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Abstract

This is a study on jump conditions across the interface between two adja-

cent phases. The interface behaves as a free boundary, and in sharp interface

models jump conditions are used to determine the values of thermodynamic

�elds at the free boundaries.

In this study the jump conditions are derived from balance equations for

singular surfaces that do not have singular lines, i.e. triple junctions are not

considered here. At �rst we present the most general form of jump conditions

to give a general framework, from where we consider various special cases

with a focus on the inuence of mechanical �elds on the interfacial processes.

The special cases include the Ho�mann/Cahn capillarity vector theory and

jump conditions for interfaces where order/disorder transitions are involved.

Furthermore we discuss interfacial chemical reaction laws, and in particular

the creation and annihilation of vacancies at a liquid/solid interface.

1 Introduction

An example for the need of interfacial jump conditions is given by stress assisted

di�usion in single crystal Gallium Arsenide (GaAs) that leads to the formation

and growth of unwanted liquid droplets in a solid surrounding, [9], [36], and [37].

The modeling of this thermodynamic process relies in its essential parts on jump

conditions at the liquid/solid interface. There is already an extensive literature on

jump conditions, see in particular [2], [27], [26], [16], [22], [3], and [17] for a general

thermodynamic treatment, [24], where pure mechanical jump conditions are derived

and [25] where exclusively the Stefan jump condition is explored. However, the jump

conditions that appropriately represent the phenomena of the described example

are not among the results from the literature, because these ignore order/disorder

transitions and the creation and annihilation of vacancies are also not considered.

Here the general objective is a study on the interface between two adjacent bodies.

Di�erent kinds of interfaces may appear: (i) Phase boundaries: The interface sepa-

rates two phases of a single substance, say liquid and gas. A more complex example

is as follows. The interface separates two phases consisting of a mixture of several

constituents. Some of them may cross the interface, while it behaves impermeable

for other constituents. Interfacial chemical reactions may also happen, so that in-

coming constituents are created or annihilated on the interface. (ii) Contact areas:

Two adjacent bodies are made from di�erent materials, say copper in contact with
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steel. In this case often only mechanical forces are transmitted across the interface.

(iii) Membranes and shells: It may happen, that the interface between two adjacent

bodies is in fact a thin body. In the zero thickness limit, the thin body can usually be

represented by a surface, which is called membrane or shell, respectively. A rubber

balloon which separates two gases provides a well known example for a membrane.

In this study we are especially interested in phase boundaries, however, many of the

calculated relations are also valid for contact areas and thin bodies. In the following

we will use the general notion interface. Sometimes the interface is called a singular

surface, because in general the interfacial limit values of the thermodynamic �elds

of the adjacent bodies are discontinuous, when they are formed from di�erent sides

of the interface.

There are di�erent strategies to derive jump conditions. They can be established

by minimization of the Gibbs free energy, see Alexander & Johnson, [2], for a quite

general treatment in case that uids and only disordered solids are involved, and

Dreyer & Duderstadt, [9], where a plane interface between a liquid and the ordered

solid, viz. semi-insulating GaAs, is considered. In the current study the interfacial

jump conditions rely on global equations of balance for a test volume V = V+ [ V�,
where the partial volumes V+ and V� are occupied by two phases of a material

body consisting of a
+=�
c chemically di�erent constituents. For disordered solids,

the same strategy is explored by Gurtin and Voorhees, [17], [18], however, these

authors additionally introduce the so called con�gurational forces. These quantities

are avoided in the following.

The thermodynamic constitutive theory of chemically reacting mixtures is not among

the objectives of this study. However, even so we need some thermodynamic rela-

tions for the bulk materials: the Gibbs equation, the Gibbs/Duhem equation, and

the relation between energy and entropy ux. The underlying thermodynamic mix-

ture theory is carefully and extensively developed and discussed in [27] and [28] by

Ingo M�uller. The few necessary generalizations to mixtures of solids are explicitly

given in the current study.

In the past, the anisotropy of interfaces is often described by the capillarity vector

� according to Cahn & Ho�mann, [20], [21]. In Section 13.2 we relate � to the

normal component of the surface stress vector and we show that its appearance

induce a non-conserved interfacial angular momentum. The Cahn/Ho�mann jump

conditions ignore interfacial elasticity and deviatoric stresses of the bulk materials.

Both phenomena are included in the corresponding jump conditions of the current

study.

In contrast to disordered solids there are privileged lattice sites in ordered solids,

and this phenomenon is described by a partition of the crystal lattice into vari-

ous sublattices. Interfacial jump conditions must determine the distribution of the

constituents on the sublattices at a, say, liquid/ordered solid interface. They are

thus di�erent from jump conditions that describe a liquid/disordered solid interface.

