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AbstractWe consider two semiconductor lasers coupled face to face under the assumptionthat the delay time of the injection is small. The model under consideration consistsof two coupled rate equations, which approximate the coupled Lang-Kobayashi sys-tem as the delay becomes small. We perform a detailed study of the synchronized andantisynchronized solutions for the case of identical systems and compare results fromtwo models: with the delay and with instantaneous coupling. The bifurcation anal-ysis of systems with detuning reveals that self-pulsations appear via bifurcations ofstationary (i.e. continuous wave) solutions. We discover the connection between sta-tionary solutions in systems with detuning and synchronous (also antisynchronous)solutions of coupled identical systems. We also identify a codimension two bifurcationpoint as an organizing center for the emergence of chaotic behavior.1 IntroductionThe goal of the present paper is to study nonlinear dynamics of two mutually coupledsemiconductor lasers. We consider the face to face con�guration, i.e. the output of eachlaser is injected into the other laser. The study of such coupling setup is motivated amongother facts by the perspective of using masked signal transmission [1, 2]. There is also ahope that such models can provide an additional understanding of the dynamics of two-section laser devices [3]. In addition to the application perspectives for the speci�c devices,models for coupled lasers turn out to be sources for new physical phenomena such asanticipated or lag synchronization, and chaos appearance for already weak coupling sincethe isolated lasers operate in a stable stationary regime. From the general perspectiveof coupled nonlinear oscillators [4], coupled semiconductor lasers usually are modeled bycoupled systems with additional symmetry properties which have to be taken into account.Moreover, the signi�cant di�erence between carrier and photon lifetimes brings multiscaleproperties into the models.The dynamics of mutually coupled lasers with large injection feedback time (correspondingto distances from about 10 cm between the lasers) was studied recently in [5, 6, 7]. The caseof unidirectional coupling was investigated in [8, 9]. Various new phenomena were reportedsuch as retarded or anticipated synchronization [10, 11, 12, 13], inverse synchronization [14],and antisynchronization of power drop-outs [15].Recently, there has been appeared new interest in lasers with a short cavity [16], whichis motivated by several arguments: First, the study of the dynamics in this regime hasbecome experimentally accessible. Also, such a regime is very interesting from the dynam-ical point of view, since it has an intermediate complexity, allowing to analyze directly the1



mechanisms of either synchronization or the appearance of pulsations and chaotic dynam-ics. The same arguments seem to be applicable when the delay in the coupling is small, i.e.there is a short external cavity. For instance, this is the case in a two-section integrateddevice [3], where both lasers are parts of the same device and are close to each other apriori. The instantaneous coupling limit may serve as an appropriate starting point for thestudy of such systems. Of course, the smallness of the delay, which allows one to neglectit, is a separate question. From the more general perspective it is still an open problem ofmodeling: what kind of phenomena in the coupled face to face lasers can be described atleast qualitatively by instantaneously coupled rate equations?It is the main purpose of the present paper to give a comprehensive description of thedynamical regimes arising in a model of instantaneously coupled rate equations. Evenneglecting time delay of the injection, it turns out to be important to take into account itsrelative phase shift '. For the