (.t) = IWI JT det 11.G/T - AdG/T(h ) JG det(ll _ tg-lhg) dgdh. 

In our case the maximal torus is S0(2) its normalizer is 0(2) and the Weyl 
group has two elements. Let T be a chosen maximal torus, H be its infinite-
simal generator and set 

h = exp(iBH) and z = ei8• 

Then for a root system R+ we have (compare Lemma 1.8 in Chapter VI 
of [3]) 

For the group S0(3) this last expression equals 

(1 - z)(l - z-1). 

For the 2£ + 1 dimensional representation of S0(3) we have 
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and 

l 
tr(h) = I: zk 

k=-l 

Altogether we have shown the following theorem. 

Theorem 2.2 The Poincare-series for the ring of invariant functions is 
given by 

p'R t = _1_~ f (1- z)(l - z-1
) dz 

( ) 27ri 2 nt (1 - tzl-k) z 
lzl=l k=-l 

and the series for the module of equivariant mappings is equal to 

M t __ 1_~ f (1 - z-1 )(z-t - zt+1
) dz 

P ( ) - 27ri 2 Ilf:=-t(l - tzl-k) z · 
lzl=l 

Therefore one can compute the Poincare series in either case by calculating 
some residues and adding up some expressions involving roots of unity. Spe-
cializing to the case l = 2 we find 

'R 1 
p (t)= (1-t2)(1-t3 ) 

and 

M - t + t2 
p (t) - (1 - t 2)(1 - t3 )" 

We can read off that there are precisely two generators 7r1 , 7r2 of the ring 
of invariant functions of degrees 2 and 3, respectively. Moreover there are 
two generators of the module of equivariant mappings over this ring. These 
generators e1 , e2 have degree 1 and 2, respectively. Therefore we can choose 
ei = \77ri, i = 1, 2. Obviously e1 is a linear mapping, from the fact that the 
action is absolutely irreducible we conclude e1 is the identity mapping. Up 
to a multiple 7r1 is a Hilbert space norm on v;, such that the group action 
is orthogonal. Let < ·, · > denote the corresponding 0 ( 3) invariant inner 
product. Let x = (x1 , •.• , x5 ) E V2 denote the elements in V2 and write 

Il:V2~IR.2. 
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The range depends on the scaling of 7r1 and 7r2• Therefore we have to choose 
a certain scaling and we shall see that this choice also determines the precise 
form of the reduced equation. Since 7r1 is a norm it is always positive and 
the range of II is determined if we find the maximal and minimal value of 
7r2 for a fixed value of 7r1 • In order to find a natural choice for these scalings 
we look at the following representation of 0(3). Let S denote the set of 
symmetric, traceless 3 x 3 matrices. S forms a five dimensional real vector 
space. 0(3) acts by conjugation on this space. Observe that GOLUBITSKY 
& SCHAEFFER [11] made extensive use of this particular representation to 
study this problem. We use it only to find an appropriate scaling of the inva-
riants, all other scalings would do as well. Let D denote the two dimensional 
subspace of S of diagonal matrices. By linear algebra any element of S can 
be conjugated into D, and therefore II(S) = II(D). A natural choice for the 
invariants comes from the observation that the characteristic polynomial XA 
of a matrix A is invariant under conjugation, i.e. (observe tr(A) = 0) 

Let µi, µ2 , -(µ1 + µ2) denote the eigenvalues of a matrix in D. A short 
calculation yields 

and 

Maximizing 7r2 on 7r1 =canst. gives the condition that A has a double eigen-
value, i.e. b,. = discr(x(A)) = 0, and 

Summarizing we have that this choice of 7r1 , 7r2 gives 

Remark 2.3 We want to point out that due to the construction of a global 
section to the group orbit, which at the same time is the fixed point subspace 
under a subgroup, we have an isomorphism between the S0(3) and the D3 

theory. 

3 Equivariant equations 

Let us briefly describe an abstract setting and then specialize to our current 
situation of an 0(3)-equivariant bifurcation problem on v;. Given a compact 
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Lie group r acting linearly on a space V, we denote by 7r1, .. ~ , 7r s a set of 
generators of the ring of r invariant functions and ei, ... 'et generators of the 
module of equivariant, polynomial mappings V ~ V over this ring. We are 
interested in smooth equivariant mappings f : V ~ V. It is a theorem of 
SCHWARZ [18] that all smooth equivariant mappings have the form 

t 
f(x) = L9i(7r1(x), ... ,7ra(x))ei(x). 

i=l 

In general we have t ~ sand one can choose the generators such that ei = \77ri 
for i = 1, ... , s. 

