
Weierstra�-Institutf�ur Angewandte Analysis und Stochastikim Forschungsverbund Berlin e.V.Preprint ISSN 0946 { 8633
High Order Central Schemes Applied toRelativistic Multicomponent FlowsShamsul Qamarsubmitted: 2nd October 2003Weierstrass Institutefor Applied Analysisand StochasticsMohrenstrasse 3910117 BerlinGermanyE-Mail: qamar@wias-berlin.de

No. 875Berlin 2003
W I A S

2000 Mathematics Subject Classi�cation. 65M99, 65Y20.Key words and phrases. multicomponent 
ows, relativistic Euler equations, central schemes, higherorder accuracy.



Edited byWeierstra�-Institut f�ur Angewandte Analysis und Stochastik (WIAS)Mohrenstra�e 39D | 10117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint@wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstractThe dynamics of inviscid multicomponent relativistic 
uids may be modelled bythe relativistic Euler equations, augmented by one (or more) additional species equa-tion (s). We use high-resolution central schemes to solve these equations. The equi-librium states for each component are coupled in space and time to have a commontemperature and velocity. The current schemes can handle strong shocks and theoscillations near the interfaces are negligible, which usually happens in the multi-component 
ows. The schemes also guarantee the exact mass conservation for eachcomponent and the exact conservation of total momentum and energy in the wholeparticle system. The central schemes are robust, reliable, compact and easy to im-plement. Several one- and two-dimensional numerical test cases are included in thispaper, which validate the application of these schemes to relativistic multicomponent
ows.1 IntroductionIn recent years relativistic gas dynamics plays an important role in areas of astrophysics,high energy particle beams, high energy nuclear collisions, and free-electron laser technol-ogy. The equations that describe the relativistic gas dynamics are highly nonlinear. Forthe practical problems it is diÆcult to solve these equations analytically, therefore numer-ical solutions are persued. Several numerical methods for solving relativistic gas dynamicshave been reported. All these methods are mostly developed out of the existing reliablemethods for solving the Euler equations of nonrelativistic or Newtonian gas dynamics.The �rst attempt to solve the equations of relativistic gas dynamics (RGD) was made byWilson [33, 34] using an Eulerian explicit �nite di�erence code with monotonic transport.The code relies on arti�cial viscosity technique [25] to handle shock wave. Despite of itspopularity it truned out to be unable to accuratly describe the extremly relativistic 
ows,see [2]. In mid eighties, Norman and Winkler [26] proposed a reformulation of the di�er-ence equations with arti�cial viscosity consistent with relativistic dynamics of non-perfect
uids. Dean et al [4] used 
ux correcting algorithms for RGD equations in context of heavyion collisions.A good introduction about the recent methods applied to RGD can be found in the reviewarticle of Mart�� and M�uller [23]. Some popular methods which are extended for RGD andare also discussed in [23] are, Rao methods [28] used by Eulderink et. al [6, 7], PPM method[3] by Mart�� and M�uller [21], Glimm's methods [10] by Wen et. al [32], HLL method [11]1



by Schneider et. al [30], Marquina 
ux formula [5] by Mart�� et. al [20, 22] and relativisticbeam scheme [29] by Yang et. al [38].The development of numerical methods for the non-relativistic multicomponent 
ows haveattracted much attention in the past years, see for example Fedkiw et. al [8, 9], Karni[14, 15, 16], Karni and Quirk [27], Marquina and Nulet [19]. Xu [36] used BGK-basedgas-kinetic schemes to solve multicomponent 
ow, while Lian and Xu [18] used the samescheme in order to solve the multicompment 
ows with chemical reactions.This paper is an extension of the relativistic Euler equations to multi-component 
ows.We use high-resolution nonoscillatory central schemes of Nessyahu and Tadmor [24] as wellas Jiang and Tadmor [13] to solve these Euler equations. In this study we consider onlytwo-components 
ow, however the extension to further components will result in additionof continuity equation for the corresponding species. The central schemes are predictor-corrector methods which consists of two steps: starting with given cell averages, we �rstpredict pointvalues which are based on nonoscillatory piecewise-linear reconstructions fromthe cell averages; at the second corrector step, we use staggered averaging, together withthe predicted midvalues, to realize the evolution of these averages. This results in a second-order, nonoscillatory central scheme.These second order accuracy of these schemes are based on MUSCL-type reconstruction.Like upwind schemes, the reconstructed piecewise-polynomials used by the central schemes,also make use of non-linear limiters which guarantee the overall non-oscillatory nature ofthe approximate solution. But unlike the upwind schemes, central scheme do not requirethe intricate and time-consuming (approximate) Riemann solvers which are essential forthe high-resolution upwind scheme. This advantage is especially important in the multi-dimensional case where there is no exact Riemann solver. Moreover, the central schemesare \genuinely multi-dimensional" in the sense that it does not necessitate dimensionalspliting. Apart from these central scheme do not produce spurious oscillations, such ascarbuncle phenomena and odd-even decoupling which usually happens in the Godunovupwind schemes. The reason of this advantage is the presence of suÆcient numerical dis-sipation in the central schemes. This this also the reason here in the multicomponent 
owthat we see allmost negligible or no oscillations at the gases interface, for further detailson numerical dissipation see Xu [37].The organization of this paper is as follows:In Section 2, we derive the three-dimensional Euler equations for the relativistic multi-component 
ows. We then discuss how to obtain the premitive variables from the con-served variables.In Section 3 we write the one dimensional relativistic Euler equations for the dynamicsof a mixture of two gases. Starting from the �rst order central scheme, we explain the2



