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Abstract

We consider two semiconductor lasers coupled face to face under the assumption
that the delay time of the injection is small. The model under consideration consists
of two coupled rate equations, which approximate the coupled Lang-Kobayashi sys-
tem as the delay becomes small. We perform a detailed study of the synchronized and
antisynchronized solutions for the case of identical systems and compare results from
two models: with the delay and with instantaneous coupling. The bifurcation anal-
ysis of systems with detuning reveals that self-pulsations appear via bifurcations of
stationary (i.e. continuous wave) solutions. We discover the connection between sta-
tionary solutions in systems with detuning and synchronous (also antisynchronous)
solutions of coupled identical systems. We also identify a codimension two bifurcation
point as an organizing center for the emergence of chaotic behavior.

1 Introduction

The goal of the present paper is to study nonlinear dynamics of two mutually coupled
semiconductor lasers. We consider the face to face configuration, i.e. the output of each
laser is injected into the other laser. The study of such coupling setup is motivated among
other facts by the perspective of using masked signal transmission [1, 2]. There is also a
hope that such models can provide an additional understanding of the dynamics of two-
section laser devices [3]. In addition to the application perspectives for the specific devices,
models for coupled lasers turn out to be sources for new physical phenomena such as
anticipated or lag synchronization, and chaos appearance for already weak coupling since
the isolated lasers operate in a stable stationary regime. From the general perspective
of coupled nonlinear oscillators [4], coupled semiconductor lasers usually are modeled by
coupled systems with additional symmetry properties which have to be taken into account.
Moreover, the significant difference between carrier and photon lifetimes brings multiscale
properties into the models.

The dynamics of mutually coupled lasers with large injection feedback time (corresponding
to distances from about 10 cm between the lasers) was studied recently in [5, 6, 7]. The case
of unidirectional coupling was investigated in [8, 9]. Various new phenomena were reported
such as retarded or anticipated synchronization [10, 11, 12, 13], inverse synchronization [14],
and antisynchronization of power drop-outs [15].

Recently, there has been appeared new interest in lasers with a short cavity [16], which
is motivated by several arguments: First, the study of the dynamics in this regime has
become experimentally accessible. Also, such a regime is very interesting from the dynam-
ical point of view, since it has an intermediate complexity, allowing to analyze directly the



mechanisms of either synchronization or the appearance of pulsations and chaotic dynam-
ics. The same arguments seem to be applicable when the delay in the coupling is small, i.e.
there is a short external cavity. For instance, this is the case in a two-section integrated
device [3], where both lasers are parts of the same device and are close to each other a
priori. The instantaneous coupling limit may serve as an appropriate starting point for the
study of such systems. Of course, the smallness of the delay, which allows one to neglect
it, is a separate question. From the more general perspective it is still an open problem of
modeling: what kind of phenomena in the coupled face to face lasers can be described at
least qualitatively by instantaneously coupled rate equations?

It is the main purpose of the present paper to give a comprehensive description of the
dynamical regimes arising in a model of instantaneously coupled rate equations. Even
neglecting time delay of the injection, it turns out to be important to take into account its
relative phase shift ¢. For the case of identical lasers, we provide analytical conditions for
the stability of synchronized and antisynchronized regimes, where the injection phase shift
is the key parameter to determine the dynamics. Similar calculations are compared for
two models: the model with small delay and that with instantaneous coupling. Further,
we consider the case when there is a detuning between two lasers. It is shown how the
injection phase affects the existence and stability of continuous wave solutions and of
self-pulsations. Tt follows that one of the organizing centers for chaotic dynamics is a
codimension two Zero-Hopf bifurcation point.

2 The model

The model, which is extensively used to describe the dynamics of mutually coupled single-
mode lasers (cf. [5, 9, 8, 17]) is the system of coupled rate equations:

% — i6E, + % (gl(Nl, |EL|?) — 7_}1)1) E, + ,ge*ilpEQ(t —7),

=N I RelGi(Ny, | Ea[*)] - | Baf?, o

1B — 1 (Ga(No, |Baf?) — 1) By 4 me Byt 7),

=D 2 RelGo(Ny, |Bs*)] - | Ea?,
where F; 5 and Nj , denote the complex optical fields and the carrier densities of the lasers,
respectively. The term 38 E; accounts for the frequency detuning. By I, we denote the
pumping current, and Gy »(Ni 2, |E12[?) is the complex gain function. 7, ,, 7, , are photon
and carrier lifetimes; k and 7 characterize the injection rate and the injection delay-time,
respectively.