We want to investigate the flow of the differential equation 

x=f(x). 

In order to reduce the dimension we derive equations for the invariant func-
tions. By the chain rule we have 

t 
ir;(x) = < \77r;(x),f(x) > = < e;(x),f(x) > = L9i(IT(x)) < ei(x),e;(x) >. 

i=l 

Therefore we want to calculate the inner products < ei, e; >, in our case, for 
i,j = 1, 2. We get 

Lemma 3.1 (a) < e1, ei > = 27r1, 
(b) < ei, e2 > = 37r2, 
( c) The inner product < e2, e2 > = ~7rf if and only if the boundary of the 
range of IT is given by~= 0. 

Proof: Let us first introduce the Euler operator E( x) = L:i Xi 8~i. Recall 
that applying E to a homogeneous polynomial p counts the degree of p, i.e. 
Ep = (degp)p. 

(a) < ei(x), ei(x) > = < x, \77r1(x) > = E7r1(x) = 27r1(x). 
(b) < ei(x), e2(x) > = < x, \77r2(x) > = E7r2(x) = 37r2(x). 
( c) < e2 ( x ), e2 ( x) > is a quartic invariant and therefore it is a multiple of 

7rf, as we see from the Poincare series. This constant can be computed for 
some special value of x. Assume that 7r2 is maximal on the surface where 7r1 
is constant. Then \77r2(x) =Ax for some real A. Therefore we get 

We conclude 
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and 

On t:,.. = 0 this implies < e2, e2 > = ~71"~. 
A similar calculation gives, that < e2 , e2 > = ·~71"~ implies that the extre-

mal values for 71"2 on a level surface of 71"1 satisfy the equation t:,.. = 0. D 

Corollary 3.2 The reduced equation has the form 

71"1 - 27rif1(7r1,7r2) + 37r2/2(7r1,7r2) 

11"2 3?r2/1(?r1, ?r2) + ~?rU2(?r1, ?r2). 

Proof: Follows immediately from the foregoing. D 

4 Geometry of the phase space 
The phase space of the reduced differential equation is the set 

Let us briefly mention the stratification of the phase space into orbit types 
with respect to action of 0(3) on V2. 

Theorem 4.1 There are three orbit types with respect to the action of S0(3) 
on V2. They correspond to isotropy subgroups D 2 , 0(2), and S0(3). 0 has 
orbit type S0(3). The nonzero points on the locus t:,.. = 0 have isotropy type 
S0(2) and finally all other points have isotropy type D 2 • 

Proof: By the irreducibility of the action it is obvious that 0 is the only . 
point in V2 having isotropy type S0(3). Since IT separates orbits (compare 
POENARU [17]), IT(x) = 0 if and only if x = 0. (Of course, this follows 
already from 71"1 = llxll 2 .) The nonzero points on t:,.. = 0 correspond to double 
eigenvalues of our matrix A above. Such a matrix commutes with 0(2). 
Finally all other diagonal, traceless matrices commute with the four element 
group generated by the matrices 

D 
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The set of points in GA with isotropy type 0(2) consists of ~wo compo-
nents, the upper component, where 7r2 is positive and the lower component, 
i.e. where 7r2 < 0. Similarly we speak of the upper and the lower sheet, when 
we consider the set (7r1, 7r2, .A) E 1R3 with fl= 0. This is the boundary of the 
phase space for our parameter dependent equation. 

It is a simple matter to check that the boundary of the phase space, i.e. 
{(7r1,7r2) E II(IR5) I fl(7r1,7r2) = O} is invariant under the flow. In fact any 
vectorfield which is constructed that way has to respect the stratification 
into orbit types. That means that the points of the same orbit type form an 
invariant set, and the vectorfield is tangent to each stratum. Especially the 
origin is always a rest point for such an equation. In general, the existence 
of a Lyapunov function simplifies the analysis of a differential equation sig-
nificantly. In our context we do not find such a Lyapunov function, but fl 
comes very close to being a Lyapunov function. 

