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AbstractWe study Gibbs properties of the fuzzy Potts model in the mean �eld case(i.e. on a complete graph) and on trees. For the mean �eld case, a completecharacterization of the set of temperatures for which non-Gibbsianness hap-pens is given. The results for trees are somewhat less explicit, but we do showfor general trees that non-Gibbsianness of the fuzzy Potts model happens ex-actly for those temperatures where the underlying Potts model has multipleGibbs measures.
1 IntroductionIt used to be taken for granted that simple transformations of Gibbs measures arethemselves Gibbsian. A few counterexamples were found in the 70's and 80's [14, 27],but these were usually referred to as being somehow exceptional or pathological.In the seminal paper from 1993 by van Enter, Fern�andez and Sokal [8], furtherexamples were found, and a systematic study of Gibbsianness vs. non-Gibbsiannessof large classes of transformed or projected versions of Gibbs systems began; see[7, 24, 5, 12, 19, 11, 10, 20, 6, 18] for some of the subsequent work in this area.In particular, Gibbs properties of the so-called fuzzy Potts model were studied inMaes and Vande Velde [24] and H�aggstr�om [18]. Like almost all work in the studyof Gibbsianness vs. non-Gibbsianness, these papers focused on the case where theunderlying lattice is Zd. Two exceptions are H�aggstr�om [16] and K�ulske [21] wherethese issues are studied for certain models living on trees and on complete graphs(known as the Curie{Weiss or mean �eld case), respectively. In this paper, we shallcontinue in the directions of [16] and [21] by studying Gibbs properties of the fuzzyPotts model on trees and in the mean �eld setup.The fuzzy Potts model arises, loosely speaking, from the standard q-state Pottsmodel by looking at it with a pair of glasses that prevents from distinguishing someof the spin values; see Section 2 for precise de�nitions. This makes the fuzzy Pottsmodel one of the most basic examples of a hidden Markov random �eld [22], andit has also turned out to be useful in the study of percolation-theoretic propertiesof the underlying Potts model [3, 17]. Maes and Vande Velde [24] speculated thatGibbsianness of the fuzzy Potts model on Zd might hold precisely in the Gibbsuniqueness regime (i.e., above the critical temperature) of the underlying Potts1



model, but this was shown in [18] not to be the case: non-Gibbsianness of the fuzzyPotts model happens also for some parameter values where the underlying Pottsmodel has a unique Gibbs measure. In the following result, which is our main resultfor trees, we see that the desired equivalence between on one hand Gibbsianness ofthe fuzzy Potts model and on the other hand Gibbs uniqueness of the underlyingPotts model does hold when Zd is replaced by a tree.Theorem 1.1 Consider the q-state Potts model on a tree � at inverse temperature�, and let s and r1; : : : ; rs be positive integers with 1 < s < q and Psi=1 ri =q. The set G of Gibbs measures for this Potts model contains an element whosecorresponding fuzzy Potts measure with spin partition (r1; : : : ; rs) is non-Gibbsian,if and only if jGj > 1.Here j � j denotes cardinality, while the remaining notation and terminology will beexplained in later sections.We move on to the mean-�eld fuzzy Potts model, which lives on a complete graphon N vertices and for which we consider asymptotics as N !1. Here the situationis quite di�erent. Before we state our main result a few general remarks are in order.First of all one has to be careful to �nd the right way of asking for \Gibbssianness"vs. \non-Gibbsianness" for mean-�eld models. It must be asked in an appropriatesense if we want to see non-trivial behavior that reects the lattice-phenomenon ina natural way. We remind the reader that the Gibbs measures of simple mean-�eldmodels usually converge weakly to (linear combinations of) product measures. A(non-trivial) linear combination of product measures is non-Gibbsian and has eachspin con�guration as a point of discontinuity when we are looking at it in the producttopology [9]. So the problem of �nding non-Gibbsianness in mean-�eld models wouldalways have a trivial (negative) answer as soon as there is a phase transition, anda trivial (positive) answer as soon as there is no phase transition, independentlyof the model. We stress that this is a very di�erent phenomenon than the onehappening for the fuzzy Potts model on the tree described above. However, if wedon't want to stop at this point but want to see something meaningful we mustproceed di�erently. As it was argued in [21] non-Gibbsianness for mean-�eld modelsshould be understood as discontinuity of conditional probabilities as a function of theconditioning, but the notion of continuity must not be taken with respect to producttopology. More precisely, we need to perform the following limiting procedure.1. Take the conditioning of the conditional probabilities of the �nite volumeGibbs-measures while staying in �nite volume. Due to permutation invariance,these conditional probabilities are automatically volume-dependent functionsof the empirical average over all the spins in the conditioning.2. Show that the large volume-limit for these functions exists, and look at theircontinuity properties.When these limiting conditional probabilities are discontinuous, we have found ananalogue of \non-Gibbsian" behavior in the mean-�eld model. When they are con-2



tinuous, the mean-�eld model behaves in a \Gibbsian" way. In the case of non-Gibbsian behavior we can carry the analogue between mean-�eld and lattice to thenotion of \almost sure Gibbsianness" (that is familiar on the lattice). For the mean-�eld model we look at the size of the set of the discontinuity points in the largevolume-limit, with respect to the limiting measure on the empirical distribution. Ifthe discontinuity points get measure zero, we have found the mean-�eld analogue of\almost sure Gibbsian" behavior.An analysis of this sort was carried out in [21] for the decimation transformation ofthe Ising ferromagnet, and examples of joint measures in random systems includingthe random �eld Ising model. For the models we were looking at we saw a surprisinganalogy between mean-�eld and lattice results.We are now ready to state our main result for the mean-�eld version of the fuzzyPotts model in short form. Precise de�nitions and more details will be given in 5.Theorem 1.2 Consider the q-state mean-�eld Potts model at inverse temperature�, and let s and r1; : : : ; rs be positive integers with 1 < s < q and Psi=1 ri = q.Consider the limiting conditional probabilities of the corresponding fuzzy Potts modelwith spin partition (r1; : : : ; rs).(i) Suppose that ri � 2 for all i = 1; : : : ; s. Then the limiting conditional proba-bilities are continuous functions of the empirical mean of the conditioning, forall � � 0.Assume that ri � 3 for some i and put r� := minfr � 3; r = ri for some i =1; : : : ; sg. Denote by �c(r) the inverse critical temperature of the r-state Potts model.Then the following holds.(ii) The limiting conditional probabilities are continuous for all � < �c(r�).(iii) The limiting conditional probabilities are discontinuous for all � � �c(r�).(iv) The set of discontinuity points has zero measure in the in�nite volume limitin all cases.Thus, we have a rather complete picture for the limiting behavior of the model oncomplete graphs. Note that from (iii) follows in particular that there is an interestingrange of temperatures �c(r�) � � < �c(q) when the underlying Potts model showsno phase transition but the fuzzy model is non-Gibbsian. (It is well-known that�c(q) is increasing with q.) As mentioned above, the existence of such a region wasshown on the lattice in [18]; in the present mean-�eld model the lower endpointof the interval is moreover proved to be �c(r�) (which is only a conjecture on thelattice). For such a non-Gibbsianness to occur in mean-�eld we need however thatthere is at least one fuzzy class containing three or more spin-values. This is dueto the fact that the discontinuity of the limiting conditional probabilities is related3