In system (1), we introduce the following simplifications and rescalings. First of all, we
assume that all parameters for both lasers are the same except the detuning parameter §.
Neglecting nonlinear gain saturation we linearize the complex gain function as follows

G(N,|EP) — = = Gu(1 +ia)(N — Ny).

Tp



With the rescaling Enew = VGNTE, Npew = %TPGN(N — Np), tnew = t/7, we obtain from
(1)
E{ = ’L(SEl + (1 + ’LCK)NlEl + neiilpEg(t — T),
N{:E[J*le(Nl—l-l/NElP], (2)
E,=(1+4+1ia)NyEy +ne " E(t — 1),
N; =¢e[J — Ny — (N2 +v)|Es|?],

where we use the same notations for the new variables. The differentiation is assumed to
be made with respect to the new time, and the parameters are

n="Tpk, E="Tp/Te, J=1,Gn(IT.— No)/2, T=7]7p, v=0.5, §&=dr,.
In the case 7 = 0, we obtain the coupled rate equations with instantaneous coupling:

El =1E + (1 +ia)NE; + ne Y E,,

N| :5[J—N1—(N1+u)|E1|2], (3)
E,=(1+1a)NyEy + ne *Ey,

Ny =¢e[J — Ny — (N; +v)|Ez|?].

System (3) is the main object of this study. In Sec. 7 we compare some of the obtained
results with the model (2) which includes small delay.

3 Symmetries. Synchronous and antisynchronous so-
lutions.

Let us first examine the model (3) without detuning, i.e. § = 0, and note some properties
due to inherent symmetries:

E; = (1 4ia)N;E; +ne **Es_, (4)
Nj=elJ = N; — (N; +v)|E;]Y], j=1,2

1. Since the subsystems are identical, there is a symmetry with respect to indexes in-
terchange (F1, N1, Es, Ny) — (E,, Ny, E1, N1). This implies the existence of the invariant
subspace of synchronous states £; = E5 and N; = N,.

2. The symmetry (Ei, Ny, Es, N3) — (— Es, N3, E;, Nq) implies the existence of the invari-
ant subspace of antisynchronous states £; = —FEy and N; = N,.

3. The following symmetry allows us to establish a one-to-one correspondence between
synchronous and antisynchronous solutions. If (FE1(t), Ni(t), E2(t), N»(t)) is a solution to
(4) then (Eq(t), N1(t), — Ea(t), N2(t)) is also a solution provided ¢ is replaced by ¢ + 7. In
other words, the symmetry transformation is of the form (Ei(t), Ni(t), Ea(t), Na(t), @) —
(E1(t), Ni(t), — E2(t), No(t), + 7). This implies that all antisynchronous solutions and
their properties can be obtained from the corresponding synchronous solutions and their
properties, which have to be considered for the same parameter values except that ¢ is

shifted by .



Let us remark, that the coupling, which is present in (4), influences the dynamics in
the synchronization and antisynchronization subspaces. This, in particular, makes our
situation different from the setup in [4, 18].

4. The phase-shift invariance (Ey, Ny, Ey, Ny) — (E1e®¥, Ny, Eye™¥, N,) is common to op-
tical devices without phase conjugation, and, in particular, to the system (2) for any
parameter ¢ and 1. This symmetry implies, that for suitable laser parameters there exist
continuous wave (CW) solutions, i.e. solutions of the type E;(t) = Eoe™* N; = No,
(7 = 1,2;w € R). These solutions are also called ”stationary”, because they corre-
spond to stationary intensity regimes. Moreover, this symmetry implies that for suitable
laser parameters there exist modulated wave (MW) solutions, i.e. solutions of the type
E;(t) = on(t)ei“t,Nj = No,(t) with Eq.(t + T) = Eo,(t) and Ny, (t + T) = No,(t) for all
te R (7=1,2; w,T € R). These solutions are also called "periodic” or ”self-pulsations”,
because they correspond to time-periodic intensity regimes.

4 Synchronous CW solutions and their stability

4.1 Dynamics in the synchronization subspace

After substituting Ny = N, := N and E; = E, := FE into (4), we obtain the following

equations for the dynamics in the synchronization subspace

E = (l—l—ia)NE—l—ne*"‘pE (5)
N' =¢[J— N — (N +v)|E|?.