Both cases are discussed in detail in Sections 15.3 and 15.4.
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Figure 1: Device for demonstration of the Gibbs/Thomson law

2 The content of the classical Gibbs/Thomson law

The most well known jump conditions concern the interface between a liquid droplet

and vapour, and determine (i) the pressure jump at the interface and (ii) the

vapour pressure by the curvature of the droplet. The equations are known as the

Gibbs/Thomson law, [34], [15]. In order to illustrate the content of the Gibbs/

Thomson law we consider the system from Figure 1. A pressure vessel is closed by a

movable piston and contains a spherical liquid droplet with radius r consisting of a

single substance in contact with its vapour at uniform temperature T0 and constant

outer pressure p0.

The conditions of (unstable) equilibrium are, see [27], [28], [10] for details,

p+ = p0; p� = p+ +
2�

r
; g+(T0; p+) = g�(T0; p�): (1)

Here � is the surface tension and the functions g+=� denote the speci�c Gibbs free

energies of vapour and liquid, respectively. In sections 13.1 and 15.3.2 the laws (1)2
and (1)3 will be rederived.

The conditions (1)1;2 describe mechanical equilibrium, while (1)3 determines ther-

modynamic equilibrium. The condition (1)2 relates the pressure di�erence to the

curvature of the droplet and was �rst formulated by Laplace, [23]. In (1)3 we may

eliminate the liquid pressure by means of (1)2. If we consider an incompressible

liquid, i.e. @�=@p = 0, where � is the speci�c volume of the liquid, we obtain due

to (@g=@p) = �

g+(T0; p+)� g�(T0; p+) = ��
2�

r
: (2)

This is the classical Gibbs Thomson law, which can be used to calculate the vapour

pressure p+ as a function of temperature and curvature of the droplet.

It is important to compare (1)3 with (2). Both laws have the same content. However,

the pressure arguments in (1)3 correspond to the vapour phase and liquid phase,

respectively, while in (2) the vapour pressure appears in g+ as well as in g�. The
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pressure di�erence between liquid and vapor is explicitly given on the right hand

side of (2).

A simple kinetic consideration allows even the calculation of a growth law for the

droplet, [10]. It reads

dr

dt
= ��

r
kT0

2�m

pV (T0)

kT0
exp(

m(g+(T0; p+)� g�(T0; p+))

kT0
)�

�
�
1� exp(

m(g+(T0; p+)� g�(T0; p�))

kT0
)

� (3)

The newly introduced quantities are the atomic mass, m, the Boltzmann constant,

k, and the vapour pressure, pV ; that corresponds to a at interface. The vapour

pressure pV solves (2) for r !1.

For a given initial radius r(0), the growth law determines the evolution of the droplet.

For given T0, p0, we can calculate from g+(T0; p0)� g�(T0; p0) = ��2�=rc a critical

radius rc, and for r(0) < rc the droplet will shrink while it will grow for r(0) > rc.

Finally we give a simple calculation that relates the surface tension to the free energy

density of the interface. To this end we calculate the necessary work to change the

total volume of the system in an isothermal process. This work is equal to a change

of the total free energy 	. We write

d	 = �p+dV = �p+d(V+ + V�) = �p+dV+ � p�dV� + (p� � p+)dV� =

= d	+ + d	� + �da;
(4)

where a = 4�r2 is the surface of the droplet. We conclude that the total change

of the free energy consists of three parts corresponding to the two bulk phases and

to the interface. In particular we may identify d	s = �da, where d	s gives the

isothermal change of the interfacial free energy 	s.

A slight generalization of this result can be obtained as follows: Let Ts and Ss
denote surface temperature and surface entropy, respectively, and let us assume

that a change of Ts gives rise to a change of the surface free energy in the usual

manner, so that there results an interfacial Gibbs equation, viz.

d	s = �SsdTs + �da: (5)

There follows

Ss = �@	s

@Ts
; � =

@	s

@a
and the integrability condition

@Ss

@a
= � @�

@Ts
: (6)

Furthermore let us consider a small surface element a with a uniform distribution

of temperature Ts, and let us assume

	s =  s(Ts)a; Ss = ss(Ts)a: (7)

We conclude

� =  s; ss = � @�

@Ts
; (8)
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and this form of the interfacial contribution to the free energy is the historical reason

to call the introduced surface tension � also interfacial free energy density.

The described model is obviously too simple in many circumstances. For example,

rubber membranes do not behave in this simple way, see [8], [11] for details. Further-

more, interfaces that represent phase boundaries are also not adequately described

by this model if anisotropic solids are involved. In Section 12 we will generalize this

result to anisotropic and elastic deformable surfaces.

Atomistic models for the calculation of the surface tension are found to be in [8] for

elastic membranes, in [32] for uid/uid interfaces and in [33], where the calculation

starts from a lattice model.