to a �rst order transition within one fuzzy class, and such a transition exists if andonly if there are at least three spin values.Controlling the size of the set of discontinuities is a more subtle task, but we managein Theorem 1.2 (iv) to provide the complete answer in the mean-�eld case: almostsure Gibbsianness holds regardless of the choice of parameter values.The rest of the paper is organized as follows. In Section 2 we de�ne the models. InSection 3 we briey explain why, in the case of the fuzzy Potts model, Gibbsiannessis the same thing as so-called quasilocality. Our main results for trees are stated andproved in Section 4, whereas those in the mean �eld setup are treated in Section 5.We mention that Section 5 can be read independently of Sections 3 and 4.2 The modelsIn this section we give the de�nitions (following [18]) of the Potts model and thefuzzy Potts model, �rst on �nite graphs, and then on in�nite graphs. The resultsin Section 2.3 concerning in�nite-volume limits of the Potts model date back toAizenman et al. [1]; see also [13] for a detailed account of these results.2.1 Potts in �nite volumeFor a positive integer q, the q-state Potts model on a �nite graph G = (V;E)is a random assignment of f1; : : : ; qg-valued spins to the vertices of G. The Gibbsmeasure �Gq;� for the q-state Potts model on G at inverse temperature � � 0, isthe probability measure �Gq;� on f1; : : : ; qgV which to each � 2 f1; : : : ; qgV assignsprobability �Gq;�(�) = 1ZGq;� exp0@2� Xhx;yi2E If�(x)=�(y)g1A : (1)Here hx; yi denotes the edge connecting x; y 2 V , IA is the indicator function of theevent A, and ZGq;� is a normalizing constant.2.2 Fuzzy Potts in �nite volumeNext, let s and r1; : : : ; rs be positive integers such that Psi=1 ri = q. The fuzzyPotts model on G with these parameters arises by taking the q-state Potts modelon G, and then identifying the �rst r1 Potts states with a single fuzzy spin value1, the next r2 of the states with fuzzy spin value 2, and so on. A more precisede�nition is as follows. Fix q, � and (r1; : : : ; rs) as above. Let X be a f1; : : : ; qgV -valued random object distributed according to the Gibbs measure �Gq;�. Then take
4



Y to be the f1 : : : ; sgV -valued random object obtained from X by settingY (x) = 8>>><>>>: 1 if X(x) 2 f1; : : : ; r1g2 if X(x) 2 fr1 + 1; : : : ; r1 + r2g... ...s if X(x) 2 fq � rs + 1; : : : ; qg (2)for each x 2 V . We write �Gq;�;(r1;:::;rs) for the probability measure on f1; : : : ; sgVwhich describes the distribution of Y , and call it the fuzzy Potts measure withparameters q, �, and (r1; : : : ; rs). We call (r1; : : : ; rs) the spin partition for thisfuzzy Potts model.Of course, �Gq;�;(r1;:::;rs) is uninteresting for s = 1, whereas for s = q it just reproducesthe ordinary Potts model. We therefore require that 1 < s < q, and consequentlythat q � 3.2.3 Potts in in�nite volumeNow let G = (V;E) be in�nite and locally �nite. ForW � V , we de�ne its boundary@W as @W = fx 2 V nW : 9y 2 W such that hx; yi 2 Eg :A probability measure � on f1; : : : ; qgV is said to be a Gibbs measure for the q-statePotts model on G at inverse temperature �, if it admits conditional probabilitiessuch that for all �nite W � V , all � 2 f1; : : : ; qgW and all � 2 f1; : : : ; qgV nW wehave �(X(W ) = � jX(V nW ) = �)= 1ZW;�q;� exp0B@2�0B@ Xhx;yi2Ex;y2W If�(x)=�(y)g + Xhx;yi2Ex2W;y2@W If�(x)=�(y)g1CA1CA (3)where the normalizing constant ZW;�q;� depends on � but not on �. Note that thecorresponding relation holds in the �nite graph case where � is de�ned by (1).The basic examples of Gibbs measures for the Potts model are constructed as fol-lows. Let � = f�ng1n=1 denote a sequence of subsets of V , which is an exhaustion ofV in the sense that (i) each �n is �nite, (ii) �1 � �2 � � � � , and (iii) S1n=1 �n = V .Let Gn denote the graph whose vertex set is �n [ @�n, and whose edge set consistsof pairs of vertices in �n [ @�n at distance 1 from each other. It is well-known thatthe Gibbs measures �Gnq;� converge to a probability measure on f1; : : : ; qgV which isa Gibbs measure for the Potts model on G with the given parameters. Convergencetakes place in the sense that probabilities of cylinder sets converge. The limitingprobability measure on f1; : : : ; qgV is denoted �G;0q;� , and is called the Gibbs measure(for the Potts model on G with the given parameters) with free boundary condi-tion. Other Gibbs measures are those with so-called spin i boundary condition,5



denoted �G;iq;� , for i = 1; : : : q. These are obtained by conditioning �Gnq;� on taking spinvalue i all over @�n and then taking limits as n!1. The existence of these limits,and the fact that each of the measures �G;0q;� ; : : : ; �G;qq;� is independent of the particularchoice of exhaustion f�ng1n=1, follows from the work of Aizenman et al. [1].The Gibbs measures �G;0q;� ; �G;1q;� ; : : : �G;qq;� may or may not coincide depending on G andon the parameter values. It is a fundamental result from [1] that the occurence ofmore than one distinct Gibbs measure is (for �xed G and q) increasing in �. Hence,there exists a critical value �c = �c(G; q) 2 (0;1), such that for � < �c, there is onlyone Gibbs measure (so that in particular �G;0q;� = � � � = �G;qq;� ), whereas for � > �c,there are multiple Gibbs measures (and moreover the measures �G;0q;� ; : : : ; �G;qq;� areall di�erent). The critical value may be 1 if the graph is \too small" or 0 if thegraph is \too large" (requiring unbounded degree and more than that) but in manyinteresting cases there is a nontrivial critical value �c 2 (0;1), such as for cubiclattices in d � 2 dimensions and regular trees of degree at least 3. Yet anotherimportant result from [1] is that nonuniqueness of Gibbs measures is equivalent tohaving �G;1q;� (spin 1 at x) > 1q (4)for some x 2 V , and that if G is connected, then this is in turn equivalent to having(4) for every x 2 V . (For symmetry reasons, we have�G;0q;� (spin 1 at x) = 1q (5)for every x 2 V . Whenever we are in the uniqueness regime of the parameter space,we then of course have (5) with �G;0q;� replaced by any of the other Gibbs measures�G;iq;� .)2.4 Fuzzy Potts in in�nite volumeGiven the Gibbs measures �G;0q;� ; �G;1q;� ; : : : ; �G;qq;� , we de�ne fuzzy Potts measures as inthe case of �nite graphs. More precisely, for q, �, and (r1; : : : ; rs) as above, andi 2 f0; : : : ; qg, we de�ne the fuzzy Potts measure �G;iq;�;(r1;:::;rs) to be the distributionof the f1; : : : ; sgV -valued random object Y obtained by �rst picking X 2 f1; : : : ; qgVaccording to the Gibbs measure �G;iq;� , and then constructing Y from X as in (2).3 Gibbsianness and quasilocalityWhen S is a �nite set, G = (V;E) is an in�nite locally �nite graph, and � isa probability measure on SV , it is well known (see, e.g., [8, Thm. 2.12]) that �is Gibbsian if and only if it satis�es the properties of quasilocality and uniformnonnullness. The latter property means that � admits conditional probabilities6