A qualitative analysis of (5) with € > 0 and v > 0 yields the following;:

e For ncosp < —J the "off state” £ =0, N = J is asymptotically stable.

o For —J < ncosg < v, there exists a globally stable CW solution E(t) = Ege™°?,
N(t) = Ny with

wo = —7n(cos +sing), No= -ncosp, FEq=(J+ncosp)/(v—mncosp).

Summarizing, let us note that for all physically relevant parameter values, i.e. J > 0,
€>0,0 <n < v=0.5, there exists a unique stable CW solution inside the synchroniza-
tion subspace (synchronous CW solution). The same is true for the antisynchronization
subspace.

4.2 Transverse stability of the synchronous CW solutions

Since the synchronous CW solution is stable within the synchronization subspace, its sta-
bility in the whole phase space is determined by its transverse stability, i.e. the stability
with respect to perturbations transverse to the synchronization subspace. The analysis of
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Figure 1: Region of transverse stability for synchronous ’S’ and antisynchronous A’ CW
solutions, respectively. 'P’ denotes the curves of transverse pitchfork bifurcations and "H’
Hopf bifurcations for the parameters o =2, J =1, ¢ = 0.03.

the transverse stability of synchronous CW solutions can be carried out by inspecting the
characteristic equation

xr(A) = [A?+4Ancosp +4n°] (A + (1 + So))

+2eSo(v — ncos @) [A + 2n(cos ¢ — asing)] = 0, (6)

where
S J —neose.

V+1cosy
This equation is derived in Appendix A. We shall note that the roots of x%(A) = 0
determine only transverse stability of the synchronous CW solutions, since the general
characteristic equation can be factorized into two equations one of which corresponding to
transverse directions and another to the directions within the synchronization subspace,
cf. App. A. Transverse pitchfork bifurcation takes place if there is a zero eigenvalue, i.e.
x>(0) = 0, and transverse Hopf bifurcation corresponds to the existence of pure imaginary
eigenvalues, i.e. x3(18)) = 0, where Q # 0 is some real parameter. These bifurcations can
be identified and path-followed with respect to the system parameters. Here we choose the
coupling strength n and injection phase ¢ to be the key parameters with respect to which
we want to study the dynamics. Typical bifurcation diagram is shown in Figure 1. The
figure shows regions for transverse stability of the synchronous CW solution (marked by
’S’) and antisynchronous CW solution (marked by ’A’), respectively. Note that in order to
obtain the result for antisynchronous solutions, we used the symmetry arguments of Sec. 3,
i.e. the region A’ is an image of the region 'S’) which is shifted by = along the parameter
axis . The transverse bifurcations that mediate the loss of synchronization are marked
as 'P’ for pitchfork and "H’ for Hopf, respectively. Note that we do not show in Fig. 1 all
the bifurcation lines, but only those which mediate the stability loss of CW solutions.

There are also small regions where stable synchronous and stable antisynchronous CW
solutions coexist. They are located at ¢ = arctan(1/a) and ¢ = arctan(1/a)+ 7 and their
size 1s of order ¢, cf. Fig 2.
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Figure 2: Zoom of the small part of Fig. 1. The regions of stability of synchronous and
antisynchronous CW solutions are overlapped, creating multistability. Here the bifurcation
curves are shown completely, i.e. not only those parts that bounds the stability regions of
the corresponding CW solutions.

The bifurcation diagrams, cf. Figs. 1-2, also reveals that the first destabilization threshold,
i.e. destabilization of the CW solutions with increasing of the coupling n for fixed ¢, may
occur already for coupling strength of order £ via Hopf bifurcation.

5 Asynchronous CW solutions

Synchronous and antisynchronous CW solutions are not the only possible stationary solu-
tions in the system (4). Another set of CW solutions, which we call asynchronous, can be

obtained from the following anzats:
Ei(t) = alei(“’t+¢), Ni(t) = Ny = const, E,(t) = aset N,(t) = Ny = const, (7)

where a1, a3, N1, Na,w, 1 are real constants to be determined. After substituting it into
(4), we obtain a set of nonlinear equations, which afterward can be effectively studied
numerically. We refer the reader to Appendix B for details. As a result we present the
one-dimensional bifurcation diagram in Fig. 3, which corresponds to the parameters as
in Fig. 1 but with fixed = 0.2 (c¢f. horizontal line in the figure). In addition to the
synchronous and antisynchronous solutions, we observe branches of unstable asynchronous
orbits connecting synchronous and antisynchronous CW solutions. These branches emerge
from the subcritical pitchfork bifurcations P, and P,, respectively. Although these solutions
are unstable their role may be important in forming the boundary of the attracting region
of stable synchronous CW solutions.
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Figure 3: For fixed n = 0.2, there are two branches corresponding to the synchronous and
antisynchronous solutions and the connecting branches of unstable asynchronous unstable
P, and P, are pitchfork and H,, H, are Hopf bifurcations.
stands for the synchronous and ’a’ for antisynchronous solutions, respectively.

periodic solutions. Index ’s’

In the next section, we study system (3) for § # 0, i.e. we investigate the influence of the
detuning.