high-resolution second order central schemes to solve these Euler equations, see [24] andreferences therein.In Section 4 we explain the scheme for the two-dimensional relativistic multi-component
ows. We again start from the �rst order central schemes and then extend it to secondorder, see [13] and references therein.In Section 5 we present numerical test cases which include, propagation of 1D relativisticblast waves, collision of two relativistic blast waves, cylinderical explosion, interaction ofan air shock with helium bubble and explosion in a square box.
2 Multicomponent Relativistic Euler EquationsFor simplicity we assume a model of mixture of two gases. The extension to more compo-nents is analogous. Let � = �1 + �2 denote the total density of the mixture, with �1 and�2 as the mass densities of the �rst and second components respectively. Also let Y1 andY2 be the mass fractions of the �rst and second components.We assume that both components are in thermal equilibrium and are perfect gases withspeci�c heats at constant volume Cv1, Cv2, speci�c heats at constant pressure Cp1, Cp2 andratios of speci�c heats 
1, 
2. By standard thermodynamic arguments, the ratio of speci�cheats 
 of the mixture of gases is
 = CpCv = Y1Cp1 + Y2Cp2Y1Cv1 + Y2Cv2 : (1)Using the Einstein summation convention the equations discribing the motion of a two-component relativistic 
uid are given by the six conservation laws(�1u�);� = 0 ; (�2u�);� = 0 ; (T ��);� = 0 ; (2)where (�; � = 0; :::; 3), and where ;� denote the covariant derivative with respect to coor-dinate x�. Furthermore, u� is the four-velocity of the mixture, and T �� is the stress-energytensor, which for a perfect 
uid can be written asT �� = �hu�u� + pg�� : (3)Here g�� is metric tensorg�� = g�� = 8<: �1; � = � = 0 ;1; � = � = 1; 2; 3 ;0; � 6= � ;3



� is the mixture density, p the 
uid average pressure, and h the speci�c enthalpy of the
uid mixture de�ned by h = 1 + �+ p� ; (4)where � is the speci�c internal energy. Note that we use natural units (i.e., the speed oflight c = 1) through out this study. In Minskowski space time and cartesion coordinates(t; x1; x2; x3), the conservation equations (2) can be written as@w@t + @f i(w)@xi = 0 ; (5)with the conserved variables w and 
uxes f i given as
w = 0BBBB@ D1D2S1S2S2 �

1CCCCA ; f i = 0BBBBBB@ D1viD2viS1vi + pÆ1iS2vi + pÆ2iS3vi + pÆ3iSi �Dvi
1CCCCCCA : (6)

The six conserved quantitites D1; D2; S1; S2; S3 and � are the rest-mass densities of thetwo components, the three components of momentum density, and the energy density (mea-sured relative to the rest mass density), respectively. They are all measured in laboratoryframe, and are related to quantities in the local rest frame of the 
uid (primitive variables)through the relationsD1 = �2� ; D2 = �1� ; Si = �h�2vi ; � = �h�2 � p�D ; (7)where vi are the components of three-velocity of 
uidvi = uiu0 ; i = 1; 2; 3;with the lorentz factor u0 = p1 + u2. Let us de�ne � as� = 1p1� vivi : (8)Note that u0 = �, because u = v=p1� v2. The system of equations (2) with de�nitions(5)-(8) is closed by mean of an ideal equation of state (EOS) as given belowp = (
 � 1)�� : (9)We denote by cs the sound speed, de�ned byhc2s = @p@� ����s ; (10)4