3 A piece of thermodynamics for liquids and solids

3.1 Euler and Lagrange description of the variables

We consider a body B whose volume V (t) may depend on time t. We may use a

�xed Cartesian coordinate system to indicate a space point, which at some time t

is occupied by a material point P of B, by its Cartesian coordinates x = (xi) =

(x1; x2; x3): The notion material point means the smallest units of B that cannot

further be resolved on the chosen space scale.

If the body B is a mixture of ac constituents, the variables to describe the thermo-

dynamic state of B are the �elds

�a = �a(t; x); a 2 f1; 2; :::; acg; partial mass densities,

�i = �i(t; x); barycentric velocity of the mixture, (9)

u = u(t; x); speci�c internal energy of the mixture.

The total mass density of the mixture, �, is given by the sum over the partial mass

densities, and for some purposes it is useful to calculate the mixture velocity, �i,

from the velocities of the constituents, �ia. Thus we write

� =

acX
a=1

�a and �i =

acX
a=1

�a

�
�ia: (10)

The given description of B is called spatial or Euler description, and we call the pair

(t; x) Euler coordinates.

In order to describe the deformation of the considered body, it is useful to indicate

any material point P of B at a �xed reference time t0 by its coordinates X = (X i) =

(X1; X2; X3) with respect to a rectangular Cartesian coordinate system.

The motion of the point P; is then described by the �eld �(t; X) = �i(t; X) =

(�1(t; X); �2(t; X); �3(t; X)), which gives the coordinates of P at time t > t0:

xi = �i(t; X): (11)
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The �eld � is called motion, and its �rst derivatives

�̂i =
@�i

@t
and F ij =

@�i

@Xj
with J = det(F ij) 6= 0 (12)

are the velocity and the deformation gradient, respectively. The condition on the

Jacobian J guarantees that (11) is invertible.

Later on, we will need an identity, that reads

@

@Xk
(J

�1

F ki) = 0: (13)

This identity follows from the de�nitions (12) by a straightforward calculation.

If the body B is a mixture consisting of ac constituents, the variables are the �elds

of motion, partial mass densities and internal energy, respectively,

xi = �i(t; X); �a = �̂a(t; X); u = û(t; X): (14)

The description of the body B by �elds that map the coordinates X into some

function space, is called material or Lagrange description, and we call the pair

(t; X) Lagrange coordinates.

We may use the �eld of motion to relate the Euler description to the Lagrange

description by

�̂a(t; X) = J�a(t; �(t; X)); �̂i(t; X) = �i(t; �(t; X)); û(t; X) = Ju(t; �(t; X)):

(15)

The Lagrange description is quite natural for solids whereas in liquids and gases

the Euler description is more convenient. In this study on interfacial boundary

conditions, both descriptions are needed, because it often happens that the adjacent

substances at an interface are liquid and solid.

3.2 Gibbs equation for uids and solids as bulk materials

There are further important quantities to describe properties of mixtures. These

are: temperature, T , speci�c entropy, s, free energy,  = u� Ts; and the chemical

potentials of the constituents, �a, [27], [28].

Furthermore there are three measures of stress, viz. the Cauchy stress, �ik, and the

�rst and second Piola Kirchho� stress, respectively, �̂ik and tik:

�ik = �ki; �̂ik = J
�1

F ij�jk; tik = J
�1

F ij
�1

F kl�jl: (16)

The Cauchy stress appears naturally in the Euler description, the �rst Piola Kirch-

ho� stress is a measurable quantity, and appears naturally in the Lagrange descrip-

tion. Finally the second Piola Kirchho� stress is needed to formulate constitutive
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laws, which relate the stress to the variables, [35]. Let us decompose the Cauchy

stress into its trace and the traceless part, the latter one is indicated by angle brack-

ets around the indices. We write

�ik = �pÆik + �<ik> with p = �1

3
�nn; (17)

and we call the quantity p the pressure.

There also are various measures of the deformation of a body. An important one is

the right Cauchy Green tensor, Cik, and its unimodular restriction, which we denote

by cik:

Cik = FmiFmk and cik = J�3=2Cik so that det(cik) = 1: (18)

All these quantities are related to each other by the Gibbs equation, which read in

uids as well as in thermoelastic solids

d� = ��sdT +
1

2
J�1=3tikdcik +

X
a=1

�ad�a: (19)

The Gibbs equation implies

�s = �@� 
@T

; tik = 2J1=3
@� 

@cik
; and �a =

@� 

@�a
: (20)

Furthermore, there holds the Gibbs/Duhem equation

p = �� +
X
a=1

�a�a: (21)

We conclude that the knowledge of the free energy density � (T; �1,...,�ac ; c
ik) is

suÆcient to calculate all the introduced quantities. In this study, we assume the

free energy density to be given.

In a mixture of isotropic uids the free energy does not depend on cik, and the

second Piola/Kirchho� stress drops out of the Gibbs equation. Thus for a uid

phase the knowledge of the free energy density � (T; �1,...,�ac) is suÆcient to relate

the introduced quantities to the variables.