case of identical lasers, we provide analytical conditions forthe stability of synchronized and antisynchronized regimes, where the injection phase shiftis the key parameter to determine the dynamics. Similar calculations are compared fortwo models: the model with small delay and that with instantaneous coupling. Further,we consider the case when there is a detuning between two lasers. It is shown how theinjection phase a�ects the existence and stability of continuous wave solutions and ofself-pulsations. It follows that one of the organizing centers for chaotic dynamics is acodimension two Zero-Hopf bifurcation point.2 The modelThe model, which is extensively used to describe the dynamics of mutually coupled single-mode lasers (cf. [5, 9, 8, 17]) is the system of coupled rate equations:dE1dt = i�ÆE1 + 12 �G1(N1; jE1j2)� 1�p1 �E1 + �e�i'E2(t� �� );dN1dt = I1 � N1�c1 � Re[G1(N1; jE1j2)] � jE1j2;dE2dt = 12 �G2(N2; jE2j2)� 1�p2�E2 + �e�i'E1(t� �� );dN2dt = I2 � N2�c2 � Re[G2(N2; jE2j2)] � jE2j2; (1)where E1;2 and N1;2 denote the complex optical �elds and the carrier densities of the lasers,respectively. The term i�ÆE1 accounts for the frequency detuning. By I1;2 we denote thepumping current, and G1;2(N1;2; jE1;2j2) is the complex gain function. �p1;2 , �c1;2 are photonand carrier lifetimes; � and � characterize the injection rate and the injection delay-time,respectively.In system (1), we introduce the following simpli�cations and rescalings. First of all, weassume that all parameters for both lasers are the same except the detuning parameter �Æ.Neglecting nonlinear gain saturation we linearize the complex gain function as followsG(N; jEj2)� 1�p := GN (1 + i�)(N �N0):2



With the rescaling Enew = pGN�cE, Nnew = 12�pGN (N �N0), tnew = t=�p we obtain from(1) E01 = iÆE1 + (1 + i�)N1E1 + �e�i'E2(t� � );N 01 = "[J �N1 � (N1 + �)jE1j2];E02 = (1 + i�)N2E2 + �e�i'E1(t� � );N 02 = "[J �N2 � (N2 + �)jE2j2]; (2)where we use the same notations for the new variables. The di�erentiation is assumed tobe made with respect to the new time, and the parameters are� = �p�; " = �p=�c; J = �pGN (I�c �N0)=2; � = ��=�p; � = 0:5; Æ = �Æ�p:In the case � = 0, we obtain the coupled rate equations with instantaneous coupling:E 01 = iÆE1 + (1 + i�)N1E1 + �e�i'E2;N 01 = "[J �N1 � (N1 + �)jE1j2];E 02 = (1 + i�)N2E2 + �e�i'E1;N 02 = "[J �N2 � (N2 + �)jE2j2]: (3)System (3) is the main object of this study. In Sec. 7 we compare some of the obtainedresults with the model (2) which includes small delay.3 Symmetries. Synchronous and antisynchronous so-lutions.Let us �rst examine the model (3) without detuning, i.e. Æ = 0, and note some propertiesdue to inherent symmetries:E0j = (1 + i�)NjEj + �e�i'E3�j;N 0j = "[J �Nj � (Nj + �)jEj j2]; j = 1; 2: (4)1. Since the subsystems are identical, there is a symmetry with respect to indexes in-terchange (E1; N1; E2; N2) ! (E2; N2; E1; N1). This implies the existence of the invariantsubspace of synchronous states E1 = E2 and N1 = N2.2. The symmetry (E1; N1; E2; N2)! (�E2; N2; E1; N1) implies the existence of the invari-ant subspace of antisynchronous states E1 = �E2 and N1 = N2.3. The following symmetry allows us to establish a one-to-one correspondence betweensynchronous and antisynchronous solutions. If (E1(t); N1(t); E2(t); N2(t)) is a solution to(4) then (E1(t); N1(t);�E2(t); N2(t)) is also a solution provided ' is replaced by '+ �. Inother words, the symmetry transformation is of the form (E1(t); N1(t); E2(t); N2(t); ') !(E1(t); N1(t);�E2(t); N2(t); ' + �). This implies that all antisynchronous solutions andtheir properties can be obtained from the corresponding synchronous solutions and theirproperties, which have to be considered for the same parameter values except that ' isshifted by �. 3



Let us remark, that the coupling, which is present in (4), in
