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Abstract

We consider a model chemical kinetics system describing the dynamics

of species concentrations taking part in a consecutive-competitive reaction

in a continuously stirred tank reactor. Corresponding dynamical system has

a continua of equilibria. The solution of the system tends to a particular

equilibrium depending on the initial conditions. Global behavior of the system

and its reductions via invariant manifold theory and the boundary function

methods are studied.

1 Introduction

In this paper we consider a chemical kinetics model describing the dynamics of

concentrations of species taking part in the reactions (in a continuously stirred tank

reactor) according to the following reaction scheme

A +B
k1
�! C; B + C

k�

 ! D: (1)

This consecutive-competitive reaction sequence appears in several important chemi-

cal engineering applications, such as in the reaction of ethylene oxid with water, am-

monia and alcohol as well as in halogenation and hydrogenation of organic molecules

[9].

The reaction scheme (1) has been considered in [4] under the additional assumption

k� � 1, i.e., the second reaction is in a quasi-equilibrium, in order to illustrate the

basic idea of the boundary function method in studying the time behavior of the

concentrations of species A, B, C and D in a �nite time interval.

The chemical kinetics system presented above has a continuum of equilibria such

that the equilibrium to which the system tends as t is going to 1 depends on

the prescribed initial conditions. Such behavior often appears in chemical kinetics

models in which conservation relations for some species are observed, and/or for

which the initial concentrations of reacting species are not given in exact proportions

speci�ed by the reaction kinetics scheme. In the latter case, while some species are

completely consumed during the characteristic reaction time, others still remain in

the system.

Here we present the analysis of one such system. We note, however, that some

general approaches discussed in this paper can be used for the analysis of other
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applied dynamical systems of this type as well. The results of this paper can be

summarized as follows. (i) First, we investigate the long-term behavior of (1) without

any additional conditions about the reaction rate constants. We prove that (1)

tends to an equilibrium which, indeed, depends on the initial conditions. (ii) Under

the assumption that the second reaction is in quasi-equilibrium (i.e., corresponding

forward and reverse reactions are fast, the reaction rate constants k+ and k� are

large, and their ratio k�=k+ is moderate) we show the existence of an attracting

invariant manifold, and construct an approximation for this invariant manifold. The

equilibrium to which the system tends is located on the attracting invariant manifold.

(iii) We construct an approximation to the solution of the initial value problem

under the quasi-equilibrium assumption using the boundary function method [11],

[12], [13]. Here, we present an approach based on the reduced model as well as

we describe an algorithmic approach applied to the original system which can be

implemented. (iv) Finally, we discuss and compare the results obtained for the same

original problem using the method of invariant manifolds and the boundary function

method.

Before we proceed, let us make several comments on current applications of the

model reduction procedures. The reduction of a particular real life applied model is

possible when processes observed in the system are characterized by widely varying

\physical" scales. These could be di�erent time scales (fast/slow motions), spatial

scales (large/small dimensions), etc. While the importance of the asymptotic meth-

ods as a tool for explicit calculations has decreased over the past decades due to

appearance of fast computers and specialized software, their role in elucidating the

underlying dynamics (via qualitative analysis of reduced models), and in determina-

tion of model parameters from experiments has become more signi�cant. Often the

restrictions on the precision of the measuring devices do not allow the identi�cation

of model parameters associated with either very small or very large scales. In such

situation, reduced models help to understand which parameters can be eliminated

from the system, and which combinations of parameters are, in principle, identi�able

from experiment.

Our discussion of the asymptotic reduction procedure based on the boundary func-

tion method approach has the goal to emphasize its features that could make it useful

as a part of computerized reduction algorithms. In [8] and [5] we presented an al-

gorithm for asymptotic model reduction based on invariant manifold theory. Such

algorithms are necessary for the reduction of large systems that appear in chemical

engineering [3], [4], atmospheric chemistry modeling [7], [2], and other areas [6].