6 Influence of the detuning

6.1 Preliminary study

Since system (3) has the phase-shift invariance property, we can reduce it to a 5-dimensional
system. One way of reducing is to use the following transformation: FE;(t) = a,(t)e®®),
Ey(t) = ay(t)e2(). Here a2 and a2 are intensities of the first and the second laser, respec-

tively. We assume a; # 0 and ay # 0. Ay = ;1 — 1, is their phase difference. Then with

respect to the new real variables ay, as, N1, Ny, and A we obtain the system of equations:

al Niaq + nas cos(AyY + @)
N = e(J — Ny — (N, +v)ad),
ay = Nyas+ na;icos(p — Ay), (8)
Ny, = &(J— Ny — (Ny+v)ad),

AP = 5§+ (Ny — Ny)a — n% sin(Ay + @) + 77% sin(p — Av).
1

2

System (8) no longer posses the phase shift symmetry, and, therefore, all CW solutions
become stationary states in terms of new variables.

Let us introduce the frequencies €2, and €1, by

Mi(t) =i(2), Qa(t) = hy(t).
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Figure 4: Averaged frequency difference versus detuning parameter for different values of

¢ (n=0.3).
The following quantity determines the locking between two weakly coupled oscillators:

AQ = (AY'(t)) = lim l/T AY'(t)dt = lim A¢(T).

Too T T—oo T

AQ can be treated as averaged frequency difference between two weakly coupled lasers.

Figure 4 shows results of computation of AQ) depending on the detuning §. Three different
curves were obtained for different values of ¢ with fixed = 0.3. At each point, we
integrated over the transient interval 7, = 1000 and averaged over T,, = 1000. Initial
conditions were chosen at random. One clearly observes the locking intervals AQ = 0 as
platoes near § = 0. Moreover, the width of these intervals strongly depend on the phase
parameter ¢. We will inspect the dependence of the locking on ¢ in more details in next
sections by studying bifurcations that are involved in the loss of locking and appearance
of pulsations. Additionally, we have to note that the use of frequency difference AQ for
investigating of the locking between two coupled oscillators can be justified in the case of
weak coupling, i.e. small enough 7. Therefore, we have to consider Fig. 4 as a preliminary
result, which has to be accompanied by an additional bifurcation analysis in the next
sections.

6.2 Stationary states for the case with detuning

The CW solutions of system (3) are equilibria of system (8). Hence, one can use the stan-
dard path-following technique to follow their dependence on the parameters. As starting
data, we use the known stationary states for the symmetric system (see Fig, 3). The re-
sulting bifurcation diagram is shown in Fig. 5, which is computed for the detuning § = 0.1.
Before analyzing the obtained bifurcation diagrams, it is important to realize that detun-
ing breaks two symmetries in our system (cf. Sec. 3): Z, symmetry (E1, N1, Es, N3) —
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Figure 5: (a) Stationary states for system (3) with detuning. § = 0.01, n = 0.2. Stable
branches are depicted by solid lines, unstable by dashed. (b) Perturbation of the pitchfork
bifurcation by the detuning, zooming of some part of (a)

(Ey, Ny, E1, N1) and the symmetry (FE1, N1, Ey, Ny) — (— E3, Ny, E1, N1). Therefore, syn-
chronous and antisynchronous solutions do not exist anymore. Moreover, the pitchfork
bifurcations that partially determine the synchronization region of the system without de-
tuning is no longer admissible for § # 0. Two questions arise naturally: What happens
with the synchronous and antisynchronous solutions after the symmetry breaking by de-
tuning? How is the pitchfork bifurcation perturbed in this case? The observed scenario,
cf. Fig. b, clarifies the situation. In particular, as can be seen from Fig. 5b, instead of the
pitchfork bifurcation we have a saddle-node bifurcation (denoted as 'LP’). In the nonsym-
metric case this saddle-node bifurcation connects the previously synchronous solutions via
the unstable branch of asynchronous solutions to the antisynchronous, cf. Fig. ba. Note
that such a perturbation of the pitchfork bifurcation is common for symmetrically coupled
systems with a parameter mismatch [19]. As a result, instead of the separate branches
of synchronous and antisynchronous solutions, for § # 0 there are closed branches of so-
lutions, which do not posses these symmetry properties. Nevertheless, as we shall see in
Sec. 6.4, some parts of these branches still keep being close to the synchronous state and
some to the antisynchronous.