uences the dynamics inthe synchronization and antisynchronization subspaces. This, in particular, makes oursituation di�erent from the setup in [4, 18].4. The phase-shift invariance (E1; N1; E2; N2) ! (E1ei ; N1; E2ei ; N2) is common to op-tical devices without phase conjugation, and, in particular, to the system (2) for anyparameter Æ and �. This symmetry implies, that for suitable laser parameters there existcontinuous wave (CW) solutions, i.e. solutions of the type Ej(t) = E0jei!t; Nj = N0j(j = 1; 2;! 2 R). These solutions are also called "stationary", because they corre-spond to stationary intensity regimes. Moreover, this symmetry implies that for suitablelaser parameters there exist modulated wave (MW) solutions, i.e. solutions of the typeEj(t) = E0j(t)ei!t; Nj = N0j(t) with E0j(t + T ) = E0j(t) and N0j(t + T ) = N0j(t) for allt 2 R (j = 1; 2; !; T 2 R). These solutions are also called "periodic" or "self-pulsations",because they correspond to time-periodic intensity regimes.4 Synchronous CW solutions and their stability4.1 Dynamics in the synchronization subspaceAfter substituting N1 = N2 := N and E1 = E2 := E into (4), we obtain the followingequations for the dynamics in the synchronization subspaceE 0 = (1 + i�)NE + �e�i'EN 0 = "[J �N � (N + �)jEj2]: (5)A qualitative analysis of (5) with " > 0 and � > 0 yields the following:� For � cos' < �J the "o� state" E = 0, N = J is asymptotically stable.� For �J < � cos' < �, there exists a globally stable CW solution E(t) = E0ei!0t,N(t) = N0 with!0 = ��(cos'+ sin'); N0 = �� cos'; E0 = (J + � cos')=(� � � cos'):Summarizing, let us note that for all physically relevant parameter values, i.e. J > 0," > 0, 0 < � < � = 0:5, there exists a unique stable CW solution inside the synchroniza-tion subspace (synchronous CW solution). The same is true for the antisynchronizationsubspace.4.2 Transverse stability of the synchronous CW solutionsSince the synchronous CW solution is stable within the synchronization subspace, its sta-bility in the whole phase space is determined by its transverse stability, i.e. the stabilitywith respect to perturbations transverse to the synchronization subspace. The analysis of4
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Figure 1: Region of transverse stability for synchronous 'S' and antisynchronous 'A' CWsolutions, respectively. 'P' denotes the curves of transverse pitchfork bifurcations and 'H'Hopf bifurcations for the parameters � = 2, J = 1, " = 0:03.the transverse stability of synchronous CW solutions can be carried out by inspecting thecharacteristic equation�0T (�) = ��2 + 4�� cos'+ 4�2� (� + "(1 + S0))+2"S0(� � � cos') [� + 2�(cos'� � sin')] = 0; (6)where S0 := J � � cos'� + � cos' :This equation is derived in Appendix A. We shall note that the roots of �0T (�) = 0determine only transverse stability of the synchronous CW solutions, since the generalcharacteristic equation can be factorized into two equations one of which corresponding totransverse directions and another to the directions within the synchronization subspace,cf. App. A. Transverse pitchfork bifurcation takes place if there is a zero eigenvalue, i.e.�0T (0) = 0, and transverse Hopf bifurcation corresponds to the existence of pure imaginaryeigenvalues, i.e. �0T (i
) = 0, where 
 6= 0 is some real parameter. These bifurcations canbe identi�ed and path-followed with respect to the system parameters. Here we choose thecoupling strength � and injection phase ' to be the key parameters with respect to whichwe want to study the dynamics. Typical bifurcation diagram is shown in Figure 1. The�gure shows regions for transverse stability of the synchronous CW solution (marked by'S') and antisynchronous CW solution (marked by 'A'), respectively. Note that in order toobtain the result for antisynchronous solutions, we used the symmetry arguments of Sec. 3,i.e. the region 'A' is an image of the region 'S', which is shifted by � along the parameteraxis '. The transverse bifurcations that mediate the loss of synchronization are markedas 'P' for pitchfork and 'H' for Hopf, respectively. Note that we do not show in Fig. 1 allthe bifurcation lines, but only those which mediate the stability loss of CW solutions.There are also small regions where stable synchronous and stable antisynchronous CWsolutions coexist. They are located at ' = arctan(1=�) and ' = arctan(1=�)+� and theirsize is of order ", cf. Fig 2. 5
