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Abstract

We discuss control strategies for the laser surface hardening of steel. The
goal is to acchieve a prescribed hardening depth avoiding surface melting. Our
mathematical model consists of a system of ODEs for the phase volume frac-
tions coupled with the heat equation. The system is solved semi-implicitely
using the finite element method. To obtain a uniform hardening depth the
first attempt is to use PID control to achieve a constant temperature in the
hot spot of the laser beam on the surface. However, the numerical results
prove that this is not sufficient. We show that the best strategy is to control
the temperature close to the lower boundary of the hardening zone. Then one
can compute the optimal temperature in the hot spot of the beam and use it
as the set-point for the pyrometer control of the real process.

1 Introduction

In most structural components in mechanical engineering, the surface is particularly
stressed. For components made of steel a heat treatment by a laser beam may be
used to increase the hardness of the outer surface. The typical depth of such a
hardening zone lies between 0.3 and 1.0 mm.

Figure 1 depicts the process of laser surface hardening. A laser beam moves along the
workpiece surface. The absorbed laser energy leads to a heating of the boundary
layer and a subsequent growth of austenite, the high-temperature phase in steel.
If the workpiece volume is big enough, during the self-cooling of the workpiece
the austenite will be completely transformed to martensite, a steel phase which is
characterized by great hardness. Otherwise, also other phases like ferrite, pearlite
and bainite can be produced, which are more ductile and less hard [2].
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Figure 1: Sketch of laser surface hardening.
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Figure 2: Effects of laser hardening with constant energy and velocity: over-heating
and surface melting close to workpiece edge (left) and above holes inside the work-
piece (right).

Figure 2 shows why there is a demand for precise process control in laser surface
hardening. On the left one can see 6 tracks of a laser hardening, each with different
(but constant) laser energy and velocity. While the middle part of each of the laser
tracks looks rather stationary one can observe a thickening of the track around the
edge where the laser leaves the surface. In some of the tracks this is accompanied by
a melting of the surface. To avoid this over-heating effect, it is important to reduce
the laser energy when the beam approaches a workpiece edge. The same can happen
if the workpiece thickness changes below the laser track. Figure 2 (right) shows the
effect of a cylindrical hole parallel to the workpiece surface and perpendicular to the
laser track. Here, even a bursting of the surface can be observed. Again, it would
be desirable to have an automatic process control which reduces the laser energy
when crossing the hole.

The paper is organized as follows. In Section 2 we describe a mathematical model
for the surface hardening of steel, consisting of a system of ordinary differential
equations for the evolution of phase transitions coupled with a quasi-linear heat
equation. In Section 3 we investigate the interplay of different control parameters
and present numerical simulations for the complete nonlinear system.

Section 4 is devoted to PID process control for laser hardening. The last section
is concerned with some concluding remarks about the interplay between numerical
simulations and process control of the hardening machine.

2 Mathematical modeling

2.1 Phase transitions

The basic assumption for our modeling approach is that all the information about
the evolution of phase transitions in steel is contained in the isothermal and non-
isothermal time-temperature-transformation (TTT-) diagrams of the respective steel



[2]. Thus we do not attempt to derive a model where each factor can be given a
precise physical meaning. Instead our goal has been to develop a phenomenological
model and a procedure of parameter identification such that the transformation
diagrams can be reproduced very well. Our approach is based on the model by
Leblond and Devaux [8]. However, compared to the Leblond-Devaux approach our
model has more degrees of freedom.

In the sequel, let T'(z,t) be a temperature-field with time-derivative T. The vol-
ume fractions of austenite, ferrite, pearlite, bainite and martensite are denoted by
a, f, p, b and m. To be more precise, f, p, b and m are relative volume fractions de-
scribing that portion of ferrite, pearlite, bainite and martensite, respectively, which
has been transformed from the austenite fraction produced during heating. The
expression [u], describes the positive part of u, i.e.

[u]; = max{u, 0}.