Comparing the bifurcation diagram in Fig. 5 and its symmetric counterpart in Fig. 3 we
note that similar stability regions for stationary states, which are limited by the Hopf (H)
and saddle-node (LP) bifurcations, exist in both cases. In fact, they can be obtained from
each other by continuation along the parameter §. Moreover, as we will see in Sec. 6.4,
the corresponding branches are close to the synchronous (those that contain ¢ = 0) and to
the antisynchronous one (containing ¢ = +1). It is evident that for these stationary states
correspond to Aw(t) = const. In the following, by the locking between coupled systems
with detuning (3) we understand the existence of the stable stationary states (for them we

have Aty = const).
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Figure 6: Stability regions for the stationary states of coupled systems with detuning.
'LP’ and "H’ denotes saddle-node and Hopf bifurcations, respectively. ’ZH’ is a codimen-
sion 2 Zero-Hopf (or Guckenheimer-Gavrilov) bifurcation point. ’PD’ - period-doubling
bifurcation curve for rotations of (8).

6.3 Regions of locking

The only parameter in our model, which induces mismatch between the lasers is the detun-
ing §. In order to study the influence of § on stable frequency-locked states, we investigate
the boundaries of the stability region, i.e. the bifurcation points 'LP’ and 'H’ in Fig. ba,
depending on §. The resulting bifurcation diagram is shown in Fig. 6. There we denote by
D, and D, two regions, corresponding to the existence of stable locked stationary states.
We distinguish between these two regions because the first one is connected to the syn-
chronous stationary states and the second one to the antisynchronous at § = 0. For more
details about these states we refer to the next section. The Hopf bifurcation line is marked
by black color and the saddle-node bifurcation by gray.

Note that the diagram in Fig. 6 is obtained for fixed coupling strength 7. Another way of
representation is to consider detuning § and coupling strength 7 as the active parameters.
Fig. 7 shows such bifurcation diagrams for fixed values of ¢. The different values of ¢
correspond to qualitatively different bifurcation diagrams. The regions of stability of CW
solutions are marked by gray color. As it is expected, for sufficiently small coupling 7 in
Figs. 7a-Tc, the stability region is bounded by saddle-node bifurcation lines. For ¢ = —0.84
and ¢ = 1.41, in addition to saddle-node bifurcation mechanism, Hopf bifurcation lines
appear to confine partially the locking regions. The codimension two bifurcation points
(ZH) appear where Hopf and saddle-node bifurcation lines meet.

The symmetry of the bifurcation diagrams in Figs. 6 and 7 with respect to interchange
§ — —6 can be explained by the fact that system (3) is invariant under the following
transformation (Ey, Ea, N1, N3, 8) — (E2et, E1e', Ny, Ny, —6).

10
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Figure 7: Bifurcation diagrams with respect to coupling strength n and detuning § for fixed
¢ =20 (a), ¢ = 0.5 (b), p = —0.84, ¢ = 1.41. Hopf bifurcations (H) are denoted by thin
lines and saddle-nodes (LP) by more heavy lines. Stability regions for stationary states
are markey in gray. ZH are zero-Hopf (or Guckenheimer-Gavrilov) bifurcation points of
codimension two.
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Figure 8: Characteristics of some locked solutions from the region D, of Fig. 6.

6.4 Properties of the stationary states after the symmetry break-
ing.

By definition, CW solutions As we have seen in the previous section, the set of frequency-
locked solutions consists of CW solutions of the form

Ei(t) = alei(“’t+A¢), Ex(t) = ase™t Ni(t) = N; = const, N,(t) = N, = const.