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stable CW synchronousFigure 2: Zoom of the small part of Fig. 1. The regions of stability of synchronous andantisynchronous CW solutions are overlapped, creating multistability. Here the bifurcationcurves are shown completely, i.e. not only those parts that bounds the stability regions ofthe corresponding CW solutions.The bifurcation diagrams, cf. Figs. 1-2, also reveals that the �rst destabilization threshold,i.e. destabilization of the CW solutions with increasing of the coupling � for �xed �, mayoccur already for coupling strength of order " via Hopf bifurcation.5 Asynchronous CW solutionsSynchronous and antisynchronous CW solutions are not the only possible stationary solu-tions in the system (4). Another set of CW solutions, which we call asynchronous, can beobtained from the following anzats:E1(t) = a1ei(!t+ ); N1(t) = N1 = const; E2(t) = a2ei!t; N2(t) = N2 = const; (7)where a1; a2; N1; N2; !;  are real constants to be determined. After substituting it into(4), we obtain a set of nonlinear equations, which afterward can be e�ectively studiednumerically. We refer the reader to Appendix B for details. As a result we present theone-dimensional bifurcation diagram in Fig. 3, which corresponds to the parameters asin Fig. 1 but with �xed � = 0:2 (cf. horizontal line in the �gure). In addition to thesynchronous and antisynchronous solutions, we observe branches of unstable asynchronousorbits connecting synchronous and antisynchronous CW solutions. These branches emergefrom the subcritical pitchfork bifurcations Ps and Pa, respectively. Although these solutionsare unstable their role may be important in forming the boundary of the attracting regionof stable synchronous CW solutions. 6
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Figure 3: For �xed � = 0:2, there are two branches corresponding to the synchronous andantisynchronous solutions and the connecting branches of unstable asynchronous unstableperiodic solutions. Pa and Ps are pitchfork and Ha, Hs are Hopf bifurcations. Index 's'stands for the synchronous and 'a' for antisynchronous solutions, respectively.In the next section, we study system (3) for Æ 6= 0, i.e. we investigate the in
uence of thedetuning.6 In
uence of the detuning6.1 Preliminary studySince system (3) has the phase-shift invariance property, we can reduce it to a 5-dimensionalsystem. One way of reducing is to use the following transformation: E1(t) = a1(t)ei 1(t),E2(t) = a2(t)ei 2(t). Here a21 and a22 are intensities of the �rst and the second laser, respec-tively. We assume a1 6= 0 and a2 6= 0. � =  1 �  2 is their phase di�erence. Then withrespect to the new real variables a1; a2; N1; N2, and � we obtain the system of equations:a01 = N1a1 + �a2 cos(� + ')N 01 = "(J �N1 � (N1 + �)a21);a02 = N2a2 + �a1 cos('�� ); (8)N 02 = "(J �N2 � (N2 + �)a22);� 0 = Æ + (N1 �N2)� � �a2a1 sin(� + ') + �a1a2 sin('�� ):System (8) no longer posses the phase shift symmetry, and, therefore, all CW solutionsbecome stationary states in terms of new variables.Let us introduce the frequencies 
1 and 
2 by
1(t) =  01(t); 
2(t) =  02(t):7
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Figure 4: Averaged frequency di�erence versus detuning parameter for di�erent values of' (� = 0:3).The following quantity determines the locking between two weakly coupled oscillators:�
 = h� 0(t)i = limT!1 1T Z T0 � 0(t)dt = limT!1 � (T )T :�
 can be treated as averaged frequency di�erence between two weakly coupled lasers.Figure 4 shows results of computation of �
 depending on the detuning Æ. Three di�erentcurves were obtained for di�erent values of ' with �xed � = 0:3. At each point, weintegrated over the transient interval Ttr = 1000 and averaged over Tav = 1000. Initialconditions were chosen at random. One clearly observes the locking intervals �
 = 0 asplatoes near Æ = 0. Moreover, the width of these intervals strongly depend on the phaseparameter '. We will inspect the dependence of the locking on ' in more details in nextsections by studying bifurcations that are involved in the loss of locking and appearanceof pulsations. Additionally, we have to note that the use of frequency di�erence �
 forinvestigating of the locking between two coupled oscillators can be justi�ed in the case ofweak coupling, i.e. small enough �. Therefore, we have to consider Fig. 4 as a preliminaryresult, which has to be accompanied by an additional bifurcation analysis in the nextsections.6.2 Stationary states for the case with detuningThe CW solutions of system (3) are equilibria of system (8). Hence, one can use the stan-dard path-following technique to follow their dependence on the parameters. As startingdata, we use the known stationary states for the symmetric system (see Fig, 3). The re-sulting bifurcation diagram is shown in Fig. 5, which is computed for the detuning Æ = 0:1.Before analyzing the obtained bifurcation diagrams, it is important to realize that detun-ing breaks two symmetries in our system (cf. Sec. 3): Z2 symmetry (E1; N1; E2; N2) !8
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Figure 5: (a) Stationary states for system (3) with detuning. Æ = 0:01, � = 0:2. Stablebranches are depicted by solid lines, unstable by dashed. (b) Perturbation of the pitchforkbifurcation by the detuning, zooming of some part of (a)(E2; N2; E1; N1) and the symmetry (E1; N1; E2; N2) ! (�E2; N2; E1; N1). Therefore, syn-chronous and antisynchronous solutions do not exist anymore. Moreover, the pitchforkbifurcations that partially determine the synchronization region of the system without de-tuning is no longer admissible for Æ 6= 0. Two questions arise naturally: What happenswith the synchronous and antisynchronous solutions after the symmetry breaking by de-tuning? How is the pitchfork bifurcation perturbed in this case? The observed scenario,cf. Fig. 5, clari�es the situation. In particular, as can be seen from Fig. 5b, instead of thepitchfork bifurcation we have a saddle-node bifurcation (denoted as 'LP'). In the nonsym-metric case this saddle-node bifurcation connects the previously synchronous solutions viathe unstable branch of asynchronous solutions to the antisynchronous, cf. Fig. 5a. Notethat such a perturbation of the pitchfork bifurcation is common for symmetrically coupledsystems with a parameter mismatch [19]. As a result, instead of the separate branchesof synchronous and antisynchronous solutions, for Æ 6= 0 there are closed branches of so-lutions, which do not posses these symmetry properties. Nevertheless, as we shall see inSec. 6.4, some parts of these branches still keep being close to the synchronous state andsome to the antisynchronous.Comparing the bifurcation diagram in Fig. 5 and its symmetric counterpart in Fig. 3 wenote that similar stability regions for stationary states, which are limited by the Hopf (H)and saddle-node (LP) bifurcations, exist in both cases. In fact, they can be obtained fromeach other by continuation along the parameter Æ. Moreover, as we will see in Sec. 6.4,the corresponding branches are close to the synchronous (those that contain ' = 0) and tothe antisynchronous one (containing ' = �1). It is evident that for these stationary statescorrespond to � (t) = const. In the following, by the locking between coupled systemswith detuning (3) we understand the existence of the stable stationary states (for them wehave � = const). 9