Then we consider the following general model of phase transitions during one heat
treatment cycle of heating and cooling:

a(0) =0, 1(0) = fo. p(0) = po. b(0) = b, m(0) =0 (1a)
) = — o) —a] —f-p—b—mn (1b)
f0) = 7 [~ 1] a0 (10)
5) = 5" [l 0] gDy (T) (1)
bty = b [l;eq(T)—bH(T)gb(T)hb(T) (1e)
. 1 -

m(t) = m[m(T}—er. (1f)

The functions f, p,b and m are defined by

feq(T) = min{fe(T),a —p—b—m} (2a)
]?eq(T) = min{p,(T),a — f —b—m} (2b)
beg(T) = min{be,(T),a— f—p—m} (2¢)

(T) ( )

= min{m,,, (T),a—f—p—0b} (2d

The equilibrium volume fractions deq, feq, Peq and be, can be derived from the re-
spective isothermal T'TT-diagram. The function mgj; describes the volume fraction
of martensite according to the Koistinen and Marburger formula [7], i.e.,

mgu(T) =1 — e_ckm(Ms_T),

where ¢, and M, again can be drawn from the respective TTT-diagram. Eqns.
(2a)—(2d) reflect the fact that the real equilibrium volume fraction of one phase

3



1.4t Temperature(1000 C) ——
Austenite
Bainite --—-
1.2+ Martensite - -
1 - -
0.8 - g
0.6 - g
0.4 .
0.2 r g
0 R re—— R S R i R R
0.001 0.01 0.1 1 10 100

Time (s)

Figure 3: Typical evolution of temperature and the evolution of volume fractions as
the solution to (1)—(2) during surface hardening,.

cannot exceed the remaining part of austenite, which has not been transformed to
another phase.

For the temperature dependent exponents r¢, s¢, 7p, Sp, s, Sb, G5, 9p, and g, we
have derived identification tools based on a repeated solution of the system (1)
for isothermal transformation diagrams. In the non-isothermal case the onset of
transfomations is moved to later time and lower temperature. This effect is described
by the factors hy(T"), h,(T) and hy(T) which have to be identified from the non-
isothermal diagrams. Especially, in the case of an isothermal transformation (i.e.

T = 0) these coefficients have to satisfy
hy=h,=h,=1

In an interdisciplinary project with materials scientists and industrial partners, we
have identified the necessary model parameters for a number of steels relevant for
beam surface hardening. The results are documented in [1].

Except for the introduction of the positive-part function [.], the first part of (1b) is
the original formula of Leblond and Devaux [8]. The equilibrium fraction a., is zero
below a threshold temperature A, and 1 above another threshold temperature Ay.
Inbetween it grows monotonically. Hence, with growing temperature, the growth
of austenite begins, when the A, temperature is reached. Upon cooling, owing to
the positive part function [.|,, the first term in (1b) gives no contribution. The
austenite fraction is decreased due to the growth of the other phases. Note that
one has to assume strictly positive initial conditions for ferrite, pearlite and bainite
in order to obtain a unique solution to (1)—(2). Figure 3 shows a typical evolution
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Figure 4: Radiation profiles of a gas laser (left) and a solid state laser (right).

of temperature and the evolution of volume fractions as the solution to (1)—(2)
during surface hardening.The first curve from the left is the evolution of temperature.
Because of the heating, austenite starts to grow which is dissolved into martensite
and a small amount of bainite.
2.2 Heat conduction
To obtain the temperature evolution one has to solve the energy balance equation

pe(T)VT — V- <k(T)VT> —q, (3a)

where the heat source ¢ stems from the latent heats L of the respective phase
transitions and is given by

q:p(—Laa+Lff'+Lpp+Lbb+me>. (3b)

The initial and boundary conditions are

T0) = T, (3¢)
—k(T)g—Z; = wF. (3d)

Here k is the absorption coefficient, F the radiation flux, p the density, ¢ specific
heat, k the heat conductivity and g—fl the normal derivative of T

The radiation flux F is a product of radiation power G and a normalized radiation
profile Fy, i.e.,
F(z,t) = G(t) Fo(x — vit). (4)

The radiation power GG will serve as the control variable in the sequel. The velocity
vector v (assumed constant to simplify the exposition) describes the movement of
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the heat source on the workpiece surface. Figure 4 depicts the Gaussian profile of
a gas laser (left) and the rectangularly shaped profile of a solid state laser. Instead
of laser beams it is also possible to use electron beams which may have much more
complicated radiation profiles.