such that mins2S inf�2SV nfxg �(X(x) = s jX(V n fxg) = �) > 0for each x 2 V . Uniformly nonullness holds in the Potts model, and it is easy to seethat this property is inherited by the fuzzy Potts model; see [18, Lem. 4.5]. Hence,the problem of determining whether the fuzzy Potts model with given parametervalues is Gibbsian is reduced to that of whether it is quasilocal. Quasilocality isde�ned as follows, where (as in Section 2) � = f�ng1n=1 is an exhaustion of V (thede�nition does not depend on the particular choice of �).De�nition 3.1 Let S be a �nite set and let G = (V;E) be an in�nite locally �nitegraph. A probability measure � on SV is said to be quasilocal if it admits conditionalprobabilities such that for all �nite W � V and all � 2 SW we havelimn!1 sup�;�02SV nW�(�nnW )=�0(�nnW ) ����(X(W ) = � jX(V nW ) = �)��(X(W ) = � jX(V nW ) = �0)��� = 0 :(6)Because of the asserted equivalence between Gibbsianness and quasilocality for thefuzzy Potts model, we shall in the following focus entirely on quasilocality. In Section4 on trees, this means studying the property in De�nition 3.1 verbatim, whereas inSection 5 we need to adapt the de�nition of quasilocality somewhat (following [21]),as hinted in Section 1.4 The fuzzy Potts model on trees4.1 Trees: de�nitionsA tree � is a connected graph without cycles. In addition to these properties, weassume that � is locally �nite, and we denote its vertex set and edge set by V� andE�, respectively. Pick an arbitrary vertex in � 2 V� and call it the root of �. Forx; y 2 V�, let dist(x; y) denote the graph-theoretic distance between x and y in �. Ifx and y share an edge and dist(y; �) = dist(x; �)+1, then we call y a child of x, andx is the parent of y. More generally, if x is on the unique self-avoiding path from �to y, then y is called a descendant of x, and x is an ancestor of y. Each vertex xexcept for the root has exactly one parent, denoted parent(x) while the number ofchildren may vary. If two vertices x and y have the same parent, then we call themsiblings.An important example is when, for some d � 2, the root has d+ 1 children and allothers have d children; this is referred to as the regular tree with degree d. See, e.g.,[26] for a variety of other interesting examples of trees.For n = 0; 1; : : :, let �n = (V�n ; E�n) be the subgraph (subtree) of � given byV�n = fx 2 V� : dist(x; �) � ng7



and E�n = fe 2 E� : both endpoints of e are in V�ng ;and note that fV�ng1n=1 is an exhaustion of V�. For x 2 �, let �(x) denote theinduced subtree of � whose vertex set consists of x and all its descendants. In otherwords, �(x) = (V�(x); E�(x)) withV�(x) = fy 2 V� : x is an ancestor of ygand E�(x) = fe 2 E� : both endpoints of e are in V�(x)g :Finally, for x 2 � and n � dist(x; �), de�ne the subtree �(x;n) = (V�(x;n); E�(x;n)) bysetting V�(x;n) = V�(x) \ V�nand E�(x;n) = E�(x) \ E�n :4.2 ProofsThe key results for proving Theorem 1.1 are the following two propositions.Proposition 4.1 Let � be a tree, and �x the parameter values q, �, s and (r1; : : : rs)with 1 < s < q for the Potts model and the fuzzy Potts model on �. Then the fuzzyPotts measure �G;0q;�;(r1;:::;rs) corresponding to the Gibbs measure with free boundarycondition, is quasilocal.Proposition 4.2 Let � be a tree, and �x the parameter values q, �, s and (r1; : : : rs)with 1 < s < q and r1 > 1 for the Potts model and the fuzzy Potts model on �.Suppose that �G;1q;� 6= �G;0q;� . Then �G;1q;�;(r1;:::;rs) is nonquasilocal.Proof of Theorem 1.1 from Propositions 4.1 and 4.2: Since s < q, we musthave ri > 1 for some i 2 f1; : : : ; sg, and there is no loss of generality in assuming thatr1 > 1. If jGj > 1, then �G;1q;� 6= �G;0q;� due to (4) and (5). Hence, using Proposition4.2, �G;1q;�;(r1;:::;rs) is nonquasilocal and therefore non-Gibbsian, and the `if' part of thetheorem is established. For the `only if' part, note that if jGj = 1, then G = f�G;0q;� g,so that �G;0q;�;(r1;:::;rs) is the only fuzzy Potts measure, which by Proposition 4.1 isquasilocal and therefore Gibbsian. 2It remains to prove Propositions 4.1 and 4.2. To this end, we need to introduce thenotion of a tree-indexed Markov chain on �, and its relation to Gibbs measures forthe Potts model on �. This relation is well-known for regular trees (see for instance[28, 29, 2]), while the extension to general trees seems to be less well-studied.Let (x0; x1; : : :) be an enumeration of V� such that the root � comes �rst (x0 = �),then all vertices in V�1 nf�g, then all vertices in V�2 nV�1 , and so on. Fix q, let � be a8



probability measure on f1; : : : ; qg (which will play the role of an initial distribution),and let P = (Pij)i;j2f1;:::;qg be a transition matrix. Let X be the f1; : : : ; qgV�-valuedrandom spin con�guration obtained as follows. First pick X(x0) 2 f1; : : : ; qg ac-cording to �. Then, inductively, once X(x0); : : : ; X(xn) have been determined, pickX(xn+1) 2 f1; : : : ; qg with distribution (Pi1; : : : ; Piq) where i = X(parent(xn+1)).For obvious reasons, X is called a tree-indexed Markov chain on �.There is sometimes reason to consider inhomogeneous tree-indexed Markov chains,where the transition matrix P is allowed to depend on where in the tree we are: forevery x 2 V� n f�g, we then have a transition matrix P x = (P xij)i;j2f1;:::;qg, and Xis generated as above with X(x) chosen according to the distribution (P xi1; : : : ; P xiq)where i = X(parent(x)).It is readily checked that a (possibly inhomogeneous) tree-indexed Markov chainX is also a Markov random �eld on �, meaning that for any �nite W � V�, theconditional distribution of X(W ) given X(V� nW ) depends on X(V� nW ) only viaX(@W ). Hence the supremum in (6) becomes 0 for all n large enough so that �ncontains W \ @W , so that we have the following lemma.Lemma 4.3 The distribution of any homogeneous or inhomogeneous tree-indexedMarkov chain on � is quasilocal.Fix � � 0, and consider the tree-indexed Markov chain given by � = (1q ; : : : ; 1q ) andtransition matrix P = (Pij)i;j2f1;:::;qg given byPij = ( e2�e2�+q�1 if i = j1e2�+q�1 otherwise. (7)Let X 2 f1; : : : ; qgV� be given by this particular tree-indexed Markov chain. Bydirectly checking (1), we see that X(�n) has distribution ��nq;�. By taking limits asn ! 1 and considering the construction of �G;0q;� in Section 2.3, we see that X isdistributed according to the Gibbs measure ��;0q;� for the Potts model on � with freeboundary condition.Proof of Proposition 4.1: Construct X 2 f1; : : : ; qgV� sequentially as above,with � = (1q ; : : : ; 1q ) and P given by (7), and let Y 2 f1; : : : ; rgV� from X as in(2). Then the conditional distribution of Y (xn+1) given X(x0); : : : ; X(xn) such thatX(parent(xn+1)) = i and Y (parent(xn+1)) = k), is given byP(Y (xn+1) = l j � � � ) = ( e2�+rk�1e2�+q�1 if l = krke2�+q�1 otherwise, (8)which follows by summing over the possible values of X(xn+1). Note that the right-hand side of (8) depends on X(x0); : : : ; X(xn) only through Y (parent(xn+1)). Itfollows that Y is a tree-indexed Markov chain with state space f1; : : : ; sg, initial9