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Figure 9: Di�erent types of self-pulsations.invariant tori, while for system (8) these solutions become either a periodic solutions, or ro-tations, which are periodic with respect to the variables a1; a2; N1; N2 but with unboundedvariable � such that � (t + T ) = � (t) + 2k� with some integer k. Such a solutionscan be studied either directly by AUTO continuation software [20] or can be treated asbounded limit cycles after appropriate coordinate transformation, which allows to consider� modulo 2�. Both approaches allows one to make bifurcation analysis of such solutions.In this way we detected a period-doubling bifurcation, which, together with a Hopf bifur-cation of the stationary solutions, restrict the region where stable self-pulsations occur cf.Fig. 6.It is also interesting to observe which shape of pulsations corresponds to di�erent pa-rameters. In particular, we have noticed, that near the period-doubling bifurcation selfpulsations appear, which are close to the diagonal in the space (a1; a2), cf. Fig. 9, orbit A.On the contrary, near the Hopf bifurcation, we observe that self pulsations are close to the\antidiagonal". Such a phenomenon was reported in [14] and called \inverse synchroniza-tion". A more detailed analysis of it will be provided in a separate study.6.6 Appearance of chaotic oscillations near Zero-Hopf bifurca-tion pointIn the vicinity of the Zero-Hopf bifurcation point, cf. Fig. 10, there is a branch of Neimark-Sacker bifurcations emerging from ZH point (see general case in [21]). When crossingthis curve from above, the stable limit cycle undergoes Neimark-Sacker bifurcation. It isa general observation (cf. [21], page 302) that the torus created by the Neimark-Sackerbifurcation exists only for parameter values near the corresponding bifurcation curve. Ifone moves away from the curve, the torus losses its smoothness and will be destroyed. Thecomplete sequence of events is likely to involve an in�nite number of bifurcations, sinceany weak resonance point on the Neimark-Sacker curve is the root of Arnold phase-lockingtongue. In view of this fact, we did not try to resolve the bifurcations numerically below13
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and compare themwith the corresponding properties of the instantaneously coupled system(4).The dynamics of (9) within the synchronization subspace E1 = E2 := E, N1 = N2 := N isgoverned by the Lang-Kobayashi equation [17]E 0 = (1 + i�)NE + �e�i'E(t� � )N 0 = "[J �N � (N + �)jEj2]: (10)The parameters of the synchronous CW solutions E(t) = aei!t; N(t) = N = const of (10)satisfy the following set of equations (cf. [22, 23])N = �� cos('+ !� );! � �N = �� sin('+ !� );a2 = (J �N)=(N + �): (11)One can obtain suÆcient conditions for system (10) to have only one external cavity mode,i.e. a unique solution of (11). For this, we shall write the equation for ! as! = ��(� cos('+ !� ) + sin('+ !� )): (12)The saddle-node bifurcation, which gives rise to additional external cavity modes, can beidenti�ed (cf. [22]) as a double root of (12). Hence, di�erentiating it with respect to !, weobtain 1 = ��(� sin('+ !� )� cos('+ !� )):It is clear that the condition �� < 1p1 + �2 (13)guarantees that a double root does not exist. Hence, the inequality (13) roughly providesthe limit within which one might expect that the delay � does not qualitatively change thedynamics within the synchronization (antisynchronization) subspace.The transverse stability of the unique synchronous CW solution is determined by thesolutions of the characteristic equation��T (�) = ��2 + 2� cos �(e��� + 1)� + �2(e��� + 1)2� (� + "(1 + S))+2"S(� � � cos �) �� + �(cos � � � sin �)(e��� + 1)� = 0; (14)where S := J � � cos �� + � cos �and � := !� + ':The derivation is given in Appendix A. The condition ��T (0) = 0 determines the pitchforkand ��T (i