2 Mathematical model and its reduced equivalent

formulation

Let us keep the notation A;B;C;D for the concentrations of the species A, B, C,

D, respectively. Then, the corresponding di�erential equations system describing
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the behavior of (1) has the form

dA

d�t
= �k1AB;

dB

d�t
= �k1AB � k+BC + k�D;

dC

d�t
= k1AB � k+BC + k�D;

dD

d�t
= k+BC � k�D;

(1)

where we assume that k1; k
+ and k� are positive constants. We study the behavior

of system (1) satisfying the initial condition

A(0) = A0 > 0; B(0) = B0 > 0; C(0) = C0 � 0; D(0) = D0 � 0: (2)

Rescaling �t by k1�t = t and taking into account that (1) has the �rst integral

B(t) + C(t) + 2D(t) = B0 + C0 + 2D0 (3)

we get from (1)

dA

dt
= �AB;

dB

dt
= �AB �

k+

k1
BC +

k�

2k1
(B0 + C0 + 2D0 � B � C);

dC

dt
= AB �

k+

k1
BC +

k�

2k1
(B0 + C0 + 2D0 � B � C):

(4)

Now we introduce the new variable E by

E := C � B: (5)

Then, we obtain from (4)

dA

dt
= �AB;

dB

dt
= �AB �

k+

k1
B(E +B) +

k�

2k1
(B0 + C0 + 2D0 � 2B � E);

dE

dt
= 2AB:

(6)

Exploiting the property that (6) has the �rst integral
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2A(t) + E(t) = 2A0 + C0 � B0; (7)

we get from (6)

dA

dt
= �AB;

dB

dt
= �AB �

k+

k1
B(B � 2A+ 2A0 + C0 �B0) +

k�

k1
(B0 +D0 � B � A0 + A):

(8)

Thus, the initial value problem (1), (2) is equivalent to the initial value problem (8),

A(0) = A0 > 0; B(0) = B0 > 0; (9)

where the right hand side of (8) depends on the initial conditions. In the next section

we determine the long-time behavior of (8), (9).

3 Long-time behavior

First we note that system (8) has A = 0 as an invariant straight line. Thus, the

trajectory of (8) starting at a point ( �A; �B) with �A > 0 can never reach the region

A < 0.

Next we investigate the equilibria of (8). For convenience we introduce the parameter

k by k := k�1 =k
+

1 . It is easy to verify that the equilibria of (8) are located on the

coordinate axes A = 0 and B = 0 and are de�ned by

(A1 := A0 � B0 �D0; B1 := 0);

(Ae := 0; Be;1 := B+); (Ae := 0; Be;2 := B�);
(1)

where

B� :=
1

2

h
� (2A0 � B0 + C0 + k)�

q
(2A0 � B0 + C0 + k)2 � 4k(A0 �B0 �D0)

i
: (2)

From (1) - (2) we get

Lemma 3.1 For all non-negative A0 and B0 system (8) has a unique equilibrium

(A�; B�) in the positive orthant O+ := f(A;B) 2 R2 : A � 0; B � 0g where

(A�; B�) =

(
(A1; 0) for A0 � B0 +D0;

(0; B+) for A0 � B0 +D0:
(3)
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In what follows we will prove that the trajectory of (8) starting at (A0; B0) 2 O+

has the equilibrium (A�; B�) as !-limit set.

First we note that any straight line A = �A;B > 0 with 0 < �A � A0 is a straight

line without contact which is crossed by the trajectories of (8) from right to left

for increasing t, and that the straight line B = B0 + D0 is a line without contact

for 0 � A < A0 and such that the trajectories of (8) cross this straight line for

increasing t from above. Moreover, we can conclude that the trajectory of (8)

starting at (A0; B0) 2 O+ will never leave the region 0 < A � A0; B � B0+D0 (see

Fig. 1).