Lemma 4.2 fl satisfies the following simple differential equation 

Proof: Differentiate the defining relation. D 
In order to find the equilibria of the reduced equation one has to solve 

the following algebraic system 

0 

0 

One can rewrite this as 

The determinant of the matrix on the left hand side is ~fl. Therefore this 
system is equivalent to 

27rif1(7r1, 7r2) + 37r2f2(7r1, 7r2) 0 
fl 0 

or 

In the next two sections we investigate these problems separately. 
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5 Equilibria on the boundary 
In the following we make the simplifying assumption 

A + af7r1 + e1 7r2 
c + a27r1 + e27r2, 

(2) 
(3) 

where A is supposed to be a bifurcation parameter, a1 , a 2 , c are nonzero 
constants, while e1,2 are supposed to be small. This is not a complete analysis, 
however it provides insight in the behavior of the dynamical system in an 
open region in parameter space. 

To solve the equation on fl.= 0 we have to combine fl.= 0 with the first 
equation. Plugging the form of our mapping into it we get 

2A7r1 + 2a17r~ + 2c17r17r2 + 3c7r2 + 3a27r17r2 + 3e27r~ 0 
7r~ - 277r~ 0. 

Solving the second equation for 7r~ and squaring the first equation we obtain 

This yields a fourth order polynomial in 7r1 , namely 

Q.,,., ~ 11"1, >.) = ~1:211"{ + Ai ... i + A2 ... ~ + AJ7r1 + 108>.2 = 0, ( 4) 

with Ai = (12(a1e2 - e1a2) - 4c:~ - 9aD, A2 = l08a~ + 12(Ae2 - ce1) - l8a2c 
and A3 = (216Aa1 - 9c2). 
Concerning the zero set of this polynomial we have the following result. 

Theorem 5.1 If e1 = c2 = 0 and a2c < 0 the solution set has the following 
features: 

(i) the connected component C0,0 of the zero set of Q0 ,0 containing (0, 0) is 
contained in the set where 7r1 ~ 0. 

(ii) for each 7r1 ~ 0, 7r1 =/:- 0 and a27r2 + c =/:- 0 it has precisely two solutions 
with A =/:- 0. 

(iii) there exist numbers Amin < 0 < Amax, Ac E (Amin, Amax) such that 
for A E (Amin, Amax); A=/:- Ac there exist three solutions with 7r1 ~ 0, 
for A r/. [Amin, Amax] there exists precisely one such solution. For A = 
Ac, Amin, Amax there exist two solutions as before. 
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Proof: If e1 = e2 = 0, the fourth order polynomial ( 4) reduces to a. cubic 
polynomial. It has the form 

Qo,0(7r1, A)= 9a~7r~+ (l8a2c- l08a~)7r~ + (9c2 -216a1A)7r1 -108A2 = 0. (5) 

Let us first look at the equation Q0,0(7r1, 0) = 0 .. This yields 7r1 = 0 or the 
second order polynomial 

(6) 
Its discriminant is 

48a~(3a~ - a2c ). 
According to our assumption this quantity is positive, therefore this polyno-
mial has two solutions, since c2 is positive, they have the same sign. Since 
a2c - 6a~ = -(3a~ - a2c) - 3a~ < 0 both solutions are positive. For small A 
nonzero, by the Newton diagram, the small solution (that means the solution 
near 7r1 = 0 for the cubic polynomial) solves 

9c7r1 - 108A2 = 0, 

i.e. it is positive. For A =J 0 the cubic polynomial has no zero at 7r1 = 0 and 
therefore all solutions have to stay in the positive half plane. This proves (i). 

To prove (ii) we look at the discriminant with respect to A. It is given by 

2162 ai 7r~ + 432 ( 9a~7r~ + (l8a2c - 108a1 7ri + 9c27r1)) . 