The proof of the Gibbs equation and of the Gibbs/Duhem equation for uid mixtures

and for those solids that only consist of a single substance can be found in [27]. The

generalization to a solid mixture, viz. eqns. (19) and (21), has not been published

elsewhere, but it can be derived along the strategies that are outlined by I. M�uller

in [27].

3.3 Entropy ux/heat ux relation

Later on we need a further result of thermodynamics of mixtures, which gives the

relation between the entropy ux, �k, and the heat ux, qk. In a chemically reacting
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mixture of uids and even in solids, which may be exposed to the inuence of

mechanical stress �elds, the entropy ux/heat ux relation is given by

�k =
1

T
(qk �

acX
a=1

�aJ
k
a ): (22)

Here Jka denote the components of the di�usion ux of the constituents, see [27] and

[9] for details.

4 Singular surfaces

The common boundary between two adjacent phases is described by a surface s. We

call s a singular surface, because the thermodynamic �elds may su�er discontinuities

if the phase boundary is crossed. The conditions that relate the limiting values of

the �elds at a singular surface are called jump conditions.

4.1 Various descriptions of surfaces

In Euler coordinates a surface s may be described by the equation

s(t; x) = 0: (23)

Under some assumptions, we may also describe s in Lagrange coordinates.

Throughout this study, we consider exclusively so called coherent interface bound-

aries. These are de�ned by a �eld of motion which is continuous across the surface s.

Thus we are allowed to use xi = �i(t; X) to describe s in the reference con�guration

according to

ŝ(t; X) := s(t; �(t; X)) = 0: (24)

There are two more possibilities to describe the geometry of a surface. To this end

we introduce Gaussian parameters U�; � 2 f1; 2g and describe the surface by

xis = x̂is(t; U
�) and X i

s = X̂ i
s(t; U

�) (25)

in the actual and in the reference con�guration, respectively.

4.2 Euler and Lagrange description of surfaces

We consider the surface in Euler coordinates and assign to each point of the surface

a normal vector, �i; and its normal speed, w�, respectively. In Lagrange coordinates

we write N i and WN . The normal vectors can be calculated from (23) and (24) by

�i =
sxip
sxksxk

and N i =
ŝXip
ŝXk

ŝXk

; (26)
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while the normal speeds follow according to

w� = � stp
sxksxk

and WN = � ŝtp
ŝXk

ŝXk

: (27)

Here partial derivatives are indicated by indices.

The side of s into which the normal points is called the \+" region, the other side

is the \-" region. The brackets

[[ ]] =  + �  � and f g = 1

2
( + +  �); (28)

denote the jump and the mean value of any generic quantity  , where  +=� represent

the limiting values of  formed in the \+" region and \-" region, respectively:

 +=� = lim
x2\+=�"; x!xs

 (t; x): (29)

The continuity condition, [[�i]] = 0, implies that the temporal and spatial derivatives

of �i; giving the velocity �i and the deformation gradient Fij; obeys the Hadamard

conditions

[[�i]] = �WN [[Fij]]Nj; [[Fij]] = aiNj: (30)

A proof of (30) is found in [35].

4.3 Gaussian description of surfaces

Another possible description of the surface s results by the introduction of Gaussian

surface parameters U�; � 2 f1; 2g, so that any point P on s is indicated by the

function xis = x̂is(t; U
�). In P we de�ne tangential vectors, the metric tensor and

the the normal vector, respectively, according to

� i� =
@x̂is
@U�

; g�� = � i��
i
�; �i =

"ijk�
j
1 �

k
2p

g
; with g = det(g��): (31)

The spatial derivative of � i� may be decomposed with respect to tangential and

normal components as

@� i�
@U�

= �����
i
� + b���

i with ���� = g��
@� i�
@U�

� i� and b�� =
@� i�
@U�

�i: (32)

The quantities ���� and b�� are the Christo�el symbols and the curvature tensor,

respectively. The spatial derivative of the normal vector �i can be calculated to

@�i

@U�
= �g��b��� i�: (33)
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The mean curvature kM is de�ned by

kM =
1

2
b��g

��: (34)

Next we de�ne the speed wi of s and its decomposition into tangential and normal

parts by

wi =
@x̂si
@t

= w�
� �

i
� + w��

i: (35)

The calculation of the spatial derivative of wi yields

@wi

@U�
= (w�

� ;� � w�g
��b��)�

i
� + (

@w�

@U�
+ w�

� b��)�
i; (36)

where the semicolon denotes covariant derivatives.