Since self-cooling of the workpiece is the main effect in laser surface treatments,
we neglect cooling through the surface. Hence on parts of the surface that are not
penetrated by laser, we obtain from (3d) the adiabatic condition

o _y

on
The complete mathematical problem of surface hardening consists in finding a solu-
tion to the coupled system (1)—(3). The specific mathematical difficulty lies in the
nonlinearities in 7', the time-derivative of temperature. However, for a mathematical
problem with similar nonlinearities, the existence of a unique solution has already
been proved [6].
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Figure 5: Temperature profile corresponding to a Gaussian intensity profile. Left:
laser at rest. Right: Moving with constant velocity.

3 Numerical simulations

3.1 Interplay of control parameters

The principal shape of the intensity profile is determined by the choice of the laser
type, i.e. gas or solid-state laser. The remaining control parameters are the moving
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Figure 6: Relation between hardening depth and moving velocity.

velocity v and the laser power G. To obtain some informations about the interplay
between velocity and power to realize a desired hardening depth we have performed
some parameter studies for (3). We have restricted ourselves to the special situation
of the half-space, where the heat source has a Gaussian shape corresponding to a
gas laser (cf. Figure 4, left) and is moving with constant velocity. In this quasistatic
case an explicit solution is at hand [5].

Figure 5 depicts the temperature profile corresponding to a gas laser with Gaussian
intensity distribution and a beam diameter D of 3 mm. For a laser at rest (top),
the temperature isolines are centered symmetrically around the middle line of the
laser beam. For a moving laser (bottom) the isolines lag behind the middle line
of the laser beam. Moreover, the threshold temperature A, to produce the high
temperature phase austenite, which is A, = 800°C' in this example, is reached in a
distance d = 1.35mm for a laser at rest, but only d = 1.0mm for the moving laser.
Hence the parameter d may serve as an upper bound for the maximal hardening
depth that can be obtained for a given laser velocity.

Figure 6 shows how d decreases with increasing velocity. The laser power is adjusted
in such a way that the temperature remains just below the melting point. The three
curves correspond to three different beam diameters D. In particular, one can
conclude that there is a maximal velocity v for each desired hardening depth, which
must not be exceeded.

3.2 Influence of geometry

To investigate the influence of geometry on the hardening profile we have performed
numerical simulations for the complete nonlinear mathematical model. For details
about the numerical algorithm we refer to [2]. We only want to mention here that it
is indispensable to use an implicit discretization for the nonlinearities in 7" in order

to obtain a stable numerical method. The numerical kernel is based on pdelib, an
FEM and FVM toolbox developed at WIAS [3].



Figure 7: Influence of geometry on hardening profile. Simulation of electron harden-
ing of a plate with hole parallel to the surface in 2 mm distance (left) in comparison
with the corresponding experimental result (right), steel C45.

The influence of workpiece geometry on the resulting hardening profile which has
already been mentioned in the introduction is reflected again in Figure 7, where
the numerical simulation of electron beam hardening of a plate with hole parallel to
the surface (left) is compared to the corresponding experimental result (right). One
can conclude that the numerical results are in good agreement with the experiment.
Further simulations and experiments have been done for a number of relevant steels,
the results are documented in [1].

Now, we consider a two-dimensional example corresponding to the situation depicted
in Figure 7. A laser beam with constant energy and velocity moves along the upper
surface from left to right. In order to observe the developing of the hardening depth
the laser beam starts in a little distance from the left edge. The resulting hardening
profile and the temperature T},s in the hot spot on the surface are shown in Figure
8. Because the laser beam moves with constant velocity the time coordinate for T}
corresponds to the space coordinate for the hardening profile.