Since 2162 = 108 · 432 this expression is 

9 · 4327r1 ( a27r~ + 2a2C7r1 + c2) = 9 · 4327r1 ( a27r1 + c )2
• 

This proves (ii). 
In order to prove (iii) we look at the discriminant D(A) of the cubic 

polynomial with respect to A. It turns out to be a quartic polynomial in A 
with negative leading coefficient, i.e 

4 

D(A) = l:PiAi, 
i=O 

with Po = 944 784af c4 - 314928aia2c5 = 314928(3ai - a2c) and p4 < 0. With 
Amin= min{A E JR I D(A) = O} and Amax= max{A E JR I D(A) = O}, we 
have Amin < 0 < Amax and D(A) is negative for A ¢(Amin, Amax)· Define 

(7) 

then we get D(>.c) = D'(Ac) = 0 and D"(Ac) = -629856(12ai + a2c)2a 2c. 
The sign condition on a2 c yields that Ac is a minimum. Therefore Ac E 
(Amin, Amax)· D 
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Remark 5.2 The following picture shows schematically the zero set of the 
cubic polynomial. Observe that eliminating the variable 7r2 identifies the upper 
and the lower sheet of the boundary. Therefore we get the projection of the 
zero set on the boundary onto the ( 7r1 , ..\ )- plane. For each point on the zero 
set we shall identify the sheet on which it is located. At Ac the upper and the 
lower branch cross each other in the projection onto the (7r1 , ..\)-plane. 

-1 

-s 

Figure 1: The zero set of the cubic polynomial for a1 = 1, a2 = -4, c = 8 

Before we do that let us return to the original problem and assume £ 1 , t: 2 

are nonzero. From continuous dependence of the zeros of a polynomial on 
the coefficients we conclude the following theorem. In order to give a precise 
statement we need some notation. We consider compact subsets K of GD. of 
the following form K = K~ x I, where IC IR is a closed interval I= [..\_, ..\+] 
with .L <..\min< Amax<..\+ and K~ =Gt::. n {(7ri,7r2) I 7r1 ::; p}. If pis 
chosen sufficiently large, then the connected component C0,0 of the zero set of 
the cubic polynomial intersects BK in two nontrivial points (i.e. other than 
(0, 0)) in the faces ..\ = A±· Let Ce1 ,e2 denote the connected component of 
(0, 0) in the zero set of of the quartic Qe1 ,e2 in ( 4). Let Be( 7r1 , 7r2 ) be the ball 
of radius t: about ( 7r1 , 7r2). Then we have: 

Theorem 5.3 For each compact subset K of Gt::., as above, and for each 
t: > 0 there exists a number 6 > 0, such that for £i < 6, for i = 1, 2 the 
connected component Ce1 ,e2 is contained in K n Te, where Te is the tubular 
neighborhood 

u 
of Co,o of radius t:. 
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Proof: This theorem follows from continuous dependence of th~ zeros of a 
polynomial on its coefficients. D 

So far we have described some global properties of the set of singular 
points of our vectorfield. In order to discuss the stability of these equilibria 
we are going to study the local bifurcation scenario. It is clear from our 
previous discussion that 71"1 = 71"2 = 0 is a solution for all A E IR. For 
A =/=- 0 the linearization of the vectorfield is regular and therefore this branch 
is locally unique. At A = 0 the linearization becomes singular. Near the 
bifurcation point we had 

12 2 
11"1 =-A . 

c 

The Newton polynomial for the ( 71"2 , A) scaling comes from the first equ-
ation, i.e. 

Therefore for A > 0 the branch is on the lower sheet, for A < 0 it is on the 
upper sheet. At Amin or Amax, respectively the upper, or the lower branch, 
respectively undergo a turning point bifurcation. 

In the next section we shall see, among other things, that there are no 
further equilibria near the bifurcation point. 

However, let us first look at the stability of the bifurcating branch near 
the bifurcation point. From the classical principle of exchange of stability, 
applied on the /J.. = 0 surface, we conclude that the bifurcating solution is 
unstable for A < 0 and has a stable direction for A positive. However from 
the differential equation for /J.. we infer that this surface (near the bifurcating 
branch, i.e where Ji is approximately A + 1; A 2 ) is unstable for A >. 0 and 
stable for A < 0. This implies instability of this branch with one stable and 
one unstable direction on both sides. 

At the turning point bifurcation the stability of the equilibria on the bo-
undary changes. The eigenvalue corresponding to the eigenvector tangent to 
the surface /J.. = 0 changes sign. Therefore, after the turning point the subcri-
tical branch is stable, the sup~rcritical branch becomes completely unstable. 
This remains true until further bifurcations occur. 