For later use we need the time derivatives of the metric tensor and the normal vector,

which can also easily be calculated. They read

@g��

@t
= w�

� ;�g�� + w�
� ;�g�� � 4w�kM and

@�i

@t
= �( @w�

@U�
+ w�

� b��)g
��� i�: (37)

Obviously we likewise may start from the function X̂ i
s(t; U

�) in order to describe

the surface s with respect to Lagrange coordinates. In this case we end up with

formulas that have the same structure as above, but in order to indicate the Lagrange

description, all quantities are now written with capital letters. For example, we write

W i =
@X̂s

i

@t
; T i

� =
@X̂s

i

@U�
; G�� = T i

�T
i
�; G = det(G��); (38)

and the other quantities are de�ned accordingly.

There are simple relations involving normal vectors and interfacial speeds of both

descriptions. These read

Nk =

r
g

G

1

J+=�
F ik
+=��

i; wi = �i+=� + F ik
+=�W

k; WN =

r
g

G

1

J+=�
(w� � �k+=��

k):

(39)

We may conclude from (39)1 that the expression J
�1

F kiNk is continuous across the

surface:

[[J
�1

F ki]]Nk = 0: (40)

Later on this identity will be used to transform the jump conditions between the

Euler- and the Lagrange description.

5 General equations of balance

The general equations of balance will be formulated for a material volume, which

has the property that no mass ux through its boundary @V is allowed. In other
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Figure 2: A material volume is divided into two parts by a singular surface

words: The boundary of a material volume moves with the velocity of the particles

of the body. A material volume is useful to describe the global equations of balance.

Figure 2 shows a material volume which is decomposed into two regions with volumes

V+ and V� by a singular surface s. The normal vector of the material surfaces @V+
, @V� and of the singular surface are denoted by nk and �k, respectively. The unit

vector ~ek = e��k� indicates a vector which is tangential to s and normal to @s.

Note that @V+ , @V� are material surfaces, so that no mass ux is allowed through

@V+ , @V�, while the singular surface s is generally not material, so that the exchange

of mass between the volumes V+ and V� is possible.

5.1 General global equation of balance

We consider the volume, which is indicated in Figure 2 and formulate the general

equation of balance for a generic additive quantity 	:

d	

dt
= Flux(�) + Source(�): (41)

The quantity 	 may have a volume density  � and a surface density  s; and we

decompose 	 as

	 =

Z
V++V�

 �d
3x+

Z
s

 sda: (42)
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Accordingly we introduce a volume ux density 'k� and surface ux density ~'ks =

'�s �
k
� in order to decompose the ux � of 	 through @V+ns, @V�ns and through @s:

� = �
Z

@V+ns

'k��kda�
Z

@V
�

ns

'k��kda�
Z
@s

'�s e�dl: (43)

The �rst two contributions to the ux describe nonconvective uxes across the ma-

terial surfaces @V+ns, @V�ns, while the third contribution describes a ux, which is

tangential to s and normal to its boundary @s. The sign is chosen, so that incoming

uxes induce positive contributions to �.

Let � be the source of 	 with volume density �� and surface density �s:

� =

Z
V++V�

��d
3x +

Z
s

�sda: (44)

The general equation of balance (41) thus read

d

dt
(

Z
V++V�

 �d
3x +

Z
s

 sda) = �
Z

@V+ns

'k�nkda�
Z

@V
�

ns

'k�nkda�
Z
@s

'�s e�dl+

Z
V++V�

��d
3x +

Z
s

�sda: (45)

Next we will exploit (45) separately for points lying in V� and s, respectively. To

this end we need so called transport theorems, which are rules to interchange the

time di�erentiation in (45) with the appearing time dependent volume and surface

integrals.

5.2 Transport theorems for volume and surface integrals,

surface divergence theorem

The identity

d

dt

Z
V++V�

 �d
3x =

Z
V++V�

@ �

@t
d3x +

Z
@V+ns[@V�ns

 ��
knkda�

Z
s

[[ �]]w�da; (46)

is called transport theorem for volume integrals, and its proof is an immediate

consequence of Reynolds transport theorem for volume integrals for a region with

volume 
, whose surface @
 moves with the velocity wk, see [27], [4], and [35] for

details,:
d

dt

Z



 �d
3x =

Z



@ �

@t
d3x+

Z
@


 �w
knkda: (47)
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In order to formulate the transport theorem for surface integrals, we assume at �rst

that the surface �elds are given as functions of Gaussian surface parameters U�;

� 2 f1; 2g. The transport theorem for surface integrals is the identity

d

dt

Z
s

 sda =

Z
s

(
@ s(t; U

�)

@t
+  s(w

�
� ;� � 2kMw�))da; (48)

and its proof is given in [4] and [27] .

Finally there is a divergence theorem for surfaces, which readsZ
s

'�;�da =

I
@s

'�e�dl: (49)

The proof of the identity (49) relies on the three-dimensional Stokes theorem, and

its proof can also be found in [4] and in [27].

5.3 General local equation of balance in Euler coordinates

The following local versions of the global balance (45) will be given here in Euler

coordinates. The transition to Lagrange coordinates will be carried out in Section

5.4.