Initially, the temperature T}, and the hardening depth increase only gradually.
Above the hole and at the right-hand edge T} shows an overshooting and the hard-
ening depth increases.

4 Feedback control of temperature

4.1 Linear PID control for laser surface hardening
4.1.1 Motivation

Owing to the results shown in Figure 8 the temperature T}, in the hot spot on the
surface is related to the depth of the hardening profile. In a small part between
the hole and the right-hand edge (corresponding to 12s < ¢ < 15s) the hardening
profile has a constant depth of one millimeter and the value of T}, is 1360C. Hence
a reasonable strategy seems to be trying to keep the temperature T}, in the hot spot
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Figure 8: Results for constant laser beam power. Top: temperature Tj in the hot
spot on the surface. Bottom: hardening profile.

on the surface constant by controlling the power of the laser beam.

This is also possible in industrial applications where the temperature is observed by
a pyrometer.

4.1.2 Algorithm I: Surface Control

The goal of this PID (short for Proportional Integral Differential) control is to adjust
a desired set-point temperature T in the hot spot of the beam focus on the workpiece
surface. Let Z(t) denote the location of this hot spot on the workpiece surface at
time ¢, i.e. we have

Ths(t) = T((t), 1),

Then we can define the difference between actual temperature and set-point tem-
perature by R
ety =T —T(z(t),t).

We use the laser energy G (cf. (4)) as control parameter. Introducing the time
discretization 0 =t < t; < ... < ty = tg, whe can formulate the algorithm for
PID beam hardening control in the following way:
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Figure 9: Linear PID control of surface temperature (Algorithm I). Top: tempera-
ture in the hot spot on the surface (continuous line) and close to the lower boundary
of the hardening zone (dashed line). Bottom: hardening profile.

Fori=0to N —1 do:

e(t;) = T—T((z)t), (5a)
G(ti) = kpe(t;) + k; / e(t) dt + kpé(t;) (5b)

to

The three terms on the right-hand side of (5b) correspond to the proportional, inte-
gral and differential part of the PID- controller. The determination of optimal values
for the constants kp, k; and kp is explained in Subsection 4.1.5. Note that the inte-
gration and differentiation in (5b) have to be replaced by the corresponding discrete
counterparts when coupling this algorithm with the numerical approximation of the
state equations.

Now we apply Algorithm I to the two-dimensinal example described above. To
this end we define the set-point temperature as T" = 1360°C". The result is given in
Figure 9. Although the surface temperature in the hot spot of the focus is now nearly
constant, the hardening profile again shows a thickening above the hole and at the
edge of the plate. The reason becomes clear if one takes a look at the temperature
in the lower part of the hardening strip in some distance d from the surface. Let
Teup(t) be the maximal temperature at time ¢ in distance d from the surface, with
location z(t), i.e. we have

Toun(t) = T(x(2),1).

Note that in view of Figuere 6 Z(t) — z(t) is perpendicular to the penetrated surface
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Figure 10: Linear PID control of subsurface temperature (Algorithm IT). Top: tem-
perature in the hot spot on the surface (continuous line) and close to the lower
boundary of the hardening zone (dashed line). Bottom: hardening profile.

if and only if the laser is at rest, otherwise, the angle between z(t) — x(t) and v is
more than 7/2.

One can see that Ty,,(t) in Figure 9 shows more or less the same behaviour as the
surface temperature T}, in the uncontrolled case depicted in Figure 8. Thus it might
be more favourable to try to keep the temperature Ty, constant by controlling the
laser energy:.