6 Internal equilibria 
In order to find the internal equilibria we have to solve the equation 

!1(7r1,7r2) 0 
h( 7ri, 7r2) 0 
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We assume the hypotheses of theorem 5.1, especially, a2c < 0. Taking again 
ci = 0 for i = 1, 2 we get the line 7r1 = - ;

2 
and A = Ac in ( 7r1, 7r2, A )_:space 

of solutions. It intersects the two sheets of /:::,,_ = 0 at the double zero of the 
cubic polynomial (5). Therefore we have a singular line L connecting the 
upper and the lower branch of equilibria on the boundary. The complete 
picture is described in the next theorem. 

Theorem 6.1 Assume a1c2 - a2c1 ;/:- 0. Near L there exists a line Lt:1 ,t:2 , 

parametrized over A, of steady state solutions connecting the lower and the 
upper branch of the boundary equilibria. 

Proof: The system f 1 = f2 = 0 is linear in all variables and we can solve it: 

Let Ac be defined as before and set 

cc1 - Ac2 
aic2 - a2c1 
Aa2 - aic 

aic2 - a2c1 

(8) 

and 7r~ = ±..j i7(7r1)3. We have to show that the line {(7r1(A), 7r2(A)) I A E IR} 
intersects the surface /:::,,_ = 0 near the values Ac, 7r~, 7r~. Define 

Obviously F(Ac, 7r~, 7r~, 0, 0) = 0. Let us look at the partial derivative with 
respect to the first three variables at this point. It is represented by the 
matrix · 

which is regular. Therefore the implicit function theorem yields the existence 
f • t \ t:1 t:2 t:1 t:2 \ c c 1 • f f . A 0 s • 11 o po1n s At:1 ,t:2 ,7r1 ' ,7r2 ' near Ac,7rv7r2 so v1ng 1 = 2 = Ll. = . 1nce a 

solutions have to be on the line Lt:1 ,t:2 , we have shown that this line intersects 
the domain of our differential equation. Now we have established, that it 
connects the upper and the lower branch. D 

Remark 6.2 Of course at the intersection of Lt:1 ,t:2 with the boundary, defi-
ned by/:::,,_ = 0, the line hits the solutions on the boundary. Therefore this line 
can be viewed as a secondary bifurcation. 
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Let ~().) denote ~(7r1 (.X), 7r2(.X)). ~(.X) is a cubic polynomiQ.l in .X. For 
large .X we have II( .X) E GA on one side and II( .X) ¢ GA on the other side. 

In order to discuss the stability of the solutions on Le:1 ,e:2 we have to study 
the local bifurcation at Ae:1 ,e:2 , 7r~1 ,e:2 , 7r;1 ,e:2 and the corresponding exchange of 
stability. The proofs of the corresponding bifurcation results will be given in 
the next section. 

Theorem 6.3 (i) If a1e2 - a2e1 < 0 then the branch of internal solutions 
is unstable. 

(ii) If aie2 - a2e1 > 0 we have the following two cases 

(a) If 12a~ > -a2c, then the trace of the linearization is of one sign 
along the branch of secondary solutions, it is given by sign alJ i.e. 
the solutions are unstable if a1 > 0 and stable otherwise. 

(b) If 12a~ < -a2c we get the following cases 

(1) If a1 > 0, a2 > 0 then the solutions on Le:1 ,e:2 are unstable for 
7r2 > 0 and stable near the lower sheet. 

(2) If a1 > 0, a2 < 0 then the internal solutions are unstable for 
7r2 < 0 and stable near the upper sheet. 

(3) If a1 < 0, a2 > 0 then the internal solutions are stable for 
7r2 < 0 and unstable near the upper sheet. 

( 4) Finally, If a1 < 0, a2 < 0 then the internal solutions are 
stable for 7r2 > 0 and unstable near the lower sheet. 

7 Hopf bifurcation, heteroclinic bifurcation 
In order to find Hopf bifurcation in our system we have to study the stability 
of the steady state solutions. The linearization of the vectorfield is given by 

( 
2.X + 4a17r1 + 2e17r2 + 3a27r2 2e17r1 + 3c + 3a27r1 + 6e27r2 ) 

3a17r2 + ~7r1 ( c + a27r1 + e27r2) + ~a27ri 3.X + 3a17r1 + 6e1 7r2 + ~e27ri · 

In order to prove Hopf bifurcation we have to show the existence of a branch 
of steady state solutions (II(.X), .X) and a point (II(.X0), .X0) where the trace of 
the linearization changes sign and its determinant is positive. We begin with 
the following lemma. We need a nondegeneracy condition which essentially 
says, that the branch of internal solutions can be parameterized over .X. 