In regular points, i.e. x 2 V�, the local version of (45) reads

@ �

@t
+

@

@xk
( ��

k + 'k�) = ��: (50)

The proof relies on (46), which will be applied to an arbitrary material volume that

is contained in, V+ and V�, respectively.

Regarding points, lying on the singular surface s, the local version of (45) reads

�w�[[ �]] + [[ ��
k + 'k�]]�k = �@ s(t; U

�)

@t
�  s(w

�
� ;� � 2kMw�)� '�s;� + �s: (51)

The proof of eqn. (51) relies on the so called pillbox argument: The global equation

of balance (45) is applied to the cylindrical volume of Figure 3. The limit H ! 0

implies immediately the eqn. (51).

The generic equations (50) and (51) set the general frame of equations of balance.

The conservation laws for mass, momentum, energy and further special equations

of balance follow by special choices for the generic densities, uxes and productions.
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Figure 3: Cylindrical volume to be used to derive jump conditions across a singular

surface

5.4 General local equation of balance in Lagrange coordi-

nates

The transition of the local equations of balance from Euler to Lagrange coordinates

rely on the de�nitions

 ̂� = J �; '̂k� = J
�1

F kj'j�; �̂� = J��: (52)

In regular points, i.e. X 2 V�, the local version of (45) reads

@ ̂�

@t
+
@'̂k�
@Xk

= �̂�: (53)

In order to proof the eqn (53) we insert in (50) the de�nitions (52)1;3, and apply the

chain rule to the divergence. Due to the identity (13) there appears the quantity '̂k�
under the divergence.

In order to derive the local analogue of (53) in points of the singular surface s, we

start from (51). Here we insert the de�nitions (52)1;2, then we take care for the

identities (39) and (40) and obtain

�WN [[ ̂�]] + [['̂k�]]N
k =

r
g

G
(�@ s(t; U

�)

@t
�  s(w

�
� ;�� 2kMw�)� '�s;� + �s): (54)

This is the �nal form of the generic equation of balance in singular points in Lagrange

coordinates. Note that only its left hand side has been transformed from Euler to

Lagrange coordinates. In this study it is not necessary to describe also the surface

terms on the right hand side of (54) with respect to the reference con�guration of

the considered body.
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5.5 A remark on the equivalence of balance equations in

Euler and Lagrange description

The last two sections have revealed a complete equivalence of the generic repre-

sentation of balance equations in Euler and Lagrange description. Thus at a �rst

glance one might think that it is suÆcient to consider only one of the descriptions.

However, both are needed, because the special cases, which are related to special

physical situations, destroy the equivalence.

For example, if we restrict the velocity of a substance, which crosses the interface,

to normal motion, we must decide whether we are interested in normal motion with

respect to the actual surface, i.e. (�i)+=� = (��)
+=��i, or to de�ne normal motion

with respect to the reference con�guration, i.e. (�i)+=� = (�N)
+=�N i.

6 The conservation laws for mass, momentum and

energy

We are interested exclusively in interfacial boundary condition, i.e. special equations

of balance at singular surfaces. For this reason we do not consider the well known

special forms of the equations of balance in regular points in detail.

In this chapter we identify the generic densities, uxes and sources with physical

quantities and their properties. In turn the generic equations of balance (51) become

physical laws. In particular, the equations of balance become conservation laws if

the production densities �� and �s are set equal to zero.

The conservation laws for mass, momentum and energy are the most important ones.

They result with special choices for the generic densities, uxes and productions

appearing in (51).

The balance of mass relies on the physical experience that there are neither noncon-

vective mass uxes nor mass sources, and we write

 � = � bulk mass density;

 s = �s surface mass density; (55)

'k� = 0; '�s = 0; �� = 0; �s = 0:

With these settings, the generic jump condition (51) becomes the balance of mass:

[[ _m]] = �@�s
@t

� �s(w
�
� ;� � 2kMw�); with _m = �(�k�k � w�): (56)

In order to derive the balance of momentum, we ignore external gravitational and

Lorentz forces, and in this case physical experience states that there is no source of
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momentum. We identify

 � = ��i -bulk momentum density, �i velocity of particles,

 s = �sw
i -surface momentum density; wi surface velocity, (57)

'k� = ��ik -(Cauchy) stress, force per area, (58)

'�s = �ti�s -surface stress vector � force per line, (59)

�� = 0; �s = 0: (60)

With these identi�cations we obtain the momentum balance. Note that we have

eliminated two parts on its right hand side by means of the mass balance:

[[ _m(�i � wi)]]� [[�ik]]�k = ��s
@wi

@t
+ ti�s;�: (61)

For later use we decompose the surface stress vector into tangential and normal

components. We write

ti�s = S��� i� + S��i: (62)

The newly introduced quantities S�� and S� are called surface stress tensor and

normal stress, respectively.