Now we show that their particular shape, i.e. the values of aq, as, A, is influenced by the
symmetry that is broken by the detuning 4. Particularly, in the region D, (see Fig. 6) we
have stationary solutions that are close in some sense to synchronous and in the region
D, close to antisynchronous states. This becomes clear when one note that the region D,
contains the set of synchronous states when § = 0 and D, contains antisynchronous states.
In other words, as § — 0 the stable locked solutions from the region D, continuously
approach the synchronous CW states, and from D, the antisynchronous, respectively. For
the synchronous solutions one has a;/a; = 1 and Ay = 0 and antisynchronous a;/a, = 1
and Ay = +m. As an example, we plot in Fig. 8 the ratio of amplitudes a;/a, and a
phase-shift A as a function of ¢ for § = 0.2, i.e. parameters belong to D,.

6.5 Self-pulsations

Self-pulsations, i.e. periodic oscillations of the field intensity, appear as a result of the Hopf
bifurcation of the stationary locked states. In terms of the original system (3) they are

12
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Figure 9: Different types of self-pulsations.

invariant tori, while for system (8) these solutions become either a periodic solutions, or ro-
tations, which are periodic with respect to the variables a4, as, N1, Ny but with unbounded
variable At such that Ay(t + T) = AY(t) + 2km with some integer k. Such a solutions
can be studied either directly by AUTO continuation software [20] or can be treated as
bounded limit cycles after appropriate coordinate transformation, which allows to consider
A1 modulo 27. Both approaches allows one to make bifurcation analysis of such solutions.
In this way we detected a period-doubling bifurcation, which, together with a Hopf bifur-
cation of the stationary solutions, restrict the region where stable self-pulsations occur cf.

Fig. 6.

It is also interesting to observe which shape of pulsations corresponds to different pa-
rameters. In particular, we have noticed, that near the period-doubling bifurcation self
pulsations appear, which are close to the diagonal in the space (a1, as), cf. Fig. 9, orbit A.
On the contrary, near the Hopf bifurcation, we observe that self pulsations are close to the
“antidiagonal”. Such a phenomenon was reported in [14] and called “inverse synchroniza-
tion”. A more detailed analysis of it will be provided in a separate study.

6.6 Appearance of chaotic oscillations near Zero-Hopf bifurca-
tion point

In the vicinity of the Zero-Hopf bifurcation point, cf. Fig. 10, there is a branch of Neimark-
Sacker bifurcations emerging from ZH point (see general case in [21]). When crossing
this curve from above, the stable limit cycle undergoes Neimark-Sacker bifurcation. Tt is
a general observation (cf. [21], page 302) that the torus created by the Neimark-Sacker
bifurcation exists only for parameter values near the corresponding bifurcation curve. If
one moves away from the curve, the torus losses its smoothness and will be destroyed. The
complete sequence of events is likely to involve an infinite number of bifurcations, since
any weak resonance point on the Neimark-Sacker curve is the root of Arnold phase-locking
tongue. In view of this fact, we did not try to resolve the bifurcations numerically below

13
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Figure 10: Unfolding of the Zero-Hopf bifurcation. *T’ denotes the Neimark-Sacker bifur-

cation curve emerging from the Zero-Hopf point.
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Figure 11: Parameter values, for which an attractor with positive largest Lyapunov expo-
nent exists.

the curve T’ in Fig. 10. Instead, for randomly chosen initial conditions, we calculated
Lyapunov exponents for different parameter values. Figure 11 shows the parameter values
for which the largest Lyapunov exponent is positive, i.e. the complex dynamics is present.
We can see that, in particular, such region comes arbitrary close (with the given precision)
to ZH point.

7 The case of a small delay

In this section we discuss some properties of the symmetric system with small delay

Ei(t) = (1 +ia) N;(t) E;(t) + ne " Ba_(t — 7), (9)
N;(t) = e[J — N;(t) — (N;(8) + v)| E;(4)1], 5 =1,2.

14



and compare them with the corresponding properties of the instantaneously coupled system

(4)-

The dynamics of (9) within the synchronization subspace E; = Ey:= E, N; = Ny := N is

governed by the Lang-Kobayashi equation [17]
E'=(1+4ia)NE + ne*i‘pE(t — )
N' =¢[J— N — (N +v)|E[?.

The parameters of the synchronous CW solutions E(t) = ae™* N(t) = N = const of (10)

satisfy the following set of equations (cf. [22, 23])

(10)

N = —ncos(p + wT),
w—alN = —nsin(e + wt), (11)
a? = (J— N)/(N +v).
One can obtain sufficient conditions for system (10) to have only one external cavity mode,
i.e. a unique solution of (11). For this, we shall write the equation for w as

w = —n(acos(e +wt) + sin(p + wT)). (12)

The saddle-node bifurcation, which gives rise to additional external cavity modes, can be
identified (cf. [22]) as a double root of (12). Hence, differentiating it with respect to w, we
obtain

1 = rn(asin(p + wt) — cos(p + wT)).