Now we distinguish the cases A0 � B0+D0 and A0 > B0+D0. In case A0 � B0+D0,

the equilibrium is located on the axis A = 0. For A0 � B0 +D0, the axis B = 0 is

a straight line without contact for A � 0, where all trajectories of (8) enter O+ for

increasing t. For A0 = B0+D0, the origin is an equilibrium point, and all trajectories

crossing B = 0 at a point ( �A; 0) with �A > 0, enter O+ for increasing t. Hence, for

A0 � B0 � D0, the rectangular domain R0 := f(A;B) 2 R2 : 0 � A � A0; 0 �

B � B0 +D0g is positively invariant and contains no limit cycle and no separatrix

loop. Therefore, according to the Poincare-Bendixson theory, the trajectory of (8)

starting at (A0; B0) 2 O+ tends for t! +1 to the equilibrium (0; B+) (see Fig. 1).
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Fig. 1. Fig. 2.

In case A0 > B0 + D0; (A0 � B0 � D0; 0) is the unique equilibrium of (8) in O+.

In what follows we consider the triangular T bounded by the straight lines B =

0; A = A0 and B = A+ B0 +D0 � A0. If we di�erentiate B � A along system (8)

and consider this derivative at the straight line B = A +B0 +D0 � A0 we get

d(B � A)

dt
= �B

k+

k1
(�A + A0 +D0 + C0) < 0:
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Thus, we can conclude that T is positively invariant and that the trajectory of (8)

starting at (A0; B0) has (A0 � B0 �D0; 0) as !-limit set (see Fig. 2).

Summarizing our investigations we have

Theorem. The solution of the initial value problem (1), (2) exist for all t > 0 and

tends for t!1 to the equilibrium point of (A�; B�), de�ned in (3).

4 The case of fast reversible reaction

In what follows we assume

(A):
k+

k1
=

1

"
� 1; and k =

k�

k+
; (1)

that is, the second reaction in (1) is in quasi-equilibrium. From (8) and (1) we

obtain

dA

dt
= �AB;

"
dB

dt
= �"AB �B(B � 2A+ 2A0 + C0 � B0) + k(B0 +D0 �B � A0 + A):

(2)

Since " is a small positive parameter system, (2) represents a singularly perturbed

system. Our goal is to study the solution of (2) satisfying the initial condition (9)

where we distinguish the problems:

1. Long-time behavior of the solution of (2), satisfying

A(0) = A0 > 0; B(0) = B0 > 0 (see (9)).

2. Approximation of the initial value problem (2),(9) on the �nite interval [0; T ].

4.1 Long-time behavior of the solution of (2),(9)

To study the long-time behavior of the solution of (2), (9) we apply the method of

invariant manifolds, i.e. we want to prove the existence of an invariant manifold to

system (2) of the form

B = h(A; ")

which is exponentially attracting. To this end, we study the equilibria of the asso-

ciated equation

dB

d�
= f(B) = �B(B � 2A+ 2A0 + C0 � B0) + k(B0 +D0 �B � A0 + A): (3)

Any equilibrium of (3) is de�ned by
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B = B�(A) =
1

2

h
� (2A0 + C0 � B0 � 2A+ k)

�

q
(2A0 + C0 � B0 � 2A+ k)2 � 4k(A0 � A�B0 �D0)

i
:

(4)

Under the assumption

A0 � A� B0 �D0 � 0;

which is equivalent to

A � A0 � B0 �D0; (5)

only the branch B = B+(A); A � max(0; A0 � B0 �D0); is located in the positive

orthant (see Fig. 3). We note that the graph of B = B+(A) intersects the A-axis at

the point A0 � B0 �D0.

In case

A0 � A�B0 �D0 � 0

it is easy to check that there is no equilibrium of (3) in the positive orthant.
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0
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0
 

A

B

0

Fig. 3.