Lemma 7 .1 Suppose the nondegeneracy condition 

aie2 - a2e1 =I 0 (9) 

holds, then the determinant of the linearization along the branch of internal 
solutions is of one sign. 
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Proof: Suppose the lemma was not true, then we had a change of sign along 
the internal branch, leading to bifurcation from this branch. Since we know 
that the possible steady state bifurcations occur only at the boundary of our 
domain, this cannot happen. Since the determinant is quadratic in A it has 
no other zeros than those on the boundary. D 

Therefore it suffices to get an estimate on the determinant at a single 
point along the line of internal solutions. 

Lemma 7.2 If a2c < 0 and. 

(10) 

then the determinant of the linearization along the internal solution is posi-
tive. 

Proof: Compute the determinant for A = Ac, 7r1 = 7r~ at 7r2 = 0 to obtain 

1 c3 
---(a2e2 - a2c:1). 

3 a~ 

D 
The following lemma gives a condition when the trace undergoes a change 

of sign along the branch of internal solutions. 

Lemma 7.3 If 
a2c + 12ai < 0, (11) 

then the trace changes sign along the branch of internal solutions. 

Proof: We calculate the trace of the linearization for 7r2 = 0 and on the locus 
.6. = 0 for e1 = e2 = 0. For 7r2 = 2 we find the value -2Ac and on the upper 
or lower sheet .respectively we get -2Ac ± 3a2 7r~. A change of sign along the 
part of the line where 7r2 is positive or negative occurs if 12a~ < -a2c and 
persists for e1,2 nonzero. D 

Theorem 7.4 If the conditions {9) and {11) are satisfied, then there a exists 
a value Ah E (Amin, Amax), and a point (7rf, 7r~) on Le:1 ,e:2 such that a Hopf 
bifurcation occurs at ( 7rf, 7r~) for A = Ah. The branch of periodic solutions is 
unique. Moreover, we find 

sign( 7r~) =. - sign( a1 ) sign( a2). 

Proof: The existence of the Hopf point follows immediately from the lem-
mata 7.1, 7.3. We only have to show the uniqueness of the branch of periodic 
solutions. It follows trivially from the fact that the trace t( A) of the lineari-
zation along the branch of internal solutions is quadratic in A and therefore 
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a change of sign at Ah means that t'( Ah) =J. 0. Since the eigenvalues are com-
plex conjugate the eigenvalues cross the imaginary axis with nonzero speed, 
yielding the uniqueness of_ the Hopf branch. D 

In order to get more refined statements on the local Hopf bifurcation 
one has to compute the point on L where the trace changes sign. This is a 
first approximation of the Hopf points on Le1 ,e2 • At this point a degenerate 
bifurcation occurs and provides some information on the nearby Hopf points. 
The line Lis characterized by e1 = e2 = 0, A = Ac and 7r1 = 7rf. Along L the 
right lower entry of the linearization, given in section 7 is zero. The critical 
value for 7r2 is where the left upper entry vanishes. We have · 

crit 1 (2 ' 4 c) 2a1c 
71"2 = --3 Ac+ al7rl = -3 2 • 

a2 a2 
(12) 

The linearization at this point is nilpotent. A normal form analysis near this 
point is rather complicated. The branching direction of the Hopf solutions· 
will be determined differently and discussed later. The following two figures 
show schematically the flow near the nilpotent point and how it fits into 
the global flow. The last figure indicates a singular heteroclinic cycle, the 
singular part consisting of a family of equilibria on L. The heteroclinic cycle 
becomes a real heteroclinic cycle for certain parameter values. The branch 
of periodic solutions approaches this heteroclinic cycle and disappears. We 
will not prove this picture completely. In the next section we show that the 
family of periodic solutions disappears because its period approaches infinity. 
Then we show that at this instance a heteroclinic cycle occurs. In the last 
section we prove a certain nondegeneracy. For e1,2 sufficiently small we show 
that the Hopf bifurcation is not degenerate in the sense, that not all periodic 
solutions appear for the same parameter value. 