Finally we obtain the balance of energy if we identify

 � = �(u+
1

2
�2) bulk energy density,

 s = us +
�s

2
w2 surface energy density,

'k� = qk � �ik�i energy ux of the bulk, (63)

'�s = q�s � ti�s w
i surface energy ux,

�� = 0; �s = 0:

We ignore again external gravitational and Lorentz forces and additionally we ignore

energy sources resulting from radiation. In this case physical experience states that

there is no further source of energy. The following special form (64) of the energy

balance results because again we have eliminated two parts on its right hand side

by means of the mass balance:

[[ _m(u+
1

2
�2�1

2
w2)]]+[[qk��ik�i]]�k = ��s

@ 1

2
w2

@t
�@us
@t
�us(w�

� ;��2kMw�)�(q�s �ti�s wi);�:

(64)

The decompositions of the energy into internal energy, (�u; us), and kinetic energy,

(�=2�2; �s=2w
2) and of the energy ux into heat ux (qk; q�s ) and power of stress

(��ik�i;�ti�s wi) is induced by the requirement that equations of balance must be

invariant with respect to Galileian transformation.

Note that we have not assumed that the internal surface energy is proportional to

the surface mass density. It is most important that we do not make this assumption,

because it will turn out that even in the case, where inertia of the singular surface

is ignored, there still may be a nonzero contribution to the internal surface energy

density.
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7 Conservation of moment of momentum

Forming the cross product of the momentum balance with the surface position vector

x̂is leads to the balance of the moment of momentum, �s"
ijkx̂jsw

k, which is in general

a nonconserved quantity. The corresponding production �s can be identi�ed with

"ijktj�s �k� , see [27] for more details.

Only if we assume that the surface does not carry any internal moment of momen-

tum, the moment of momentum is a conserved quantity and we have

"ijktj�s �k� = 0: (65)

We introduce here the decomposition (62) of the surface stress vector and conclude

S�� = S�� and S� = 0: (66)

This case is well known in the literature, e.g. see [30], and a model, where (66) is

satis�ed is called membrane model in contrast to the shell model, where (66) is not

satis�ed. In physical terms: If a surface, is exposed to mechanical loads and behaves

approximately rigid, then (66)2 cannot be valid. Alternatively, if the external load

is exclusively balanced by tangential surface stresses, the surface changes its shape,

and the restrictions are valid. A rubber membrane provides a prominent example

for this case, [8] and [11].

8 Equations of balance for kinetic and internal

energy

Multiplying the momentum balance with the surface velocity wi yields the balance

of kinetic energy

[[ _m(wi�i � w2)]]� [[�ikwi]]�k = ��s
@w2=2

@t
+ (witi�s );� � ti�s

@wi

@U�
: (67)

We subtract now the balance of kinetic energy from the balance of (total) energy

(64) and obtain the balance of internal energy

[[ _m(u+
1

2
(� � w)2)]] + [[qk]]�k � [[�ik(�i � wi)]]�k =

=� @us

@t
� us(w

�
� ;� � 2kMw�)� q�s;� + ti�s

@wi

@U�
:

(68)

The Stefan condition and its generalizations will turn out as special cases of the

balance of internal energy.
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9 Equations of balance for the partial masses

Next we form balance equations for the partial masses. These read

[[ _m(ca � csa)]] + [[Jka ]]�
k = ��s

@csa

@t
� J�s;� + �sa: (69)

The balance of partial mass (69) follows from the general equation of balance (51)

if we identify

 � = �ca partial bulk mass density; ca concentration of constituent a;

 s = �scsa partial surface mass density; csa surface concentration of constituent a;

'k� = Jka = �ca(�
k
a � �k); di�usion ux, �ka velocity of constituent a (70)

with

acX
a=1

Jka = 0;

'�s = J�sa; surface di�usion ux with

acX
a=1

J�sa = 0; (71)

�� = ��a; production rate of constituent a with

acX
a=1

�a = 0;

�s = �sa; surface production rate of constituent a with

acX
a=1

�sa = 0:

In order to obtain the balance equations (69), we have again eliminated two parts

on the right hand side of (51) by means of the mass balance.

The partial masses are nonconserved quantities, neither in the bulk nor on a singular

surface, because chemical reactions might take place. However, the total mass is

conserved, and this fact implies the given restrictions for the di�usion uxes and

the productions rates, respectively.