In the next step we investigate the stability of the equilibria belonging to the branch

B+(A) for A � A0 � B0 � D0. For this purpose we determine the sign of fB at

B = B+(A). From (3) and (4) we get

fB(B+(A)) = �
q
(2A0 + C0 � B0 � 2A+ k)2 � 4k(A0 � A� B0 �D0):
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The expression 2A0 + C0 � B0 � 2A + k vanishes only for A = A0 +
1

2
(C0 � B0 +

k), and for this value of A we have A0 � A � B0 � D0 = �1

2
(C0 + B0 + k) �

D0 < 0. Consequently, we can conclude fB(B+(A)) < 0, that is, the equilibria are

asymptotically stable. According to a general theorem on the existence of invariant

manifolds in singularly perturbed systems (see, e.g., [1]) we have the following result:

Lemma 4.1. For suÆciently small ", system (2) has an invariant manifold of the

type

M" := f(A;B) 2 R
2 : B = h(A; ") = B+(A) +O(")g:

On the manifoldM" system (2) reads

dA

dt
= Ah(A; ") = AB+(A) +O("): (6)

If we suppose A0 > B0 + D0, then, for suÆciently small ", h(A; ") has a positive

root A1 near A0 � B0 �D0, and h is positive (negative) for A < A1 (A > A1) (see

curve B+(A) for A0 > B0 +D0 in Fig.3). Thus, the trajectory of (6) starting at A0

has A1 as ! -limit point. In case A0 < B0 +D0, the function h(A; ") is positive for

A > 0, and we can conclude that the trajectory tends to A = 0 as t tends to in�nity

(see curve B+(A) for A0 < B0 +D0 in Fig.3). Consequently, we have got the same

results about the long-time behavior of system (8) as in Lemma 3.1.

In the next subsection we look for an approximation of the solution of the initial

value problem (2),(9) on (0; T ).

4.2 Approximation of the solution of the initial value prob-

lem

We study the initial value problem (1), (2) assuming that the reversible reaction is

fast, that is, under the assumption (A). In that case, after rescaling of time

introduced in Section 2 and with " de�ned by (1) the original system can be re-

written in the form

dA

dt
= �AB;

"
dB

dt
= �"AB � BC + kD;

"
dC

dt
= "AB � BC + kD;

"
dD

dt
= BC � kD:

(7)

We supply (7) with the initial conditions (2) and investigate this initial value problem

by means of the boundary function method (see [13]) in order to get a uniform

asymptotic approximation of the solution on the interval [0; T ]. In what follows,
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we restrict ourselves to the construction of the leading order approximation of the

solution. According to this method, we seek asymptotic expansions of the unknown

functions in the form:

E(t; ") =
1X
i=0

"i( �Ei(t) + �iE(�)); (8)

where E stands for A, B, C and D. Here, �Ei(t); i = 0; 1; :::, are the regular

parts of the asymptotic expansions describing the \slow" dynamics of the solution;

�iE(�); i = 0; 1; :::, are the, so-called, boundary functions important in a vicinity

of the initial time t = 0, and � = t=" is the stretched variable. All the boundary

functions have to decay exponentially to zero as the stretched variable � !1.

Construction of the leading order approximation for the simpli�ed equiv-

alent system:

As we have demonstrated above, the initial value problems (7), (2) and (2), (9) are

equivalent. Therefore, we apply the boundary function method �rst to (2), (9).

In the �rst step we determine the boundary function �0A(�). For this purpose we

substitute (8) into (2), (9) and equate the terms multiplying "�1 in both sides. We

get
d�A0

d�
= 0:

Since �A0(t) must decay to zero for increasing � we get

�A0(t) � 0: (9)

Next, we determine the regular part A0(t). From the relations that represent initial

conditions in the leading order approximation,

�A0(0) + �0A(0) = A0;

�B0(0) + �0B(0) = B0;
(10)

and from (9) we get �A0(0) = A0.