Tt is clear that the condition

1
V14 o

guarantees that a double root does not exist. Hence, the inequality (13) roughly provides

™ < (13)

the limit within which one might expect that the delay 7 does not qualitatively change the
dynamics within the synchronization (antisynchronization) subspace.

The transverse stability of the unique synchronous CW solution is determined by the
solutions of the characteristic equation

xp(A) = [AQ + 27 cos G(efAT + 1A+ nQ(efAT + 1)2] (A+e(14+9))

+2eS(v — ncosb) [A + n(cosf — asin 0)(671&7— + 1)] =0, (14)
where
5. J —mncosf
v+ mncosf
and
0 :=wt + .

The derivation is given in Appendix A. The condition x7(0) = 0 determines the pitchfork
and x7.(2Q2) = 0 Hopf bifurcation, respectively. It turns out that for the values up to 7 =2
the regions in the (p, §) parameter plane for the transverse stability of synchronous CW
solution of (9) are qualitatively the same as in the case of zero delay (4). In Fig. 12 we plot
the curves which delineate this stability region. All the remaining parameters are taken
to be the same as in Fig. 1. The effect of delay for this range of 7 can be only seen by
continuous changing of the slope of the curves.
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0.4

0.2r

Figure 12: Boundaries of the region for transverse stability of synchronous CW solutions
of system (9) for different values of delay. (similarly as in Fig. 1 without delay.) The
corresponding boundaries for antisynchronous CW solutions can be obtained by shifting
along the ¢ axis by .

8 Conclusion

In this paper we studied a model for a single mode lasers which are optically coupled
in a face to face configuration. The external cavity length is assumed to be short. We
have derived conditions for the stability of synchronous CW solutions in terms of the
coupling parameters. As a result of symmetry considerations, the properties of antisyn-
chronous solutions can be determined by those of the synchronous. We have shown that
when a detuning is present between two lasers, there exist stable stationary states under
some parameter constellations, which can also be considered as a phase locked states with
A1y = const. Moreover, the connection between these states and the synchronous solutions
of the symmetric system (i.e. without detuning) is shown. We also investigate the mech-
anisms of appearance of self-pulsations, which are quasiperiodic solutions in terms of the
original system (3) and represent periodic solutions of the reduced system (8). These mech-
anisms include Hopf bifurcation of the stationary phase-locked states and period-doubling
bifurcation. We have shown that one of the organizing centers of chaotic pulsations in the
considered system is a Zero-Hopf (or Guckenheimer-Gavrilov) codimension-2 bifurcation
point. From the point of view of modeling, we studied the possibility to use the model
(3) with instantaneous coupling for the study of coupled semiconductor lasers with short
external cavity.
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A Derivation of the characteristic equations for syn-
chronous solutions

The algorithm for the derivation of the characteristic equations for the synchronous CW
solutions of systems (9) and (4) is the same, therefore, we present here the derivation
in detail for the delayed system (9). Finally, the characteristic equation for (4) will be
obtained by setting 7 = 0.

Let By = E, := E,e“**, N; = N, := N, be the synchronous CW solutions under considera-
tion. By Fi, = @e*i“’t and M, = w we introduce new coordinates such that (9)

takes the form

F_lg(t) = (1 43a)(MyFy5(t) + MyFyi(t) — tw,Fy o(t) £ ne et By (¢ — 7)
=e(J — My — (My +0)(|Fi? + | F2?) — Ma(FLFs + FiF)) (15)
e(—

M, —
M. M2*(M1+V)(F1F2+F1F2)*M2(|F1|2+|F2|2))-

Fy; and M, are the coordinates within the synchronization subspace, while the coordinates
F, and M, are transversal to it [4, 18], i.e. we have Fy, = 0, M, = 0 for synchronized
solutions.