distribution ( r1q ; : : : ; rsq ) and transition matrix P = (Pkl)k;l2f1;:::;sg given byPkl = ( e2�+rl�1e2�+q�1 if l = krle2�+q�1 otherwise. (9)Quasilocality of Y now follows from Lemma 4.3. 2For the proof of Proposition 4.2, we need to consider the tree-indexed Markov chainon � corresponding to the Gibbs measure ��;1q;� with the \all 1" boundary condition.This is a bit more complicated than the case of ��;0q;� due to the lack of full symmetryamong the spin values.For x 2 V�, consider the Gibbs measure ��(x);1q;� , and in particular the probability��(x);1q;� (spin 1 at x), which we denote by ax. (Note that ax is in general distinct from��;1q;� (spin 1 at x), because it fails to take into account, e.g., the possible inuencefrom parent(x) on x.) For symmetry reasons, the ��(x);1q;� -distribution of the spin atx is �ax; 1� axq � 1 ; 1� axq � 1 ; : : : ; 1� axq � 1 � :Also de�ne bx = ax(1� ax)=(q � 1) = ��(x);1q;� (spin 1 at x)��(x);1q;� (spin 2 at x) : (10)The constants fbxgx2V� satisfy the following recursion.Lemma 4.4 Suppose x 2 V� is a vertex with k children y1; : : : ; yk. We then havebx = Qki=1(e2�byi + q � 1)Qki=1(e2� + byi + q � 2) : (11)Proof: For n large enough so that x 2 V�n , de�ne, as a �nite-volume analogue of(10), bx;n = ��(x;n);1q;� (spin 1 at x)��(x;n);1q;� (spin 2 at x) ;where ��(x;n);1q;� is the �nite-volume Gibbs measure for �(x;n) with spin 1 boundarycondition on those vertices sitting furthest away from x in �(x;n), i.e., those atdistance n from � in �. By the construction of Gibbs measures in Section 2.3, wehave limn!1 bx;n = bx : (12)Imagine now the modi�ed graph ��(x;n) obtained from �(x;n) by removing all edgesincident to x. In other words, ��(x;n) is a disconnected graph with an isolated vertexx together with k connected components isomorphic to �(y1;n); : : : ;�(yk;n). When10



picking X 2 f1; : : : ; qgV��(x;n) according to ���(x;n);1q;� , the spin con�gurations on dif-ferent connected components obviously become independent. In particular, if weonly consider the spins (X(x); X(y1); : : : ; X(yk)), then we can note that these spinsbecome independent, with X(x) having distribution (1q ; : : : ; 1q ), and X(yi) havingdistribution ( byi;nbyi;n+q�1 ; 1byi;n+q�1 ; : : : ; 1byi;n+q�1).If we now reinsert the edges between x and y1; : : : ; yk, thus recovering �(x;n), thenthe ��(x;n);1q;� -distribution of (X(x); X(y1); : : : ; X(yk)) becomes the same as the corre-sponding ���(x;n);1q;� -distribution above except that each con�guration � 2 f1; : : : ; qgfx;y1;:::;ykgis reweighted by a factor exp(2�Pki=1 If�(yi)=�(x)g). Hence��(x;n);1q;� ((X(x); X(y1); : : : ; X(yk)) = �) = 1Z kYi=1(e2�If�(yi)=�(x)g bIf�(yi)=1gyi;n )for some normalizing constant Z. By integrating out X(y1); : : : ; X(yk), we getbx;n = Qki=1(e2�byi;n + q � 1)Qki=1(e2� + byi;n + q � 2) :Sending n!1 in this expression, and using (12) k + 1 times (substituting x withitself and with y1; : : : ; yk), we obtain (11), as desired. 2Note that the above proof yields that given X(x) = 1, the spins X(y1); : : : ; X(yk)become conditionally independent, with X(yi) having distribution� byie2�byie2� + q � 1 ; 1byie2� + q � 1 ; : : : ; 1byie2� + q � 1� :Likewise, for l 6= 1, conditioning on X(x) = l makes X(y1); : : : ; X(yk) conditionallyindependent with X(yi) taking value 1 with probability byibyi+e2�+q�2 , value l withprobability e2�byi+e2�+q�2 , and other values with probabilities 1byi+e2�+q�2 .By iterating the above argument, we arrive at the following tree-indexed Markovchain description of the Gibbs measure ��;1q;� .Lemma 4.5 Suppose that the random spin con�guration X 2 f1; : : : ; qgV� is ob-tained as an inhomogeneous tree-indexed Markov chain with initial distribution� = � b�b� + q � 1 ; 1b� + q � 1 : : : ; 1b� + q � 1�and transition matrices P x = (P xij)i;j2f1;:::;qg given byP xij = 8>>>>><>>>>>:
bxe2�bxe2�+q�1 if i = j = 11bxe2�+q�1 if i = 1; j 6= 1bxbx+e2�+q�2 if i 6= 1; j = 1e2�bx+e2�+q�2 if i = j 6= 11bx+e2�+q�2 otherwise.11