8 Global Behavior 
We recall the global Hopf bifurcation theorem (1], [9], [15] stating that along 
a branch of periodic solutions coming from a regular Hopf point (that is that 
the dimension of the unstable manifold changes by pairs of purely imaginary 
eigenvalues crossing the imaginary axis) one of the following alternatives has 
to occur 

(i) the amplitude goes to infinity 

(ii) the period goes to infinity 

(iii) another Hopf point occurs. 

This theorem will be crucial for the proof of the following result. 
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Theorem 8.1 The Hopf branch disappears through a infinite period bifurca-
tion to a heteroclinic cycle with two boundary equilibria on it. 

Proof: A periodic solution of a 2-dimensional system always has to wind 
around an equilibrium. After the disappearance of the internal no such so-
lution is available .and therefore the periodic solution cannot exist any more. 
Since we have only one Hopf point in our system the branch of periodic so-
lutions cannot connect to another Hopf point. (Observe that the fact that 
the trace along the internal solutions is quadratic in A and the fact that the 
trace changes sign between 7r2 = 0 and ±7r2 means that there can only be 
one Hopf point.) Therefore either the amplitude or the period have to go to 
infinity. Let us first exclude that the amplitude becomes arbitrarily large. 

First we note, that due to the fact that .6. satisfies the differential equation 
A = 6fi.6. the region .6. ~ µis positively invariant if Ji > 0 on this region and 
negatively invariant if f 1 has the other sign. In any case the region b:.. ~ µ 
cannot contain and cannot be transversed by a periodic solution if Ji is of 
one sign on this region. For any µ > 0 the asymptotics of the curve b:.. = µ 
is the same as for b:.. = 0. Due to the form of f 1 there exists a µ* > 0 such 
that Ji is of one sign on .6. > µ*. Therefore we have to exclude the existence 
of an unbounded family of periodic solutions in {(7r1, 7r2) E G6. I .6.(7r1, 7r2) < 
µ*}. Each periodic solution has to have a maximal 7r1-value, where 'lf-1 = 0. 
Therefore we compute the 'lf-1 = 0 near infinity. This curve is given by 

To get the asytnptotics near infinity we have to consider the Newton poly-
nomial near infinity, it is given by 

As a result we get two arcs which are asymptotically linear near infinity. 
Therefore they cannot be contained in the set {(7r1, 7r2) E G6. I 0 ~ .6. ~ µ*}. 
Therefore there cannot be a family of periodic solutions with its amplitudes 
going to infinity. 

The next step is to investigate how the period can get large. This happens 
if the periodic solution approaches one or more equilibria giving rise to a 
homoclinic loop or a heteroclinic cycle. 

We exclude the case of a homoclinic loop. If there were a homoclinic loop 
the saddle had to be on the boundary. If the saddle would be hyperbolic then 
either the stable or the unstable manifold would be part of the boundary. 
Since the boundary is a one-dimensional manifold a solution on the boundary 
cannot converge to the same point fort -t oo and t -t -oo. So a homoclinic 
loop can only occur if the equilibrium on it is not hyperbolic. A simple 
cakulation yields that the points on the boundary are hyperbolic with the 
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Figure 2: Stable periodic solutions 

only exception of the point where the line Le1 ,e intersects the boundary. 
But theie the linearization has only one zero eigenvalue, since the trace is 
nonzero, according to lemma 7.3. Then the generalized Hartman-Grohman 
theorem, see PALMER [16] applies and shows that this point cannot be the 
a and w limit set of a solution. Therefore there must be a heteroclinic cycle, 
involving at least two points on the boundary. If A =/= 0, then the the origin 
is either stable or completely unstable (i.e. has unstable dimension 2) and 
therefore it cannot be part of the heteroclinic cycle. This means, that only 
the solutions on one sheet can be on this cycle, and we have shown that it 
contains precisely two equilibria. 

9 N ondegeneracy of the Hopf Bifurcation 
As indicated above we show, that for c1,2 sufficiently small the Hopf bifurca-
tion is not vertical, i.e. for A = Ah there exists a neighborhood of the Hopf 
point which does not contains any periodic solution. This proof relies on 
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analyticity of our vector field. Of course the result remains tru.e if we per-
turb the vectorfield keeping only its k-jet, for k sufficiently large. We use the 
following two basic properties of flows of analytic vectorfields in the plane: 

(i) If v is an analytic vectorfield on a two dimensional smooth manifold, 
with a singular point p, such that any neighborhood of p contains a 
periodic orbit of v, then there exists a neighborhood U of p, such that 
U \ {p} is filled with periodic orbits. 