) = 0 Hopf bifurcation, respectively. It turns out that for the values up to � = 2the regions in the ('; Æ) parameter plane for the transverse stability of synchronous CWsolution of (9) are qualitatively the same as in the case of zero delay (4). In Fig. 12 we plotthe curves which delineate this stability region. All the remaining parameters are takento be the same as in Fig. 1. The e�ect of delay for this range of � can be only seen bycontinuous changing of the slope of the curves.15
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ηFigure 12: Boundaries of the region for transverse stability of synchronous CW solutionsof system (9) for di�erent values of delay. (similarly as in Fig. 1 without delay.) Thecorresponding boundaries for antisynchronous CW solutions can be obtained by shiftingalong the ' axis by �.8 ConclusionIn this paper we studied a model for a single mode lasers which are optically coupledin a face to face con�guration. The external cavity length is assumed to be short. Wehave derived conditions for the stability of synchronous CW solutions in terms of thecoupling parameters. As a result of symmetry considerations, the properties of antisyn-chronous solutions can be determined by those of the synchronous. We have shown thatwhen a detuning is present between two lasers, there exist stable stationary states undersome parameter constellations, which can also be considered as a phase locked states with� = const. Moreover, the connection between these states and the synchronous solutionsof the symmetric system (i.e. without detuning) is shown. We also investigate the mech-anisms of appearance of self-pulsations, which are quasiperiodic solutions in terms of theoriginal system (3) and represent periodic solutions of the reduced system (8). These mech-anisms include Hopf bifurcation of the stationary phase-locked states and period-doublingbifurcation. We have shown that one of the organizing centers of chaotic pulsations in theconsidered system is a Zero-Hopf (or Guckenheimer-Gavrilov) codimension-2 bifurcationpoint. From the point of view of modeling, we studied the possibility to use the model(3) with instantaneous coupling for the study of coupled semiconductor lasers with shortexternal cavity.AcknowledgementWe wish to acknowledge useful discussions with Mathias Wolfrum, Hans-J�urgen W�unsche,and Nikolai Korneev. This work was supported by DFG (Sonderforschungsbereich 555"Komplexe nichtlineare Prozesse"). 16



A Derivation of the characteristic equations for syn-chronous solutionsThe algorithm for the derivation of the characteristic equations for the synchronous CWsolutions of systems (9) and (4) is the same, therefore, we present here the derivationin detail for the delayed system (9). Finally, the characteristic equation for (4) will beobtained by setting � = 0.Let E1 = E2 := Ese!st, N1 = N2 := Ns be the synchronous CW solutions under considera-tion. By F1;2 = E1�E22 e�i!st and M1;2 = N1�N22 we introduce new coordinates such that (9)takes the form_F1;2(t) = (1 + i�)(M1F1;2(t) +M2F2;1(t))� i!sF1;2(t)� �e�i('+!s�)F1;2(t� � )_M1 = "(J �M1 � (M1 + �)(jF1j2 + jF2j2)�M2(F1 �F2 + �F1F2))_M2 = "(�M2 � (M1 + �)(F1 �F2 + �F1F2)�M2(jF1j2 + jF2j2)): (15)F1 and M1 are the coordinates within the synchronization subspace, while the coordinatesF2 and M2 are transversal to it [4, 18], i.e. we have F2 = 0; M2 = 0 for synchronizedsolutions.System (15) is again autonomous due to the phase-shift invariance of the original system(9), and CW solution under consideration is transformed into the equilibrium F1 = Es,M1 = Ns, F2 = 0, M2 = 0 with respect to it. We will linearize (15) in the vicinity of suchpoint [24]. To perform this, we �rst decomposeF1;2 = x1;2 + iy1;2:Denoting with ~v := (v1; : : : ; v6)variations in x1; y1;M1; x2; y2;M2, respectively, we obtain a linearization of the formddt~v(t) = A~v(t) +B~v(t� � );with the 6 � 6 matrices A and B having the block structureA = � A1 A2A2 A1 � B = � B1 00 �B1 � : (16)At a synchronized state, we have x2 = y2 =M2 = 0 and M1 = N1;2 =: N , and obtainA1 =0@ N !s � �N x1 � �y1�(!s � �N) N �x1 + y1�2"x1(N + �) �2"y1(N + �) �"(1 + x21 + y21) 1A (17)B1 = 0@ � cos('+ !s� ) � sin('+ !s� ) 0�� sin('+ !s� ) � cos('+ !s� ) 00 0 0 1A (18)17