Then X has distribution ��;1q;� .A crucial di�erence now compared to the Gibbs measure ��;0q;� with free boundarycondition is that if any bx 6= 1, then there is not enough state-symmetry in thetree-indexed Markov chain in Lemma 4.5 to make the corresponding fuzzy Pottsmodel a tree-indexed Markov chain. This will soon become clear.A key lemma for proving nonquasilocality in the fuzzy Potts model is the following.Lemma 4.6 If ��;1q;� 6= ��;0q;� , then there exist two siblings y1; y2 2 V� such that byi > 1for both i = 1 and i = 2.Proof: It follows from the assumption ��;1q;� 6= ��;0q;� using (4) that a� > 1q , so thatb� > 1 : (13)Furthermore, (4) and (5) imply that ax � 1q for all x 2 V�, whence bx � 1 for allx 2 V�. Note also that 1 is a �xed point of the recursion (11), in the sense that ifall children y1; : : : ; yk satisfy byi = 1, then bx = 1.Hence, � must have at least one child x with bx > 1. By iterating this argumentwe see that for any n, it must have at least one descendant x at distance n suchthat bx > 1. Fix n and such a vertex x with bx > 1 at distance n from �. Write(z0; z1; : : : ; zn) for the vertices on the self-avoiding path from x to � (so that inparticular z0 = x and zn = �). Next, note that the recursion (11) has the propertythat if one of the children yi has by1 > 1, then bx > 0 as well. Since bz0 > 1 it followsthat bzi > 1 for i = 1; : : : ; n.Suppose now for contradiction that the assertion of the lemma is false, i.e., thatthere are no two siblings y1; y2 2 V� for which by1 > 1 and by2 > 1. Then none ofthe vertices z0; : : : ; zn�1 has a sibling y with by > 1. The recursion (11) along thepath (z0; z1; : : : ; zn) then turns into a simple one-dimensional dynamical system onthe space [1;1) given by bzi+1 = f(bzi) wheref(b) = e2�b + q � 1e2� + b+ q � 2 :This dynamical system is contractive with a unique �xed point at b = 1, so that { ifwe just keep iterating beyond the n'th iteration { for any initial value bz0 2 [1;1)we obtain limn!1 bzn = 1 : (14)Since f is increasing and bounded by e2�, we get that bz1 is bounded by e2� and,therefore, that the convergence in (14) is in fact uniform in the initial value bz0 .Thus we can, for any " > 0, �nd an n which guarantees that bzn < 1 + ". Thus,b� < 1 + " for any " > 0, whence b� = 1. But this contradicts (13), so the proof iscomplete. 212



Proof of Proposition 4.2: By Lemma 4.6, � has at least one vertex which has(at least) two children y1 and y2 that both have byi > 1. The choice of root � for thetree does not inuence the Gibbs measure ��;1q;� , and therefore we may assume that �has two such children y1 and y2. We shall for simplicity �rst prove the propositionunder the assumption that � has no other children, (15)and in the end show how to remove this assumption.We shall have a look at the conditional distribution of the fuzzy spin Y (�) at theroot, given that its neighbors (i.e., its children) take valueY (y1) = Y (y2) = 1 : (16)By summing over all X 2 f1; : : : ; qgf�;y1;y2g such that (16) holds, and using Lemma4.5, we obtainP(Y (�) = 1 jY (y1) = Y (y2) = 1)P(Y (�) 6= 1 jY (y1) = Y (y2) = 1) (17)= b�b�+q�1Q2i=1 byie2�+r1�1byie2�+q�1 + r1�1b�+q�1Q2i=1 byi+e2�+r1�2byi+e2�+q�2q�r1b�+q�1Q2i=1 byi+r1�1byi+e2�+q�2= Q2i=1(byie2� + r1 � 1) + (r1 � 1)Q2i=1(byi + e2� + r1 � 2)(q � r1)Q2i=1(byi + r1 � 1)where in the last line we have used (11) to express b� in terms of the byi 's.Now pick an n, and consider conditioning further on some �n 2 f1; : : : ; sgV�n+1nf�gsuch that �n(y1) = �n(y2) = 1. The conditional probability P(Y (�) = 1 jY (y1) =Y (y2) = 1) is a convex combination of terms P(Y (�) = 1 jY (V�n+1 n f�g) = �n) forsuch �n's. We can therefore �nd a particular �n 2 f1; : : : ; sg�n+1nf�g such thatP(Y (�) = 1 jY (V�n+1 n f�g) = �n)P(Y (�) 6= 1 jY (V�n+1 n f�g) = �n)� Q2i=1(byie2� + r1 � 1) + (r1 � 1)Q2i=1(byi + e2� + r1 � 2)(q � r1)Q2i=1(byi + r1 � 1) : (18)Fix such an �n. Next, construct another con�guration �0n 2 f1; : : : ; sgV�n+1nf�g bytaking �0n(x) = � �n(x) for x 2 V�n n f�g(�n(parent(x)) + 1)mod s for x 2 V�n+1 n V�n :The crucial aspects of this choice of �0n is that (a) �n = �0n on V�n and (b) each xin the remotest layer V�n+1 n V�n of �n+1 has a fuzzy spin value which is di�erentfrom its parent. It is readily checked that property (b) implies that the conditionaldistribution of Y (V�n�1) given Y (V�n+1 nV�n�1) = �0n(V�n+1 nV�n�1) becomes the same13



as if the underlying Gibbs measure had been not ��;1q;� but rather the �nite-volumeGibbs measure ��n+1q;� (cf. [18, Lem. 9.2]). Hence the conditional distribution of Y (�)given that Y (V�n+1 n f�g) = �0n) can be calculated from the tree-indexed Markovchain corresponding to free boundary condition, i.e., the one de�ned in (9). We getP(Y (�) = 1 jY (V�n+1 n f�g) = �0n)P(Y (�) 6= 1 jY (V�n+1 n f�g) = �0n) = (e2� + r1 � 1)2(q � r1)r1 (19)Note that the right-hand sides of (18) and (19) do not depend on n. We now makethe following crucial claim.Claim: If by1 > 1 and by2 > 1, then the right-hand side of (18) is strictlygreater than the right-hand side of (19).To prove the claim, de�nea = by1by2 + r1 � 1(by1 + r1 � 1)(by2 + r1 � 1)and note that a can be rewritten asa = by1by2 + r1 � 1(by1 + r1 � 1)(by2 + r1 � 1)= 1r1 r1(by1 + r1 � 1) + by2(by2 + r1 � 1) (by1 � 1)(by1 + r1 � 1) :Assuming that by1 > 1 and by2 > 1, we get that by2by2+r1�1 > 1r1 and that by1�1by1+r1�1 > 0,whence a > 1r1 r1(by1 + r1 � 1) + 1r1 (by1 � 1)(by1 + r1 � 1)= 1r1 : (20)Next, an elementary but tedious calculation shows that the right-hand side of (18)can be rewritten as a(e4� + r1 � 1) + (1� a)(2e2� + r1 � 2)q � r1 : (21)Analogously, the right-hand side of (19) can be rewritten as1r1 (e4� + r1 � 1) + (1� 1r1 )(2e2� + r1 � 2)q � r1 : (22)Now, using (20) and the observation thate4� + r1 � 1 > 2e2� + r1 � 2 ;14