(ii) If 'Y is a periodic orbit of v, then there is either a neighhood W, such 
that W \ 'Y contains no periodic orbits, or there exists a neighborhood 
which is filled with periodic orbits. 

We need one more result on planar flows, due to DOS REISS [8]. For the sake 
of completeness let us recall it. 

Lemma 9.1 Let Pi, 'Yi i = 1, ... ,n be a heteroclinic cyle, i.e. pii are hyper-
bolic saddle points and 'Yi are heteroclinic solutions connecting Pi with Pi+i, 
tacitly assuming n + 1 = 1. Let µi denote the stable eigenvalue at Pi and Ti 
be the unstable eigenvalue. If k a transverse section to one of the 'Yi and y is 
a coordinate on k, let P(y) denote the coordinate of the next intersection of 
the trajectory through y with k (if defined). Then there exists a continuous 
function p on k, bounded away from zero, such that 

Theorem 9.2 Fore1e2 f:. 0, e1,2 sufficiently small and if conditions {9}, {11} 
are satisfied the Hopf bifurcation is not vertical, i.e. there exists a number A1 

near Ah such that on the interval (Ah, A1 ) (or (Ai, Ah) if A1 < Ah) respectively) 
there exists an continuous and injective mapping assigning to each A in this 
interval an initial value of a periodic orbit. 

Proof: Suppose the theorem were not true. Then, for a sequence of pairs 
( e~, e~) approaching zero for n ~ oo the Hopf bifurcation is vertical. It 
follows that for each pair ( e~, e~) there exists a neighborhood Un of the 
Hopf point (7r~'n, 7r~'n) for A = Ah such that U \ {(7r~'n, 7r~'n) is filled with 
periodic solutions. Then, according to our previous observations the whole 
Hopf branch is contained in IR 2 x {Ah}. Especially the heteroclinic cycle exists 
for A = Ah. Since the interior of this cycle is filled with periodic solutions it 
follows that it is neutrally stable. 

Let us compute the stability according to lemma 9.1. We do the compu-
tations for e1 = e2 = 0 and conclude the stability for possible heteroclinic 
cycles existing for sufficiently small values of the parameters. This will give 
a contradiction. 
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Let us first compute the candidates for the two equilibria on the cycle, 
i.e. choose c:1 ,2 = 0, A = Ac. One of the points is among the intersections 
of L with the boundary, i.e. one of the points ( 7r~, ±7r~) and the other one 
is the nontrivial solution on the boundary between (0, 0) and the first point. 
The sign of ±7r~ is determined by the sign of the 7r2 value of this other point, 
since they have to be on the same sheet. A short computation yields the 
coordinates of this point, call it 7r~P, 7r;P as 

and 

2 
ap - 12al 

7r1 - 2 
a2 

. 3 
ap al 

7r2 = -83. 
a2 

The determinant of the linearization at this point is given by 

By (11) this point has two nontrival eigenvalues µ1 < 0 < 7 1 . At the ot-
her point ( 7r~, ±7r~), A = Ac we have one nonzero eigenvalue and one zero 
eigenvalue. Therefore one of the products µ1µ2 or 7 17 2 is zero, the other one 
nonzero. For c:1,2 small, one of the products will be small, the other one is 
far away from zero, contradicting the neutral stability, by lemma 9.1. D 

The following two pictures show the typical shape along solution branches. 
The first picture depicts an axisymmetric point. The second presents a D2 

symmetric one. The heteroclinic cycle consists of two arcs, one containing 
axisymmetric points, the other one D2 points. Along the axisymmetric arc 
the shape remains constant, only the size of the solution changes. On the 
other part the solution starts almost axisymmetrk As it traveis away from 
the boundary the saddle becomes more and mor~ distinct. Finally it returns 
to an almost axisymmetric state of different size. On a nearby periodic orbit 
we expect to see periodically a similar change in size and shape. 
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Figure 4: The shape of an axisymmetric solution 

Figure 5: The shape of a typical non-axisymmetric solution 
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