where s is the speci�c entropy, which is conserved along 
uid lines. For EOS under con-sideration the speed of sound can be written ascs = �
p�h� 12 : (11)The Mach number of the 
ow is due to K�onigl [17]M = vcs ��s :For any given initial macroscopic variables in space and time,w1 = ��1; vi1; p1� ; w2 = ��2; vi2; p2� ; i = 1; 2; 3; (12)the common values of density �, velocity vi, and pressure p can be obtained from theconservation requirements,D = (�1�1) + (�2�2) ;Si = ��1h1�21vi1�+ ��2h2�22vi2� ; i = 1; 2; 3; (13)� = ��h1�21 � p1 � �1�1�+ ��1h1�22 � p2 � �2�2� :From the above equations p, � and vi can be obtained by �rst solving an implicit functionof pressure whose zero represents the pressure, see Mart�� and E. M�uller [23], as well asAloy et al. [1]. We have to �nd the root of the equation�(p) = (
 � 1) ���� � p ; (14)with �� and �� given by�� = D�� ; �� = � +D (1� ��) + p (1� �2�)D�� ; (15)where �� = 1p1� v2� ; v� = S� +D + p : (16)The monotonicity of �(p) 2 [pmin;1] ensures the uniqueness of the solution. The lowerbound of the physically allowed domain, pmin, de�ned bypmin = jSj � � �D ;is obtained from (7)3 by taking in to account that (in our units) jvj � 1. Knowing p, (16)2then directly gives v, while the density can be obtained from (15)1 and (16)1.Similar to Aloy et al. [1], we obtained the solution �(p) = 0 by means of Newton-Rahphsoniteration in which the derivative of �, i.e. �0, is aopproximated by�0 = jv�j2c2s� � 1 ; (17)5



wheree cs� is the speed of sound given bycs� =s(
 � 1)
��1 + 
�� ; (18)This approximation tends to the exact derivative when the solution is approached. Onthe other hand, it easily allows one to extend the present algorithm to general equation ofstate, see [1].3 One-dimensional Multicomponent FlowsHere we are looking for a spatially one-dimensional solutions of Euler equations. We onlyconsider the solutions which depend on t and x = x1 and satisy � = �(t; x), �1 = �1(t; x),�2 = �2(t; x), v = (v(t; x); 0; 0) and p = p(t; x). The three dimensional Euler equations (5)then reduces to @w@t + @f(w)@x = 0 ; (19)with the conserved variables w and 
uxes f given asw = 0BB@ D1D2S� 1CCA ; f = 0BB@ D1vD2vSv + pS �Dv 1CCA ; (20)where D1 = �1� ; D2 = �1� ; S = �h�2v ; � = �h�2 � p�D ; (21)and v = uu0 ; � = 1p1� v2 ; p = (
 � 1)�� ; (22)where u0 = p1 + u2. For any given initial macroscopic variables in space and time,w1 = (�1; v1; p1) ; w2 = (�2; v2; p2) ; (23)the common values of density �, velocity v, and pressure p can be obtained from theconservation requirements,D = (�1�1) + (�2�2) ;Si = ��1h1�21v1�+ ��2h2�22v2� ; (24)� = ��h1�21 � p1 � �1�1�+ ��1h1�22 � p2 � �2�2� :From the above equations p, �, and v can be obtained by following the same procedure asgiven in relations (14) to (18). 6