The coupling terms in A2 disappear for synchronized CW-states and the system splits intotwo invariant subspaces, corresponding to synchronized and transverse variations. As aconsequence, the characteristic function can be factorized as ��(�) = ��L(�) � ��T (�) with��L(�) = det(� Id�A1 � e���B1) (19)and ��T (�) = det(� Id�A1 + e���B1): (20)Here Id is identical 3 � 3 matrix. The function ��L is the characteristic function of theLang-Kobayashi system (10) and has been investigated in [22]. It determines the stabil-ity properties of the synchronous CW solution of coupled system (2). The function ��Tdetermines its transverse stability properties. Taking into account equations (11), we canrewrite transverse characteristic equations in terms of the parameters in the form (14).Similarly, the characteristic equations for the transverse stability of synchronous solutionto (4) have the form (6).B Set of equations for determining asynchronous CWsolutionsHere we obtain a set of equations for determining asynchronous CW solutions of (4). Wealso present an algorithm of reducing it to a single nonlinear equation with one unknownvariable  2 [0; 2�].After substituting (7) into (3), we obtain the following set of equations with respect tounknowns a1; a2;  ; !;N1; N2a1i! = (1 + i�)N1a1 + �a2e�i( +');a2i! = (1 + i�)N2a2 + �a1ei( �');J �N1 � (N1 + �)a21 = 0;J �N2 � (N2 + �)a22 = 0: (21)In real form it reads a1N1 + a2� cos('+  ) = 0; (22)a1(�N1 � !) � a2� sin('+  ) = 0; (23)a2N2 + a1� cos( � ') = 0; (24)a2(�N2 � !) + a1� sin( � ') = 0; (25)J �N1 � (N1 + �)a21 = 0; (26)J �N2 � (N2 + �)a22 = 0: (27)Since a1 6= 0, we may set x = a2=a1. In the following we perform a formal procedure withoutchecking signs and zeros of some functions, in order to avoid additional nonessential details.18



As a result some spurious roots for new equation will appear which can be eliminatedafterwards. The system for unknowns x;  ; !;N1; N2 has the formN1 + x� cos('+  ) = 0; (28)(�N1 � !) � x� sin('+  ) = 0; (29)xN2 + � cos( � ') = 0; (30)x(�N2 � !) + � sin( � ') = 0; (31)(J �N2)(N1 + �)(J �N1)(N2 + �) = x2; (32)where (32) is obtained from (26-27). Now we eliminate x from the following equationspairwise: (28-29), (30-31), (28-30), and (28-32). As a result we obtain equations forunknowns  ; !;N1; N2 N1 sin('+  ) + (�N1 � !) cos('+  ) = 0; (33)N2 sin( � ')� (�N2 � !) cos( � ') = 0; (34)N1N2 = �2 cos('+  ) cos( � '); (35)(J �N2)(N1 + �)(J �N1)(N2 + �) = N21�2 cos2( + ') : (36)N1; N2 can be determined using (33) and (34)N1 = !=(� + tan('+  )); (37)N2 = !=(� + tan('�  )): (38)After substituting (37) and (38) into (35), ! can be expressed as a function of  :!2 = �2 cos('+  ) cos('�  )(tan('+  ) + �)(tan('�  ) + �): (39)Final step is to substitute N1 and N2 from (37) and (38) into (36):(J(tan('+  ) + �) � !) (�(tan('�  ) + �) + !)(J(tan('�  ) + �) � !) (�(tan('+  ) + �) + !) = �2!2 cos2('+  ) (�+ tan('+  ))2(40)After substituting (39) into (40), we arrive at a nonlinear transcendental equation for  .This equation can be treated numericallymore easy since  is determinedwithin a boundedinterval (0; 2�).References[1] G. D. VanWiggeren and R. Roy. Chaotic communication using time-delayed opticalsystems. Int. J. Bifurcation Chaos Appl. Sci. Eng., 9:2129, 1999.[2] Ingo Fischer, Yun Liu, and Peter Davis. Synchronization of chaotic semiconductorlaser dynamics on subnanosecond time scales and its potential for chaos communica-tion. Phys. Rev. A, 62:011801, 2000. 19
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