we get that the expression in (21) is strictly greater than that in (22), and the claimis proved.Hence the di�erence between the left-hand sides of (18) and (19) is bounded awayfrom 0 uniformly in n. The denominators of the left-hand sides are bounded awayfrom 0 uniformly in n due to uniform nonnullness of the fuzzy Potts model (seeSection 3). HenceP(Y (�) = 1 jY (V�n+1 n f�g) = �n)� P(Y (�) = 1 jY (V�n+1 n f�g) = �0n)is bounded away from 0 uniformly on n. By plugging in these �n and �0n in (6), weget, since �n = �0n on V�n , that quasilocality of Y fails. This proves the propositionmodulo the assumption (15).It remains to remove the assumption (15). To do this, suppose that � has k � 2additional children y3; : : : ; yk. We can then extend the con�gurations � and �0 thatwe condition on above, to y3; : : : ; yk and their descendants, as follows. We insist that� and �0 that they take value 1 at y3; : : : ; yk, and that they take some value otherthan 1 at all children of y3; : : : ; yk (they may otherwise be arbitrary on the furtherdescendants of y3; : : : ; yk). Easy modi�cations of the calculations above show that(18) and (19) hold as before, with the modi�cation that both right-hand sides aremultiplied by �e2� + r1 � 1r1 �k�2 :Since this factor is the same in (18) and (19), the rest of the proof goes through asbefore. 2Remark: Since the event conditioned on in (17) has positive measure, it is easyto extract from the above proof that the set of discontinuities of the conditionalprobability P(Y (�) = 1jY (V� n f�g) = �) as a function of �, has positive measureunder �G;1q;�;(r1;:::;rs). Hence, so-called almost sure quasilocality and almost sure Gibb-sianness fails in general for the fuzzy Potts model on trees, in contrast to the Zdcase (see Maes and Vande Velde [24]) and the mean-�eld case (Theorem 1.2 (iv)).This contrast between the fuzzy Potts model on Zd and on trees is analogous tothe corresponding almost sure Gibbsianness issue for the random-cluster model; see[16].4.3 DiscussionWhat concrete information can we extract from Theorem 1.1? Let �c = �c(�; q)denote, as in Section 2.3, the critical value for the q-state Potts model on the tree�. For q � 3, we then have from Theorem 1.1 that � < �c implies that anycorresponding fuzzy Potts measure is Gibbsian, while � > �c yields existence ofcorresponding fuzzy Potts measures that are non-Gibbsian.It remains to specify the critical value �c(�; q). If we know the critical value pc(�; q)of the corresponding random-cluster model, then we can calculate �c = �12 log(1�pc)15



(see, e.g., [13]). For the case when � is a regular tree, the critical value pc(�; q) canbe characterized in terms of the solutions of a certain algebraic equation given in[15, p. 235].For general trees the situation is more complicated. For a variety of stochasticmodels on trees, critical values can be calculated in terms of a natural quantityknown as the branching number of the tree, denoted br(�); see for instance [26].Lyons [23] calculated �c(�; q) in terms of br(�) for the case q = 2. In contrast, andperhaps somewhat surprisingly, the critical values �c(�; q) for larger q do not admita characterization in terms of br(�); this was shown by Pemantle and Steif [25].Bounds for �c(�; q) that only depend on br(�) and on q can, however, be obtainedusing the standard comparison techniques for the random-cluster model reviewed in[13].5 The fuzzy Potts model on complete graphsIn this section we treat the case of complete graphs. We start with precise de�nitionsof the model and a detailed explanation of the limiting process for the conditionalprobabilities that was sketched in the introduction. The proofs are essentially self-contained but use some standard knowledge (whose main reference is Ellis and Wang[4]) on the in�nite volume limit of the empirical distribution of the order parameterin the mean-�eld Potts model.5.1 Mean-�eld Potts in �nite volume NFor a positive integer q, the Gibbs measure �Nq;� for the q-state Potts model on thecomplete graph with N vertices at inverse temperature � � 0, is the probabilitymeasure on f1; : : : ; qgN which to each � 2 f1; : : : ; qgN assigns probability�Nq;�(�) = 1ZNq;� exp �N X1�x6=y�N If�(x)=�(y)g! : (23)Here ZNq;� is the normalizing constant. Note that this de�nition slightly deviatesfrom the de�nition (1) by the factor 1=N appearing in the exponential. Such aconvention is appropriate because, clearly, the interaction must be chosen dependingon the size of the graph in a mean-�eld model. This de�nition of the �nite volumeGibbs-measures is standard in the literature; see e.g. [4].5.2 Mean-�eld fuzzy Potts in �nite volume NThe mean-�eld fuzzy Potts measure in �nite volume N is then de�ned in the sameway as it is de�ned on every graph. To be explicit, �x q, � and the spin-partition(r1; : : : ; rs) as above. Let X be the f1; : : : ; qgN -valued random object distributed16



according to the mean �eld �nite volume Gibbs measure �Nq;�. Take Y to be thef1 : : : ; sgN -valued random object obtained from X by the site-wise application ofthe spin-partitioning as in (2). Then �Nq;�;(r1;:::;rs) is the probability measure onf1; : : : ; sgN which describes the distribution of Y .5.3 Gibbsianness vs. non-Gibbsianness for mean-�eld mod-els:continuity vs. discontinuity of limiting conditional prob-abilitiesWe start with some general remarks about mean-�eld models to explain the appro-priate analogue of non-Gibbsianness in more detail than we did in the introduction.To begin with, the following lemma makes explicit that we can always describe thesingle-site conditional probabilities of the �nite volume Gibbs measures of a mean-�eld model in terms of a single-site kernel from the empirical distribution vector ofthe conditioning to the single-site state space. It is the in�nite volume limit of thiskernel that shall then be considered in the analysis of the model.So, suppose that S is a �nite set (local spin space) and for any N we are given anexchangeable (that is permutation-invariant) measure �N on SN . This permutationinvariance is certainly true for the mean-�eld Potts model. Moreover it carries overtrivially to the fuzzy Potts model. This is clear since the distribution of the latteris simply obtained by an application of the same map to the spin variable at eachsite.In a general context, denote by P = f(pi)i2S; 0 � pi � 1;Pi2S pi = 1g thespace of probability vectors on the set S. We use the obvious short notationxc = f1; : : : ; Ngnfxg.Lemma 5.1 For each N there is a probability kernel QN : S � P ! [0; 1] from Pto the single-site state space S such that the single-site conditional expectations atany site x can be written in the form�N�X(x) = i��X(xc) = �� = QN�i��(nj)j2S� : (24)Here nj = 1N�1#�1 � y � N; y 6= x; �(x) = j� is the fraction of sites for which thespin-values of the conditioning are in the state j 2 S.Proof: By exchangeability it is clear that the right hand side of (24) depends onthe sets �1 � y � N; y 6= x; �(y) = j	, for all j 2 S, only through their size.Equivalently we may express this dependence in terms of the empirical distribution(nj)j2S. 2In turn, the knowledge of the kernel QN uniquely determines the measure �N . Thisis clear since the knowledge of all one-site conditional probabilities of �nitely many17