System (15) is again autonomous due to the phase-shift invariance of the original system
(9), and CW solution under consideration is transformed into the equilibrium F; = FE,,
M; = N,, F, = 0, M, = 0 with respect to it. We will linearize (15) in the vicinity of such
point [24]. To perform this, we first decompose

Fio=z154 1910

Denoting with

= (v1,...,Vs)
variations in zq,y1, My, 3, ys, M, respectively, we obtain a linearization of the form

d . .
Ev(t) = Au(t)+ Bt — 1),

with the 6 x 6 matrices A and B having the block structure
[ A A (B 0
A<Az Al) B(O Bl)' (16)
At a synchronized state, we have z5 = yo = My = 0 and M; = N;, =: N, and obtain

N ws — alN T1 — oy
A = —(ws — aN) N az, + 1y (17)
—2ex1(N +v) —2ey(N +v) —e(1+ 27 +vyd)

necos(p + wsr)  msin(p +w,r) 0
By = | —7nsin(¢ +w,r) ncos(¢ +w,r) 0 (18)
0 0 0
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The coupling terms in A, disappear for synchronized CW-states and the system splits into
two invariant subspaces, corresponding to synchronized and transverse variations. As a
consequence, the characteristic function can be factorized as x"(A) = xL(A) - x%(A) with

X7 (A) = det(ATd — 4, — e " By) (19)

and

x7(A) = det(ATd — A, + e " By). (20)

Here Id is identical 3 x 3 matrix. The function 7 is the characteristic function of the
Lang-Kobayashi system (10) and has been investigated in [22]. It determines the stabil-
ity properties of the synchronous CW solution of coupled system (2). The function x7%
determines its transverse stability properties. Taking into account equations (11), we can
rewrite transverse characteristic equations in terms of the parameters in the form (14).

Similarly, the characteristic equations for the transverse stability of synchronous solution

to (4) have the form (6).

B Set of equations for determining asynchronous CW
solutions

Here we obtain a set of equations for determining asynchronous CW solutions of (4). We
also present an algorithm of reducing it to a single nonlinear equation with one unknown

variable ¢ € [0, 27].

After substituting (7) into (3), we obtain the following set of equations with respect to
unknowns aq, ay,¥,w, Ny, Ny

a1iw = (1 +2a)Nia; + nage H¥+e)
asiw = (1 + 2a)Naas + na,e'¥9),
J— Ny — (N, +v)al =0,

J— Ny — (N3 +v)a2 =0.

(21)

In real form it reads

a1 N1 + asncos(p + 1) = 0,
a1(aN; —w) — asnsin(p + ) =0,
asNy + aimcos(yp — @) =0,
as(aNy —w) + amsin(yp — @) =0,
J— N, — (Ny +v)al =0,
J—Ng—(Ng—l—y)ag:O.

Since a; # 0, we may set z = as/a;. In the following we perform a formal procedure without
checking signs and zeros of some functions, in order to avoid additional nonessential details.
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As a result some spurious roots for new equation will appear which can be eliminated
afterwards. The system for unknowns z,,w, N1, Ny has the form

Ni 4+ zncos(p + ) =0, (28)
(aN; —w) — zysin(p + ) =0, (29)
zNy 4+ ncos(yp — ) =0, (30)
z(aN; —w) +nsin(y — @) =0, (31)
(J = No)(Mi +v)

J-N)(Ntv) 7 (32)

where (32) is obtained from (26-27). Now we eliminate z from the following equations
pairwise: (28-29), (30-31), (28-30), and (28-32). As a result we obtain equations for
unknowns ¥, w, Ny, N,

Nisin(p+9) + (aN; — w)cos(p + ) =0,
Nysin(yp — ) — (aNy — w)cos(yp — @) = 0,
NiN; = n* cos(p + ) cos(¢p — ),

(J — No)(Ny +v) N?

(J = N)(Na+v)  n?cos®(4h + )

)
N1, Nz can be determined using (33) and (34)
Ny = w/(a + tan(p + $)), (37)
N2 = w/(a + tan(p — ). (38)
After substituting (37) and (38) into (35), w can be expressed as a function of 1:
W =’ cos(ip + ) cos(ip — $)(tan(p + ) + @) (tan(ip — ) + a). (39)

Final step is to substitute N; and N, from (37) and (38) into (36):

(J(tan(o +¢¥) + ) — w) (v(tan(e — ) + a) + w) B ﬁ cos? o tan 5
(T(tan(e — )+ a) — ) (W(tan(p + ) + o) v o) w2 P T¥I +t<w+¢zm

After substituting (39) into (40), we arrive at a nonlinear transcendental equation for .
This equation can be treated numerically more easy since % is determined within a bounded
interval (0, 27).
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