3.1 One-Dimensional Central SchemesLet us begin by introducing the well-known �rst order Lax-Friedrichs (LxF) scheme forone-dimensional conservation laws. This �rst order scheme is then extended to a secondorder central scheme, see [24]. We consider a piecewise-constant initial data, Pwni �i(x),where, �i(x) is a characteristic function of the cell, Ii := f� j j� � xij � �x2 g, centeredarround xi = i�x. Integrating (19) over the rectangle [xi; xi+1]� [tn; tn+1], we getI@
 wdx� f(w)dt = 0,� tn+1Ztn f (w(t; xi)) dt+ xi+1Zxi w(tn+1; �)d� + tn+1Ztn f (w(t; xi+1)) dt� xi+1Zxi w(tn; �)d� = 0 :Note that our cells Ii are staggered with respect to the interval [xi; xi+1] of integration.This leads to the LxF schemewn+1i+ 12 = 12(wni + wni+1) + � �f(wni )� f(wni+1)� ; wni := w(tn; xi) = wni ; (25)where � = �t�x . The piecewise constant cells in each step are staggered with respect tothose in the previous step.Extension to Higher Order:Starting with a piecewise-constant solution in time and space,Pwni �i(x), one reconstructa piecewise linear (MUSCL-type) approximation in space, namelyw(tn; x) =X�wni + wxi (x� xi)�x ��i(x) ; (26)where wxi abbreviates a �rst-order discrete slopes, see Figure 1. A possible computationof these slopes, which results in an overall nonoscillatory scheme (consult [24]), is given byfamily of discrete derivatives parameterized with 1 � � � 2, i.e., for any grid function fwigwe setwxi = MM�fwi�1; wi; wi+1g = MM ���wi+ 12 ; �2(�wi� 12 +�wi+ 12 ); ��wi� 12� (27)Here, � denotes the central di�erencing, �wi+ 12 = wi+1 � wi, and MM denotes the min-mod nonlinear limiterMMfx1; x2; :::g = 8<: minifxig if xi > 0 8i ;maxifxig if xi < 0 8i ;0 otherwise : (28)This interpolant, (26), is then evolved exactly in time and projected on the staggered cell-averages on the next time step, tn+1. Consider the balance law over the control volume7
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1�xwxiFigure 1: Second Order Reconstruction[xi� 12 ; xi+ 12 ]� [tn; tn+1], we haveI@
 wdx� f(w)dt = 0,� tn+1Ztn f(wi(t))dt+ xi+1Zxi w(tn+1; �)d� + tn+1Ztn f(wi+1(t))dt� xi+1Zxi w(tn; �)d� = 0 :This yieldswn+1i+ 12 = wi+ 12 (tn) + �0@ 1�t tn+1Ztn f(wi(�))d� � 1�t tn+1Ztn f(wi+1(�))d�1A : (29)Where � = �t�x . The averaging of the linear data (26) at t = tn, yieldswni+ 12 = 1�x xi+1Zxi w(tn; �)d�= 1�x 0BB@ xi+12Zxi wi(tn; �)d� + xi+1Zxi+12 wi+1(tn; �)d�1CCA ;= 12(wni + wni+1) + 18(wxi � wxi+1) : (30)8



So far every thing is exact. Moreover the Courant-Friedrichs-Levy (CFL) condition guaran-tees that f(wi(�)) and f(wi+1(�)), are smooth functions of � ; hence they can be integratedapproximatly by the mid point rule at the expense of an O(�t)3 local truncation error.Thus we can write 1�t tn+1Ztn f(wi+1(t))dt � f(wi(tn+ 12 )) +O(�t)3 : (31)Putting (30) and (31) in (29) we �nally getwn+1i+ 12 = 12(wni + wni+1) + 18(wxi � wxi+1) + � hf(wi(tn+ 12 ))� f(wi+1(tn+ 12 ))i : (32)By Taylor expansion and the conservation laws (19), we havewn+ 12i = wi(tn+ 12 ) = wni + �t2 (wi)t(tn) +O(�t)2 = wni � �2fx(wi) +O(�t)2 : (33)This may serve as our approximate midvalues wn+ 12i within the permissible second-orderaccuracy requirement. Here, 1�xfx(wi) stands for an approximate numerical derivatives ofthe 
ux f(w(t; x = xi)), 1�xfx(wi) = @@xf(w(t; x = xi) +O(�x)The 
uxes fx(wi) are computed by applying the min-mod limiter to each of the componentof f , i.e.,F x(wi) = MM�fF (wi�1); F (wi); F (wi+1)g= MM ���F (wi+ 12 ); �2 ��F (wi� 12 ) + �F (wi+ 12 )� ; ��F (wi� 12 )� :Here, � denotes the central di�erencing, �F (wi+ 12 ) = F (wi+1)�F (wi), and MM denotesthe min-mod nonlinear limiter given by (28) .This componentwise approach is one of the main advantages o�ered by central schemesover corresponding characteristic decompositions required by upwind schemes, see [13] and[24]. It is important to emphasize that while using the central type LxF solver, we inte-grate over the entire Riemann fan, which consists of both the left and rightgoing waves.On the one hand, this enables us to ignore the detailed knowledge about the exact (orapproximate) generalized Riemann solver. On the other hand, this enable us to accuratlycompute the numerical 
ux tn+1Ztn f(w(�; x))d� , whose values are extracted from the smoothinterface of two non-interacting Riemann problems.9