Since the slow dynamics of (2) is determined by the scalar di�erential equation (6),
�A0(t) is determined by the initial value problem

d �A0

dt
= �A0B+( �A0); �A0(0) = A0; (11)

where B+(A) is de�ned by

B+(A) =
1

2

h
� (2A0 + C0 �B0 � 2A+ k)

+
q
(2A0 + C0 �B0 � 2A+ k)2 � 4k(A0 � A� B0 �D0)

i
:

(12)
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The regular part �B0(t) is determined by

�B0(t) = B+( �A0(t)): (13)

Finally, we determine the boundary layer function �0B(�). We obtain for it the

di�erential equation

d�0B(�)

d�
= �(2 �B0(0) + C0 +B0)�0B(�)� (�0B(�))

2

= �(2B+(A0) + C0 +B0)�0B(�)� (�0B(�))
2

(14)

with initial condition �0B(0) = B0 � B+(A0).

For our choice of approximation to the \slow manifold" (given by (12)) it can be

shown that the di�erential equation (14) for the boundary function �0B(�) has a

solution that decays exponentially to zero as � ! 1 (see additional discussion of

that in the next section). The justi�cation of the leading order asymptotics follows

immediately from the results for singularly perturbed systems of Tikhonov's type

(see, e.g., [13]).

The general approach description:

We start with the original model formulation, and we apply the reduction procedure

directly to (7), (2) without making preliminary simpli�cations and eliminations of

terms/equations from the system. We present the asymptotic reduction procedure

as a set of steps that can be implemented in a computerized symbolic reduction

algorithm. The justi�cation of the procedure for a general case can be found in

[12], [13]. In what follows, whenever we use the phrases like \result can be found

symbolically", we mean that the result can be obtained with the help of some sym-

bolic computer software (e.g. MAPLE). Also, along with explanation of theoretical

steps of the procedure, we will mention the practical (simpler) steps that can be

undertaken to obtain the same \theoretical" result.

The uniform (on a time domain of interest) asymptotic approximation of the solution

of (7), (2) can be obtained by truncating (8).

Let us brie
y describe the steps of construction of the leading order approximation.

First, we need to substitute (8) into (7), (2) and equate the terms multiplying

like powers of " in both sides of the resulting equations separately for regular and

boundary functions. Practically, to obtain the equations for regular functions only,

one can substitute the regular series (e.g., �rst three terms) into the equations (7),

and set " = 0.

For the regular functions in the leading order we obtain:
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d �A0

dt
= � �A0

�B0;

0 = � �B0
�C0 + k �D0:

(15)

In fact, (15) contains three identical algebraic equations, and here we only write out

one of them. Thus, we arrive at a system of two equations involving four unknown

variables. From the second (algebraic) equation of (15) we cannot �nd �B0, �C0, �D0

uniquely. Instead, we can derive a family of solutions (that is, express one of the

unknowns, e.g., �D0, in terms of the remaining two). Two additional equations are

needed to de�ne all the regular functions in the leading order in the next step of

the asymptotic algorithm. Such situation is often referred to in the literature as the

critical case or singular singularly perturbed problem.

Practically, we do not need to resolve the algebraic equation in (15). Instead, let

us show how we can check the fact that three algebraic equations in the leading

order approximation are identical. We construct the Jacobian matrix (only for the

equations without derivatives in the right-hand side of (15)):

J =

0
B@ �

�C0 �
�B0 k

� �C0 �
�B0 k

�C0
�B0 �k

1
CA : (16)

The rank of this matrix (rank=1), as well as the eigenvalues (�1;2 = 0, �3 = � �C0 �

�B0 � k) can be easily computed symbolically. Thus, we determine that we, indeed,

have only one equation instead of three.

For the regular functions of the �rst order we obtain:

d �A1

dt
= � �A1

�B0 �
�A0

�B1;

d �B0

dt
+ �A0

�B0 = � �B1
�C0 �

�B0
�C1 + k �D1;

d �C0

dt
� �A0

�B0 = � �B1
�C0 �

�B0
�C1 + k �D1;

d �D0

dt
= �B1

�C0 + �B0
�C1 � k �D1:

(17)