random variables uniquely determines the joint distribution. So we may as wellconsider the QN s as the basic objects and regard them as the starting point of thede�nition of a mean �eld model. This is of course only meaningful if the QN s arerelated to each other in a meaningful way.Let us turn now to the concrete case of the mean-�eld Potts model to point out twovery simple observations that shall serve as a motivation of our further investigation.In this case we have directly from the de�nition (23) the explicit formulaQNq;��i��(nj)1�j�q� = exp��(1� 1N )ni�Pqj=1 exp��(1� 1N )nj� : (25)We note the following.(i) QNq;� converges to Q1q;� = exp��ni�Pqj=1 exp��nj� when N tends to in�nity. Indeed, thetrivial 1=N -factor appearing in (25) could of course even be removed by aharmless rede�nition of the model that would lead to the same in�nite volumebehavior of the Gibbs measures, making all QNq;� identical.(ii) The limiting kernel Q1q;� is a continuous function of the probability vector(nj)1�j�q, as a function on Rq .The existence of the in�nite volume limit (i) is a minimal ingredient for the de�nitionof a mean-�eld model. Assuming this we can talk about limiting or \in�nite volume"conditional probabities. Then, continuous dependence of the limiting conditionalprobability as it is stated in (ii) is the obvious analogue to the continuous dependenceof the conditional expectation of a lattice model on the conditioning with respectto product topology.So, properties (i) and (ii) are the analogues of a proper Gibbsian structure formean-�eld models. \Non-Gibbsianness" may then manifest itself by the failure of(ii) at certain points of discontinuity. The reader may �nd a number of examplesof this in [21]. After these introductory remarks we will show in the following thatdiscontinuities in fact occur for the mean-�eld fuzzy Potts model, for certain valuesof the parameters, and discuss them in detail.5.4 Conditional probabilities for fuzzy Potts in �nite vol-umeLet us use the following notation for the single-site probability kernel that describesthe conditional probabilities of the fuzzy model.�Nq;�;(r1;:::;rs)�Y (x) = k��Y (xc) = �� =: QNq;�;(r1;:::;rs)�k��(nl)1�l�s� : (26)18



where nl = 1N�1#�1 � y � N; y 6= x; �(x) = l�, for l = 1; : : : ; s is the empiricaldistribution of fuzzy spin-values in the conditioning.Now, it is not diÆcult to derive an explicit expression in terms of expectations withrespect to ordinary mean-�eld Potts measures, having the number of states given bythe sizes of the classes rl. Clearly, the in�nite volume analysis relies on this result.Proposition 5.2 For each �nite N we have the representationQNq;�;(r1;:::;rs)�k��(nl)1�l�s� = rk A(�k; rk; Nk)Psl=1 rl A(�l; rl; Nl) (27)where A( ~�; r;M) � �Mr;~��exp� ~�M MXx=1 IX(x)=1�� ;Nk = (N � 1)nk ;and �k = �NkN = ��1� 1N �nk :Remark: In particular we have A( ~�; r = 1; N) = e~�. From this we see immediatelythat the case of the original Potts model is recovered by setting all rl equal to one.Proof of Proposition 5.2: To compute the left hand side of (27) we may choosex = 1 and write�Nq;�;(r1;:::;rs)�Y (1) = k���Y ([2; N ]) = �([2; N ])�= 1Norm: (�([2;N ]))P�(1)7!kP�([2;N ])7!�([2;N ]) �Nq;���(1); �([2; N ])� :Here we are summing over Potts con�gurations � that are mapped to the fuzzy Pottscon�guration (k; �) by means of the de�nition of the fuzzy model given in (2). Thenormalization has to be chosen such that summing over k = 1; : : : ; s yields one, foreach �xed �([2; N ]). The partition function appearing in the Gibbs-average on theright hand side only gives a constant that can be absorbed in the normalization,and so we need only considerP�(1)7!kP�([2;N ])7!�([2;N ]) exp� �N P1�x6=y�N If�(x)=�(y)g�= P�(1)7!kP�([2;N ])7!�([2;N ]) exp� �N P2�y�N If�(1)=�(y)g�� exp� �N P2�x6=y�N If�(x)=�(y)g� :For �xed �([2; N ]) we denote �l := #�x 2 f2; : : : ; Ng : �(x) = l	. Then the sum inthe last exponential decomposes over these sets, and we can rewrite the right handside of the last equation in the formP�(1)7!kP�([2;N ])7!�([2;N ]) exp� �kNk Pz2�k If�(z)=�(1)g�19



�Qsl=1 exp� �lNl Px<y;x;y2�l If�(x)=�(y)g� :Next we divide the last line by the product of partition functions which is obtained byomitting the �rst exponential and the �rst sum. This only yields another �([2; N ])-dependent constant. Using cancellations for the terms with l 6= k we see in this waythat �Nq;�;(r1;:::;rs)�Y (1) = k���Y ([2; N ]) = �([2; N ])�= 1Norm: (�([2; N ])) X�(1)7!k �Nkk;�k�exp� �kNk NkXz=1 IfX(z)=1g�� ;which concludes the proof. 25.5 Continuity vs. discontinuity of limiting conditional prob-abilities for fuzzy PottsIn this subsection we will derive an explicit formula for the limiting conditionalprobabilities of the fuzzy model. From this parts (i), (ii), (iii) of Theorem 1.2follow.We can build on well-known results about the limiting behavior of the empiricaldistribution of the mean-�eld Potts model. The main point is that it exhibits a �rst-order phase transition at a �nite inverse critical temperature �c(q), for all q � 3. Forthe special case q = 2 (Ising model) there is only a second order phase transition.The following pieces of information about the mean-�eld Potts model can be foundin [4, Thms 2.1. and 2.3]. The reader should focus at �rst on the case � 6= �c(q),i.e. o� the critical temperature.Theorem 5.3 (Ellis, Wang) Assume that q � 3, and suppose that � 6= �c(q) :=2(q�1)q�2 log(q � 1). Then we have the weak limitlimN"1�Nq;�� 1N NXx=1(IfX(x)=1g; : : : ; IfX(x)=qg) 2 �� (28)= 8>><>>: Æ 1q (1;1;:::;1); if � < �c(q)1qPq�=1 Æu(�;q) e�+ 1�u(�;q)q (1;1;:::;1); if � > �c(q)�0(q)Æ 1q (1;1;:::;1) + 1��0(q)q Pq�=1 Æu(�c(q);q) e�+ 1�u(�c(q);q)q (1;1;:::;1) if � = �c(q) ;where ei is the unit vector in the i'th coordinate direction of Rq .The quantity u(�; q) is well de�ned for � � �c(q). It is the largest solution of themean �eld equation u = 1� e��u1 + (q � 1)e��u (29)20