In summary, this family of central di�erencing scheme takes the easily implemented predictor-corrector form, wn+ 12i = wni � �2fx(wi) ; (34)wn+1i+ 12 =12(wni + wni+1) + 18(wxi � wxi+1)+ � hf(wi(tn+ 12 ))� f(wi+1(tn+ 12 ))i : (35)4 Two-Dimensional Multicomponent FlowsHere we are looking for a spatially two-dimensional solutions of the multicomponent Eulerequations. We only consider the solutions which depend on t, x = x1, y = x2 and satisfy� = �(t; x; y), �1 = �1(t; x; y), �2 = �2(t; x; y), v = (v1(t; x); v2(t; y); 0) and p = p(t; x; y).The three dimensional Euler equations (5) then reduces to@w@t + @f(w)@x + @g(w)@y = 0 ; (36)the conserved variables w and 
uxes f , g are given byw = 0BBBB@ D1D2S1S2�
1CCCCA ; f = 0BBBB@ D1v1D2v1S1v1 + pS2v1S1 �Dv1

1CCCCA ; g = 0BBBB@ D1v2D2v2S1v2S2v2 + pS2 �Dv2
1CCCCA ; (37)whereD1 = �1� ; D2 = �2� ; S1 = �h�2v1 ; S2 = �h�2v2 ; � = �h�2 � p�D ; (38)and v1 = u1u0 ; v2 = u2u0 ; � = 1p1� (v21 + v22) ; p = (
 � 1)�� : (39)where u0 =p1 + u21 + u22. For any given initial macroscopic variables in space and time,w1 = ��1; vi1; p1� ; w2 = ��2; vi2; p2� ; i = 1; 2; (40)the common values of density �, velocity vi, and pressure p can be obtained from theconservation requirements,D = (�1�1) + (�2�2) ;Si = ��1h1�21vi1�+ ��2h2�22vi2� ; i = 1; 2; (41)� = ��h1�21 � p1 � �1�1�+ ��1h1�22 � p2 � �2�2� :From the above equations p, � and vi can be obtained by follwing the same procedure asgiven in relations (14) to (18) for this spatially two-dimensional case.10



4.1 Two-Dimensional Central SchemesTo approximate (36), we begin with a piecewise constant solution of the formPwni;j�i;j(x; y).We denote by wni;j, the approximate cell-average at time t = tn, associated with the cellCi;j = Ii � Jj, centered arround (xi = i�x, yj = j�y), i.e.,Ci;j = �(�; �) ���� j� � xij � �x2 ; j� � yjj � �y2 � ;and �i;j(x; y) is a characteristic function of the cell Ci;j.The arguments applied to the one-dimensional case can be easily extended to the higherdimensions. In the following we will abbreviate �ZB = 1jBj ZB to denote the normalizedintegral, i.e., normalized over its length, area, etc. Also let � = �t�x and � = �t�y denote the�xed mesh-ratio in the x- and y-directions, respectively. Letwi+ 12 ;j+ 12 (t) = �ZCi+12 ;j+12 w(t; x; y)dxdydenote the staggered averages. Integrating (36) over the volume [i; i+1]�[j; j+1]�[tn; tn+1],we get, wn+1i+ 12 ;j+ 12 =�ZCi+12 ;j+12 w(tn; x; y)dxdy� �(�Z tn+1tn �Z yj+1yj [f(w(t; xi+1; y))� f(w(t; xi; y))] dydt)� �(�Z tn+1tn �Z xi+1xi [g(w(t; x; yj+1))� g(w(t; x; yj))] dxdt)As given in Figure 2, the �rst integral has contribution from the four cellsCi;j, Ci+1;jCi+1;j+1,and Ci;j+1. Simplifying the above balance law we �nally get the following LxF scheme,wn+1i+ 12 ;j+ 12 =14(wni;j + wni+1;j + wni;j+1 + wni+1;j+1)� �2 �f(wni+1;j)� f(wni;j) + f(wni+1;j+1)� f(wni;j+1)�� �2 �g(wni;j+1)� g(wni;j) + g(wni+1;j+1)� g(wni+1;j)� (42)A Second-Order Extension in 2D:A two-dimensional extension of the second order central scheme was introduced in [13].As in one-dimensional case, this staggered scheme can be viewed as an extension to the11