In the last three equations of (17) all the terms that do not contain functions of

the �rst order approximation have been moved to the left hand sides. Comparing

the right hand sides of the last three equations in (17) we can easily see that for

the second and the third equations they are the same, and they are equal to the

negative of the right hand side of the fourth equation. Thus, the left hand sides of
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these equations must also satisfy the corresponding relations (i.e., the left hand sides

of the second and the third equations must be equal to each other and to the left hand

side of the fourth equation multiplied by -1). These are the solvability conditions

for the linear system of three algebraic equations for �B1, �C1, �D1. In practical terms,

the way to derive these solvability conditions using symbolic manipulator can be

described as follows. The matrix of the mentioned above algebraic system is J given

by (16). For the non-homogeneous linear system to be solvable, the non-homogeneity

vector must be orthogonal to linearly independent eigenvectors corresponding to zero

eigenvalues of J . These eigenvectors are

v1 =

0
B@ 1

0

1

1
CA ; and v2 =

0
B@ 0

1

1

1
CA : (18)

If we denote the non-homogeneity vector by F , i.e., F = (d �B0=dt+ �A0
�B0; d �C0=dt�

�A0
�B0; d �D0=dt), from orthogonality conditions, (vi � F ) = 0, we obtain the following

pair of equations:

d �B0

dt
+ �A0

�B0 +
d �D0

dt
= 0;

d �C0

dt
� �A0

�B0 +
d �D0

dt
= 0:

(19)

The system consisting of (15), (19) contains four equations for four unknown func-

tions �A0, �B0, �C0, �D0. Let us show how the constraint �B0
�C0 � k �D0 = 0 de�ning the

approximation to the slow manifold can be eliminated from the system. We note

that this constraint can be di�erentiated (symbolically) to produce

d �B0

dt
�C0 +

d �C0

dt
�B0 � k

d �D0

dt
= 0: (20)

It can be easily seen that (19), (20) is a non-homogeneous system of linear equations

for d �B0=dt, d �C0=dt, and d �D0=dt, that can be easily resolved symbolically. Practi-

cally, to reduce the number of variables one of them may be eliminated from the

system. For example, it follows from (19), (20) that

k
d �B0

dt
+ k �A0

�B0 +
d �B0

dt
�C0 +

d �C0

dt
�B0 = 0;

k
d �C0

dt
� k �A0

�B0 +
d �B0

dt
�C0 +

d �C0

dt
�B0 = 0:

(21)

Next, system (21) may be resolved with respect to d �B0=dt and d �C0=dt:
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d �B0

dt
= �

�A0
�B0(k + 2 �B0)

k + �C0 + �B0

;

d �C0

dt
=

�A0
�B0(k + 2 �C0)

k + �C0 + �B0

:
(22)

So, we now have to solve the system consisting of the �rst equation of (15) and two

equations of (22). The function �D0 can either be found from the second equation of

(15), or by solving the di�erential equation (20), after substituting there (22), with

corresponding condition.

Note that the initial values for the regular functions �A0(0), �B0(0), �C0(0), and �D0(0)

are not known yet. These initial values must belong to the approximation of the

manifold given by the second equation of (15). To �nd them we need to consider

problems for the boundary functions in the leading order approximation. For them

we can write:

d�0A

d�
= 0;

d�0B

d�
= � �C0(0)�0B � �B0(0)�0C � �0B�0C + k�0D;

d�0C

d�
= � �C0(0)�0B � �B0(0)�0C � �0B�0C + k�0D;

d�0D

d�
= �C0(0)�0B + �B0(0)�0C +�0B�0C � k�0D:

(23)

Practically, the equations for boundary functions can be found by making substitu-

tion (8) into the original system, multiplying the �rst equation by ", changing the

variable in the derivatives, setting " = 0, dropping all the terms in the remaining

expressions that do not contain any boundary functions, and �nally, substituting

for the regular functions their initial values (symbolically).