and obeys the following properties: It is strictly increasing in �, and we have u(q; �c(q)) =q�2q�1 . The constant appearing at the critical point obeys the strict inequality 0 <�0(q) < 1.Some comments are in order: Obviously, u(�; q) plays the role of an order parameter.Now, for � > �c(q) the system is in a symmetric linear combination of �-like states.The limiting empirical distribution becomes the equidistribution on the possible spinvalues for � < �c(q). It jumps at the critical point for q � 3. At the critical pointitself there is a non-trivial linear combination between both types of measures.To feel comfortable with the mean-�eld equation (29) the reader may note that itis obtained from the equations ni = exp��ni�Pqj=1 exp��nj� for i = 1; : : : ; q with the followingansatz: Denote by i the index with the largest nj. Assume that nj is independentof j, for j 6= i, and put u = ni � nj for some j 6= i.Let us mention that the results of Theorem 5.3 can be obtained by a Gaussiantransformation and saddle point estimates on the resulting integrals (all of which isomitted here). At the critical point a little care is needed: To obtain the proper valueof the constant �0(q) a Gaussian approximation around the minima and estimatesshowing positive curvature are needed.The well-known case of the mean �eld Ising model q = 2 can be recovered from thetheorem by taking the formal limit q # 2 in the explicit formula for �c(q) and notingthat u(q; �c(q)) = 0. So (28) describes a second order transition in that case.The following explicit formula for the limiting conditional probabilities of the fuzzymodel now follows easily from our �nite volume representation of the conditionalprobabilities given in Proposition 5.2 and the known limiting statement of Theorem5.3.Theorem 5.4 We havelimN"1QNq;�;(r1;:::;rs)�k��(nl)1�l�s� = C(�nk; rk)Psl=1C(�nl; rl)whenever nk 6= �c(rk)=� for all k with rk � 3. HereC( ~�; r) = exp� ~�r ��( r; if ~� < �c(r)exp� ~�(r�1)u( ~�;r)r � + (r � 1) exp�� ~� u( ~�;r)r �; if ~� > �c(r) :Proof of Theorem 5.4: Let ~� 6= �c(q). By Theorem 5.3 we have limM"1 rA( ~�; r;M) =C( ~�; r). 2Remark: Obviously this gives the right answer for � = 0 or in the case of theoriginal Potts model (letting all rl be equal to one). We see however that thelimiting form of the conditional expectations has a nontrivial form in general. This21



expression has jumps for nl = �c(rl)=� whenever rl � 3. (For matters of simplicitywe state the result only outside these critical values.) Indeed, for r � 2 we haveC(�c(r)� 0; r) = (r � 1) 2(r�1)r(r�2) �� rr(r � 1) r�2rwhich jumps for r � 3. (For r = 2 this expression has to be interpreted as the limitof the right hand side with r # 2.)The reader should notice the following: First of all we have shown the pointwiseexistence of the limit(nl)1�l�s 7! limN"1QNq;�;(r1;:::;rs)�k��(nl)1�l�s� :The notion of \continuity of limiting conditional probabilities" that was introducedin Theorem 1.2 has the precise meaning of continuity of the right hand side as afunction on the closed set P of s-dimensional probability vectors with respect tothe ordinary Euclidean topology. From the explicit limiting formula given in thetheorem and the well-known knowledge of the jumps of the order parameter theproof of the �rst three parts of our main theorem 1.2 is now immediate.Proof of Theorem 1.2 (i),(ii),(iii): The points of discontinuity are preciselygiven by the values nk = �c(rk)� for those k with rk � 3 for which �c(rk)� < 1. So (i) isimmediate. To see (ii) and (iii) we use that �c(r) is an increasing function of r. 25.6 Typicality of continuity points { \almost sure Gibbsian-ness"What can be said about the measure of the discontinuity points? We will answerthis question now and prove the remaining part (iv) of Theorem 1.2. To start with,from Theorem 5.3 follows trivially by \contraction" that the typical values of theorder parameter in the fuzzy model are as follows. (Recall that el is the unit vectorin the l'th coordinate direction of Rs .)Corollary 5.5 We havelimN"1�Nq;�;(r1;:::;rs)� 1N NXx=1(IfY (x)=1g; : : : ; IfY (x)=sg) 2 ��= 8>><>>: Æ 1q (r1;r2;:::;rs) if � < �c(q)�0(q)Æ 1q (r1;r2;:::;rs) +Psl=1 (1��0(q))rlq Æu(�;q)el+ 1�u(�;q)q (r1;r2;:::;rs) if � = �c(q)Psl=1 rlq Æu(�;q)el+ 1�u(�;q)q (r1;r2;:::;rs) if � > �c(q) :22



In other words, the values for the fuzzy densities nl that occur with non-zero prob-ability are: The values rl=q in the high-temperature regime (including the criticalpoint) and the two valuesn+(�; q; rl) � u(q; �) + 1� u(q; �)q rland n�(�; q; rl) � 1� u(q; �)q rl �� n+l (�; q; rl)�in the low temperature regime (including the critical point).Now, the non-trivial question is: Can it happen that these values coincide with thepoints of discontinuity of the limiting conditional probability, for certain choices ofthe parameter?The following proposition tells us that this can never be the case, and so the pointsof discontinuity are always atypical. This immediately proves (iv) of Theorem 1.2.As we will see the proof of the proposition is elementary but slightly tricky; it makesuse of speci�c properties of the solution of the mean-�eld equation. In that sense itis the most diÆcult part of our analysis of the mean �eld fuzzy Potts model.Proposition 5.6 Assume that q > r � 2.(i) For the high-temperature range � � �c(q) we haverq < �c(r)� :(ii) For the low-temperature range � � �c(q) we have thatn�(�; q; r) < �c(r)� < n+(�; q; r) :Remark: (i) says that that the typical density of each fuzzy class is too small tocreate a �rst order transition. The left inequality of (ii) says that the typical densityof a fuzzy class not containing the predominant spin-value of the underlying Pottsmodel is always too small to create a �rst order transition. The corresponding con-ditional Potts model is always in a high-temperature state. The right inequality of(ii) says that the typical density of the fuzzy class that contains the predominantspin-value of the underlying Potts model is always too big to create a �rst order tran-sition. The corresponding conditional Potts model is always in a low-temperaturestate.Proof: The claim (i) follows from that fact that rq < �c(r)�c(q) for all q > r. This in turnis implied by the fact that �c(q)q is decreasing in q. It is obvious that this holds for23



large enough q, by the explicit expression for �c(q). It is elementary to verify thatit holds in fact for any q � 2.Next we prove (ii). We show �rst the right inequality which is equivalent tou(q; �) > qq � r �c(r)� � rq � r :By Theorem 5.3 the order parameter u(q; �) is an increasing function in �. The righthand side is decreasing in �. So it suÆces to prove the inequality for � = �c(q).Using u(q; �c(q)) = q�2q�1 this can be put equivalently as�c(r) < �c(q)�1� q � rq(q � 1)� : (30)We will use now the elementary property that�c(q) < q; for all real q > 2 : (31)This implies also that �c(q) is concave because� 00c (q) = �2q(q � 2) + 4(q � 1) log(q � 1)(q � 2)3(q � 1)and the denominator is negative, by the last inequality.In order to show (30) we note, by concavity that�c(r) � �c(q) + � 0c(q)(r � q) (32)and show that the right hand side of (32) is strictly bounded from above by theright hand side of (30). But the latter statement is equivalent to� 0c(q) > �c(q) 1q(q � 1) :Computing the logarithmic derivative �0c(q)�c(q) we see that this is equivalent to1q � 1 � 1q � 2 + 1(q � 1) log(q � 1) > 1q(q � 1) :This inequality in turn reduces after trivial computation to the statement (31) andthis concludes the proof of the right inequality of (i).Let us come to the proof of the left inequality of (ii). The claim says 1�u(q;�)q r < �c(r)� .Using the mean-�eld equation we may write1� u(q; �) = qe+�u(q;�) + q � 1 :So the claim is equivalent to� r�c(r) < e+�u(q;�) + q � 1 :24
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