�rst-order LxF Scheme. A piecewise-linear interpolant is reconstructed from the calculatedcell-averages at time tn,w(tn; x; y) =X�wni;j + wxi;j �x� xi�x � + wyi;j �y � yj�y ���i;j(x; y) : (43)Here wxi;j and wyi;j are discrete slopes in the x� and y�directions, respectively, which arereconstructed from the given cell averages. To guarantee second-order accuracy, theseslopes should approximate the corresponding derivatives,wxi;j � �x @@xw(tn; xi; yj) +O(�x)2 ; wyi;j � �y @@xw(tn; xi; yj) +O(�y)2 : (44)A possible computation of these slopes, which results in an overall nonoscillatory schemesis given by family of discrete derivatives parameterized with 1 � � � 2, for examplewxi;j =MM ��(wni+1;j � wni;j); �2(wni+1;j � wni�1;j); �(wni;j � wni�1;j)� ; (45)wyi;j =MM ��(wni;j+1 � wni;j); �2(wni;j+1 � wni;j�1); �(wni;j � wni;j�1)� : (46)Here MM denotes the min-mod nonlinear limiter given by (28). This guarantees that thecorresponding piecewise-linear reconstruction in (43), w(tn; x; y), is co-monotone with theunderlying piecewise-constant approximation,Pwni;j�i;j(x; y).Similar to one-dimensional case, the construction of the central scheme proceeds with asecond step of an exact evolution. The integration of (36) over volume [i; i + 1] � [j; j +1]� [tn; tn+1] yieldswn+1i+ 12 ;j+ 12 =�ZCi+12 ;j+12 w(tn; x; y)dxdy� �(�Z tn+1tn �Z yj+1yj [f(w(t; xi+1; y))� f(w(t; xi; y))]dydt)� �(�Z tn+1tn �Z xi+1xi [g(w(t; x; yj+1))� g(w(t; x; yj))]dxdt) : (47)We begin by evaluating the cell average �RCi+12 ;j+12 w(tn; x; y)dxdy. As before it has contri-bution from the four intersecting cells, Ci;j, Ci+1;j, Ci+1;j+1, and Ci;j+1. Starting with theintersecting cell Ci;j at the corner (see Figure 2), CSWi+ 12 ;j+ 12 = Ci+ 12 ;j+ 12 \ Ci;j, we �nd theaverage of the reconstructed polynomial in (43),�ZCSWi+12 ;j+12 w(tn; x; y)dxdy = �Z xi+12xi �Z yj+12yj �wni;j + wxi;j �x� xi�x � + wyi;j �y � yi�y �� dxdy= 14wni;j + 116(wxi;j + wyi;j) : (48)12
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Figure 2: Floor plane of the staggered grid.Continuing in a conunter clockwise direction, we have�ZCSEi+12 ;j+12 w(tn; x; y)dxdy = 14wni+1;j + 116(�wxi+1;j + wyi+1;j) ; (49)�ZCNEi+12 ;j+12 w(tn; x; y)dxdy = 14wni+1;j+1 � 116(wxi+1;j+1 + wyi+1;j+1) ; (50)�ZCNWi+12 ;j+12 w(tn; x; y)dxdy = 14wni;j+1 + 116(wxi;j+1 � wyi;j+1) : (51)By adding the last four integrals we �nd that the exact staggered averages of the recon-structed solution at t = tn.wni+ 12 ;j+ 12 =�ZCi+12 ;j+12 w(tn; x; y)dxdy=14 �wni;j + wni+1;j + wni;j+1 + wni+1;j+1�+ 116f(wxi;j � wxi+1;j) + (wxi;j+1 � wxi+1;j+1)+ (wyi;j � wyi;j+1) + (wyi+1;j � wyi+1;j+1)g : (52)So far every thing is exact. We now turn to approximating the four 
uxes on the right of(47), starting with the one along the east face (consult Figure 3), i.e.�Z tn+1tn �Zy2Jj+12 f(w(t; xi+1; y))dydt:13



We use midpoint quadrature rule for second-order approximation of the temporal integral ,�Zy2Jj+12 f(w(tn+ 12 ; xi+1; y))dy ;and, for the reasons to be clari�ed below, we use the second-order rectangular quadraturerule for the spatial integration across the y-axis, yielding�Z tn+1tn �Zy2Jj+12 f(w(t; xi+1; y))dydt � 12 �f(wn+ 12i+1;j) + f(wn+ 12i+1;j+1)� : (53)In similar manner we approximate the remaining 
uxes,�Z tn+1tn �Zx2Ii+12 g(w(t; x; yj+1))dxdt � 12 �g(wn+ 12i;j+1) + gwn+ 12i+1;j+1)� ; (54)�Z tn+1tn �Zy2Jj+12 f(w(t; xi; y))dydt � 12 �f(wn+ 12i;j ) + f(wn+ 12i;j+1)� ; (55)�Z tn+1tn �Zx2Ii+12 g(w(t; x; yj))dxdt � 12 �g(wn+ 12i;j ) + g(wn+ 12i+1;j)� : (56)
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Figure 3: The central, staggered stencil.The 
uxes in (53)-(56) use the midpoint values, wn+ 12i;j = w(tn+ 12 ; xi; yj), and it is here thatwe take advantage of utilizing these midvalues for the spatial integration by the rectangular14