The boundary functions �0A(�), �0B(�), �0C(�), and �0D(�) together with the

regular functions in the leading order approximation must satisfy the initial condi-

tions:

�A0(0) + �0A(0) = A0;

�B0(0) + �0B(0) = B0;

�C0(0) + �0C(0) = C0;

�D0(0) + �0D(0) = D0:

(24)

Also, the boundary functions must satisfy the conditions: �0A(�)! 0 for � !1,

etc. From (23), (24) and conditions at � !1 it follows that
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�0A(�) � 0;

�0B(�) = �0C(�) = ��0D(�): (25)

Practically, the above relations between �0B(�), �0C(�), and �0D(�) can be ob-

tained as follows. We note that the linear part in the last three equations of (23) is

nothing but the Jacobian matrix (16) evaluated at t = 0. Since only one eigenvalue

(�3) of J corresponds to decaying solutions (under certain conditions), with corre-

sponding eigenvector v3 = (1; 1;�1)T giving the direction of the decay in the phase

space, the �-functions vector consisting of �0B, �0C, and �0D must decay in the

same direction. This means that the components of the �-functions vector must be

proportional to v3, from which (25) immediately follows.

Substituting (25) into (24) and using �D0(0) = �B0(0) �C0(0) (which follows from (15)),

we obtain

�A0(0) = A0;

�B0(0) + �0B(0) = B0;

�C0(0) + �0B(0) = C0;

�B0(0) �C0(0)� k�0B(0) = kD0:

(26)

The �rst relation in (26) is the initial condition for �A0. From the remaining three

equations we can �nd �B0(0), �C0(0), and �0B(0). Indeed, subtracting the third

equation of (26) from the second, we have

�B0(0)� �C0(0) = B0 � C0: (27)

Adding the second, multiplied by k, and the fourth equations of (26), we obtain

k �B0(0) + �B0(0) �C0(0) = k(B0 +D0): (28)

Eliminating �C0(0) from the above two expressions, we arrive at a quadratic equation

for �B0(0):

�B2

0
(0) + (C0 � B0 + k) �B0(0)� k(B0 +D0) = 0:

This equation has two solutions of which we choose the positive one:

�B0(0) =
1

2

�
B0 � C0 � k +

q
(B0 � C0 � k)2 + 4k(B0 +D0)

�
: (29)
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The reason for such choice can be explained by the condition that the zero steady

state of the di�erential system for boundary functions must be stable. For the �-

functions to decay to zero the eigenvalue �3 = � �C0(0)� �B0(0)�k must be negative.

If we choose �B0(0) < 0, then it will follow from (28) that

�B0(0)(k + �C0(0)) = k(B0 +D0) > 0;

and so, we must also have k+ �C0(0) < 0. But then �3 will become positive and the

boundary functions will not decay to zero!

In practical terms, the positive root �B0(0) can be chosen directly from \physical"

considerations: if the small parameter tends to zero we have immediate transition

of the solution of the original problem from a given initial condition to the initial

condition lying on the slow manifold, and since concentrations must be positive

(or, at least, non-negative), �B0(0) must also be positive (non-negative �B0(0) is also

possible only with the choice of plus sign in (29)).

For known �B0(0) the initial condition for �C0 can be easily found from (27):

�C0(0) = �B0(0)� B0 + C0: (30)

Now the system for regular functions in the leading order approximation consisting

of the di�erential equation for �A0 (from (15)), and the two di�erential equations

(22) for �B0 and �C0, with corresponding initial conditions given by the �rst relation

in (26), and relations (29), (30), can be solved numerically.

In the �nal section we discuss implications of the above analysis from the viewpoint

of practical use of the constructed asymptotic approximations, and compare the

results produced by the method of invariant manifolds and the boundary function

method.