4.1.3 Algorithm II: Subsurface Control

Now we use a temperature which is typically attained in the lower part of the
hardening strip as set-point temperature. In our case we take 7' = 800°C'. Then the
goal is to adjust T" in the hot spot in a distance d from the workpiece surface. We
choose the distance d equal to the desired hardening depth, 1lmm in our case. The
algorithm (5) is then replaced by

For i =0to N — 1 do:

e(t) = T—T((z(t;)t:), (6a)

t;

Gltin) = kpe(ts) + ks / e(t) dt + kpé(t:) (6b)

to

The resulting hardening profile is approximately uniform as can be seen in Figure
10. The dashed line in the graph above represents the controlled temperature Ty,;in

11
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Figure 11: Linear PID control of surface temperature with set point 7}, from Fig.
10. Top: temperature in the hot spot on the surface and close to the lower boundary
of the hardening zone (straight lines) and temperatures from Fig. 10 (dashed lines).
Bottom: hardening profile.

a fixed distance from the surface, which is nearly constant now, owing to the PID-
control. The continuous line depicts the surface temperature in the hot spot, which
is not at all constant.

4.1.4 Utilization of subsurface control for the process control of the
hardening machine

In the real hardening process it is not possible to observe the temperature T,
in some fixed distance below the surface and hence it is impossible to control the
subsurface temperature. On the other hand, we have just computed the optimal
temperature ;.7 * corresponding to a uniform hardening depth as a by-product when
applying Algorithm II for subsurface control (the continuous line in Figure 10). Thus
we propose to use Ty7 " as the set-point for the pyrometer process control.

To demonstrate that this is a promising approach, we define

A~

T(t) =T (1)

and apply again Algorithm I for surface control. The results can be found in Figure
11. The continues lines correspond to the resulting temperatures T}, and Ty, while
the dashed lines correspond to the results from the subsurface control depicted
already in Figure 10. The computed surface temperature T} lags a bit behind the
set-point temperature T;”" but the resulting hardening profile is nearly as uniform
as the one in Figure 10.

12
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Figure 12: Simulation with varying absorption coefficient. Top: absorption coeffi-
cient. Center: hardening profile for constant laser power. Bottom: hardening profile
resulting from Algorithm T with T/ as set-point temperature.

As a second verification we now consider the case of a space dependent absorption
coefficient k. One reason, why temperature control is such an important issue for
the laser hardening process is that the surface conditions may vary in the area to
be hardened, e.g., due to varying roughness, shading or grease spots. Although the
absorption coefficient is not constant in this case, the optimal temperature in the
hot spot on the workpiece surface should still be the same. Figure 12 shows the
numerical simulation of such a situation. On top one can see the space-dependent
absorption coefficient. Below is the resulting hardening profile in the case of constant
laser energy. One can see that the hardness decreases in regions where the absorption
coefficient decreases and vice versa. At the bottom the hardening profile is shown
which again results from the application of Algorithm I for suface control with set-
point temperature T'(t) = Ty (t) where T/" stems from the application of Algorithm
IT for subsurface control. Again, the resulting hardening profile is nearly as uniform
as the one in Figure 10.

4.1.5 Controllability and parameter tuning

For the simulations mentioned above the control parameter for the PID algorithm,
kp, kr and kp, have to be determined. The tuning of these parameters is based
on a step response of the system. Figure 13 shows the temperature Tj,s and Ty,
corresponding to a stepwise jump in laser power. There is hardly any lag in the step

13



1400
1350 |
1300 |

T 1250 |
1200 |
1150 -

1075
1050 f ]
1025 | |
1000 |

b

975 |
950
925 |

%3

u

—> < T —>]
8 9 10 11 12 13
4

Figure 13: Response to a stepwise jump in laser power. Top: temperature in the
hot spot on the surface. Bottom: temperature close to the lower boundary of the
hardening zone .

response of the surface temperature and therefore T}, should be well controllable
by the PID algorithm. However, this is not the case for the temperature Ty, close
to the lower boundary of the hardening zone. The lag L increases with the velocity
of the laser beam. Since the characteristic time constant 7 of the process is hardly
influenced by the velocity of the laser beam, the ratio 7/L decreases if v increases
and above a certain velocity the controllability of T%,;, by the PID algorithm becomes
rather poor. In our simulations the critical velocity of the laser beam turns out to
be 0.25¢m /s for a hardening depth of one millimeter. This corresponds nicely to the
the relationship between hardening depth d and laser velocity as depicted in Figure
6. For smaller hardening depths the critical velocity increases.