rule. Namely, since these midvalues are secured at the smooth center of their cells, Ci;j,bounded away from the jump discontinuities along the edges, we may use Taylor expansion,w(tn+ 12 ; xi; yj) = wni;j + �t2 wt(tn; xi; yj) +O(�t)2 :Finally, we use the di�erential form of conservation laws (36) to express the time derivative,wt, in term of the spatial derivatives, f(w)x and g(w)x,wn+ 12i;j = wni;j � �t2 @@xf(wi;j)� �t2 @@yg(wi;j) +O(�t)2= wni;j � �2fx(wi;j)� �2gy(wi;j) +O(�t)2 : (57)Here,fx(wi;j) � �x @@xf(w(tn; xi; yj)) +O(�x)2; gy(wi;j) � �y @@yg(w(tn; xi; yj)) +O(�y)2 ;are one-dimensional discrete slopes of the 
uxes in the x- and y-directions, of the typereconstructed in (44). We �nd these slopes in the same way as done for the conservative�led variables using min-mod procedure. Inserting these values, together with the staggeredaverages computed in (52), into (47), we conclude with new staggered averages at t = tn+1,given by wn+1i+ 12 ;j+ 12 =14(wni;j + wni+1;j + wni;j+1 + wni+1;j+1)+ 116(wxi;j � wxi+1;j)� �2 �f(wn+ 12i+1;j)� f(wn+ 12i;j )�+ 116(wxi;j+1 � wxi+1;j+1)� �2 �f(wn+ 12i+1;j+1)� f(wn+ 12i;j+1)�+ 116(wyi;j � wyi;j+1)� �2 �g(wn+ 12i;j+1)� g(wn+ 12i;j )�+ 116(wyi+1;j � wyi+1;j+1)� �2 �g(wn+ 12i+1;j+1)� g(wn+ 12i+1;j)� : (58)In summary, we end up with a simple two-step predictor-corector scheme (57)-(58). Start-ing with the cell averages, wni;j, we use the �rst-order predictor (57) for the evolution of themidpoint values, wn+ 12i;j , which is followed by the second-order corrector (58) for computationof the new cell averages, wn+1i;j . This results in a second-order accurate nonoscillatory cen-tral schemes. As in the one-dimensional case no exact (approximate) Riemann solvers areinvolved. The nonoscillatory behaviour of the scheme hings on the reconstructed diecreteslopes, wx,wy, fx(w), and gy(w).
15



5 Numerical Test Cases5.1 One-dimensional Test ProblemsHere we present four one-domensional numerical probelms in order to validate the applica-tion of one-dimensional central schemes for the solution of one-dimensional multicomponent
ow problems.Problem 1: Propagation of relativistic blast waves:Wl = (�l; ul; pl; 
l; Cvl) = (10:0; 0:0; 13:33; 1:4; 1:0) if x < 0:5 ;Wr = (�r; ur; pr; 
r; Cvr) = (1:0; 0:0; 0:66� 10�6; 1:67; 1:0) if x � 0:5 ;where the computational domain is 0 � x � 1 with 400 meh points. This test problem hasbeen considered by several authors in one-component case, for example, Hawley, Smarr andWilson [12], Schneider et al. [30], Mart�� and M�uller [21, 23] etc. It involves the formationof an intermediate state bounded by a shock wave propagating to the right and transonicrarefaction wave propagating to the left. The 
uid in the intermediate state moves at amildly relativistic speed (v = 0:7098c) to the right. Flow particles accumulate in a denseshell behind the shock wave compressing the 
uid by a factor of 5 and heating it up tovalues of internal energy much larger than the rest-mass energy. Hence the 
uid is ex-tremly relativistic in thermodynamical point of view, but mildly relativistic dynamically.The resutls are shown in Figure 5.Problem 2: The initial data are:Wl = (�l; uL; pl; 
l; Cvl) = (1:0; 0:0; 1000:0; 1:4; 1:0) if x < 0:5 ;Wr = (�r; uR; pr; 
r; Cvr) = (1:0; 0:0; 0:01; 1:67; 1:0) if x � 0:5 ;where the computational domain is 0 � x � 1 with 400 meh points. This problem was�rst considered in single-component case by Norman and Winkler [26]. The 
ow patternis similar to that of problem 1, but more extreme. In case of 4000 mesh points the elativis-tic e�ects reduces the post-shock state to a thin dense shell with a width of only about2% of the grid length at t=0.35. The 
uid in the shell moves with vshell = 0:957 (i.e.,�shell = 3:35), while jump in density in the shell reaches a value of 8.17. The resutls areshown in Figure 6.Problem 3: Collision of two relativistic blast waves:Wl = (�l; uL; pl; 
l; Cvl) = (1:0; 0:0; 1000:0; 1:4; 1:0) if x <= 0:1 ;Wm = (�m; um; pm; 
m; Cvm) = (1:0; 0:0; 0:01:0; 1:67; 1:0) if 0:1 < x < 0:9 ;Wr = (�r; uR; pr; 
r; Cvr) = (1:0; 0:0; 100:0; 1:4; 1:0) if x � 0:9 ;16