5 Discussion

Let us re-write the problems for the leading order approximation of the solution

of the original problem in the limit as " ! 0. \Physically", this means that we

are looking at our original chemical kinetics system under the assumption that the

second, reversible, reaction characterized by reaction rate constants k+ (for for-

ward reaction) and k� (for reverse reaction) occurs instantaneously, while the ratio

k = k�=k+ stays bounded of order O(1). The limiting problem for the simpli�ed

equivalent system has the form (compare with (11)):
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d �A0

dt
= � �A0B+( �A0)

= �

1

2
�A0

h
� (2A0 + C0 � B0 � 2 �A0 + k)

+
q
(2A0 + C0 �B0 � 2 �A0 + k)2 � 4k(A0 �

�A0 � B0 �D0)
i
;

�A0(0) = A0:

(31)

The limiting system that was produced by the general approach procedure consists

of the equations

d �A0

dt
= � �A0

�B0;
d �B0

dt
= �

�A0
�B0(k + 2 �B0)

k + �C0 + �B0

;
d �C0

dt
=

�A0
�B0(k + 2 �C0)

k + �C0 + �B0

; (32)

with the condition �A0(0) = A0, and the conditions (29) and (30) for �B0 and �C0,

respectively.

Comparing the two limiting problems we note that both require some additional

analysis to completely de�ne their behavior at t!1. Such analysis was performed

previously in Section 3 and Section 4.1. The two approximate problems presented

above are equivalent in the following sense. When the solution �A0 of (31) is known,

the approximations for �B0 and �C0 could be found from (12) and (5), (7), respectively.

These approximations will be equal to solutions �A0, �B0 and �C0 of (32) de�ned

for corresponding initial conditions that represent an orthogonal projection of the

original conditions on the approximation to slow manifold �D0 = �B0
�C0=k. Indeed, we

can immediately see that the substitution of �A0(0) = A0 into the expression (12) for

B+ produces condition (29) for �B0. On the other hand, the �rst integrals that were

used in obtaining the simpli�cation for the original system can also be constructed

for (32). For example, it follows from (32) that 2d �A0=dt+d �C0=dt�d �B0=dt = 0, and

thus, by virtue of (27), 2 �A0(t) + �C0(t) � �B0(t) = 2A0 + C0 � B0, which is exactly

the leading order approximation for (7).

Let us also comment on the stability properties of the boundary functions con-

structed for both systems. We note that after substituting (25) into (23) describing

the boundary function system in the general approach case, we immediately arrive

at equation (14) for the simpli�ed problem case. It is important to mention that the

choice of the correct projection of the boundary condition onto the slow manifold (see

(29)) that guaranteed the asymptotic stability of the zero solution for the boundary

functions in the general case also justi�es mathematically the \physical" choice of

the B+ manifold made earlier for simpli�ed problem (there the choice was made

to guarantee that the values of concentrations in the system remain non-negative).

Naturally, for such choice of the slow manifold, the zero solution of equation (14)

for the �-function is also asymptotically stable.
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Note that in both reduced problems only one parameter, k, is present. From the

viewpoint of applications, the identi�cation of this parameter will usually be the

most important problem in which the asymptotic reductions constructed above are

used. Currently, from the numerical analysis viewpoint, for available numerical soft-

ware and fast computers, obtaining the solution of the original problem (1), (2) is

as easy as obtaining the solution of either one of the limiting problems. However, to

solve the original problem all the parameter values in the model must be speci�ed,

and this cannot always be done! Both presented reduced models allow us to elim-

inate the \smallparameter dependence (this parameter usually cannot be robustly

identi�ed during the solution of inverse problems of parameter identi�cation), and

keep only the \moderate" parameter (which can be identi�ed from experimental

data). While in the case of reduction of previously simpli�ed problem only one dif-

ferential equation must be solved, some amount of work must be done \by hand"

(identi�cation and calculation of �rst integrals, etc.) to arrive at the �nal limit-

ing problem. For more complex systems the amount of such preliminary work may

increase dramatically, and the steps of the simpli�cation algorithm, which are nec-

essarily problem dependent, cannot be easily quanti�ed for including them into a

symbolic system reduction algorithm. The general approach that we have presented,

on the other hand, is designed to minimize the amount of preliminary simpli�cation

work and is, thus, more suitable for its inclusion as a part of the reduction algorithm

in symbolic reduction programs.
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