To determine the three PID parameters we have used the tuning rules by Ziegler
and Nichols [9]. In addition we have tried the rules by Chien, Hrones and Reswick
[9], but the differences in the resulting hardening profiles have not been found very
significant.
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Figure 14: Linear PID control of subsurface temperature (Algorithm II). Top: tem-
perature in the hot spot on the surface (continuous line) and close to the lower
boundary of the hardening zone (dashed line). Bottom: hardening profile.

4.2 Nonlinear PID control

Unfortunately, our linear PID approach fails in the case of workpices with more
complicated geometries, for example, if the circular hole is replaced by a rectangular
one. Figure 14 shows the results of Algorithm II applied to such a case. The
algorithm fails to keep T, constant above the hole and the resulting hardening
strip is not uniform above the hole.

In order to improve the results obtained with the linear PID algorithm, we replace
(5b) and (6b), respectively, with the nonlinear equation

G(tiy1) = kpe(t;) + ky arctan(kqoe(t;))
+k1/e(t) dt + kpé(t;), (7)

to

with two additional parameter k; and ks. For k; = 0 we recover the usual linear PID
algorithm. Due to the nonlinear term the modified PID algorithm is very sensitive
to small errors e(t). The advantage of similar nonlinear terms in the PID algorithm
is pointed out in [4]. Up to now we have no tuning rules for k; and ky. Therefore
ki and ko are adjusted by hand.
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Figure 15: Nonlinear PID control of surface temperature. Top: temperature in the
hot spot on the surface (continuous line) and close to the lower boundary of the
hardening zone (dashed line). Bottom: hardening profile.

Now we again define the set-point temperature T = 1360°C and apply Algorithm
I for surface control, but with (5b) replaced with (7). The results are depicted in
figure 15. We obtain a nearly constant temperature Tj,. However, although T} is
constant, the temperature Ty, is not and the hardening profile shows an increase in
thickness avove the hole and at the end.

Figure 16 shows the results of the application of Algorithm II for subsurface control,
where (6b) has been replaced with its nonlinear counterpart (7) and a set-point
temperature T = Ag = 800°C' has been chosen. The resulting subsurface temper-
ature Ty, is nearly constant and therefore also the depth of the hardening profile.
However, as in Subsection 4.1.3 the corresponding temperature in the hot spot Tj
on the surface is no longer constant. It may serve as a set-point in a real hardening
process in which it is possible to control T}, by pyrometer technique.

Also for the workpice with the circular hole the algorithm (7) works very well. Hence
we recommend to use the nonlinear PID version (7) for surface hardening control.
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Figure 16: Nonlinear PID control of subsurface temperature. Top: temperature in
the hot spot on the surface (continuous line) and close to the lower boundary of the
hardening zone (dashed line). Bottom: hardening profile.

5 Concluding remarks

The goal of process control for laser hardening is twofold. On the one hand a melting
of the surface has to be avoided to maintain the workpiece quality. On the other
hand, only a uniform thin layer should be hardened to reduce fatigue effects. While
the former can be achieved with a control of surface temperature and hence can be
realized by machine process control, the latter one cannot (cf. Figure 15).

A uniform hardening depth can only be achieved by subsurface temperature control.
To achieve this goal numerical simulations are indispensable. As we have shown
the resulting non-constant surface temperature may be used as a set-point for the
machine proces control.

Finally, we would like to remark that all the numerical simulations in this paper have
been carried out for the steel CK45. For other steels the set-point temperatures
have to be changed accordingly. More precisely, we would recommend to define
Ths = Tierr — 50°C', where T, is the melting temperature for the required steel,
and T, = As.
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