where the computational domain is 0 � x � 1. The collision of two strong blast waveswas used by Woodward and Colella [35] to compare the performance of several numericalmethod in classical hydrodynamics. In the relativistic case, Yang et al. [38] consideredthis problem to test the high-order extensions of relativistic beam scheme, wherease Mart��and M�uller [21] used it to evaluate the performance of their relativistic PPM code. Inthis last case, the original boundary conditions were changed from (from re
ecting to out
ow) to avoid the re
ection and subsequent interaction of rarefaction waves allowing fora comparison with an analytical solution. We will also consider the out 
ow boundaryconditions in this example.The initial data correspond to this test, consisting in three constant states with speci�cheat ratios jumps and large pressure jumps at the interfaces, which are located at x = 0:1and x = 0:9. The propagation velocity of the two blast waves is slower than in the Newto-nian case, but close to the speed of light (0.9644 and -0.881 for shock wave propagating tothe right and left, respectively). Hence the shock interaction occurs much later (at t=0.43)than in the Newtonian problem (at about t=0.028). The collosion give rise to a narrowregion of very high density bounded by two shocks.Problem 4: A similar problem in non-relativistic case was solved by Quirk and Karni[27]. It consist of a Ms = 1:14 shock tube �lled with air, where shock wave moves to theleft. In the preshock wave stage, a bubble of Helium is set .The initial data are as followW = (� = 1:0; u = 0:0; p = 2:0; 
 = 1:4; Cv = 0:72) ; pre-shoc airW = (� = 1:2977; u = �0:155947; p = 2:88387; 
 = 1:4 ; Cv = 0:72) ; post-shoc airW = (� = 0:138; u = 0:0; p = 1:0; 
 = 1:67; Cv = 2:42) ; helium :where the computational domain is 0 � x � 1. We compute the approximate solution ofthis problem with a grid of 400 mesh points at time t = 0:65. For comparison purpose weuse the same scheme with 3000 mesh points. The results are shown in Figure 8.5.2 Two-dimensional Test ProblemsProblem 5: Cylindrical Explosion Problem:Consider a square domain [0; 1]� [0; 1]. The initial data are constant in two regions sep-arated by a circle of radius 0.2 centered at (0:5; 0:5). Inside the circle is helium withdensity 10.0 and pressure 13.33, while outside is air of density 1.0 and pressure equal to0:066� 10�6. The velocities are zero everywhere. The speci�c heat ratios for helium andair are 1.67 and 1.4, while speci�c heats at constant volume are equal to 1 for both airand helium. The solution consits of a circular shock wave propagating outwards from theorigin, followed by a circular contact discontinuity propagating in the same direction, anda circular rarefaction wave travelling towards the origin. The results ar shown in Figure 9for 400 mesh points at t = 0:15. 17
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Figure 4: Sketch of computational domain .Problem 6: A Ms = 1:16 shock wave in air hits a Helium cylinderical bubble:In this example we introduce a single planar shock, moving in the air, with a cylindericalbubble of Helium. A schematic description of computational set-up is shown in Figure 4,where re
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 = 1:67; Cv = 2:42) ; helium :Although the density in the bubble region is low, it is still stable. The results are shownin Figure 10.Problem 7: Explosion in a box:In this example we consider a helium gas with high pressure in a small box of sides length0.2 at the center of a large box of unit length containing air. The outer box has re
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