10 Equations of Balance for the entropy

Another important quantity is the entropy, which is nonconserved in nonequilibrium

processes. The equation of balance for the entropy at singular surfaces reads

[[ _ms]] + [['k]]�k = �@ss
@t

� ss(w
�
� ;� � 2kMw�)� ('�s );� + &s: (72)
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The balance of the entropy (72) follows from the general equation of balance (51) if

we identify

 � = �s bulk entropy density; s speci�c entropy;

 s = s surface entropy density;

'k� = �k (nonconvective) entropy ux in the bulk,

'�s = ��s surface entropy ux, (73)

�� = &� local bulk entropy production with &� � 0;

�s = &s local surface entropy production with &s � 0:

We ignore entropy sources due to radiation. Physical experience states that the local

entropy production rates are nonnegative. We call this statement the strong second

law of thermodynamics, because this law goes beyond the famous statement that

was proved by Rudolf Clausius, [7], [27]: The temporal change of the total entropy,

S, of a body, whose outer surface is at uniform temperature T cannot be smaller

but the ratio of heat supply _Q divided by T :

dS

dt
�

_Q

T
: (74)

Note that, similarly to the surface energy density, we have not assumed that the

surface entropy density is proportional to the surface mass density. It is most impor-

tant that we do not make this assumption, because it will turn out that even in the

case, where inertia of the singular surface is ignored, there is a nonzero contribution

to the surface entropy density.

11 A simpli�ed interfacial model

If we ignore singular lines on s, the given singular equations of balance for mass,

momentum, internal energy, partial masses and entropy represent the most general

case. Dariadtion, external gravitational forces and Lorentz forces are represented by

volume denistives, and thus exclusively enter the regular equations of balance but

not their singular counterparts.

Now we will introduce some simpli�cations which bring the singular equations of

balance in a simpler form. The following choices of simpli�cations are made with

the objective to present illustrative examples which yield (i) well known jump condi-

tions at interfacial boundaries and the underlying assumptions, (ii) generalizations

regarding mechanical e�ects and jump conditions where ordered solids and vacancies

are involved.
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The most general case that we will study from now on relies on the restrictions

�s = 0; and csa = 0; no interfacial inertia,

J�sa = 0; no tangential di�usion ux at the interface,

q�sa = 0; no tangential heat ux at the interface, (75)

��sa = 0; no tangential entropy ux at the interface,

[[T ]] = 0; the temperature is continuous across the interface.

Note that chemical production and entropy production within the interface are still

allowed.

Interfacial chemical reactions are described by �sa, which gives the interfacial mass

production rate of constituent a. We assume that NR di�erent chemical reactions

might happen within the interface, and these are indexed by r 2 f1; 2; :::; NRg. The
stoichiometric coeÆcient of constituent a in the reaction r is denoted by ra. Let �

r

be the net rate of reaction r, so that the mass production rate can the be written

�sa =

NRX
r=1

raMa�
r; (76)

where Ma demotes the molecular weight of constituent a.

Finally we summarize the general singular balance equations according to the given

restrictions. There follows the balance of mass, balance of momentum, balance of

internal energy, balance of partial masses and the balance of entropy, respectively:

[[ _m]] = 0; with _m = �(�k�k � w�)

_m[[�i]]� [[�ik]]�k = (S��
;� � S�b��)�

i
� + (S��b�� + S�

;�)�
i

_m[[(u+
1

2
(� � w)2)]] + [[qk]]�k � [[�ik(�i � wi)]]�k =

�@us
@t

� us(w
�
� ;� � 2kMw�) + S��(g��w

�
� ;� � b��w�) + S�(

@w�

@U�
+ w�

� b��) (77)

_m[[ca]] + [[Jka ]]�
k =

NRX
r=1

raMa�
r

_m[[s]] +
1

T
[[(qk �

acX
a=1

�aJ
k
a )]]�

k = �@ss
@t

� ss(w
�
� ;� � 2kMw�) + &s with &s � 0:

The mass balance now implies the continuity of the mass ux _m through the in-

terface. Thus we may remove _m out of the jump brackets in the other balance

equations.
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12 The second law of thermodynamics for singu-

lar surfaces

In this section we derive the Gibbs equation for surfaces. In general its derivation

is cumbersome, but follows the strategy that is carefully described by I. M�uller in

the monograph [27]. For that reason we start here from the simplied surface model

of the last section.

We multiply the entropy balance (77)5 by the temperature T , which is continuous

in the simplied case, and subtract the result from the internal energy balance (77)4.

There follows

�T &s = �@ s
@t

� ss
@T

@t
+ (S�� �  sg

��)(g��w
�
� ;� � b��w�) + S�(

@w�

@U�
+ w�

� b��)

+ _m[[( +
1

2
(� � w)2)]]� [[�ik(�i � wi)]]�k + [[

acX
a=1

�aJ
k
a ]]�

k � 0: (78)

Herein we have introduced the speci�c free energy of the bulk  = u� Ts and the

surface free energy density  s = us � Tss with the physical units Joule=kg and

Joule=m2, respectively. We recall from Section 2 that by de�nition  s � �, where

� is called surface tension, which is sometimes a misleading designation.

We assume now that the surface free energy density, the surface entropy density and

the surface stress depend at most on the set

T;
@T

@U�
; g��; g

0
��; b��; b

0
��; �

i; �0i: (79)

The quantities g0��; b
0
��; �

0i are metric tensor, curvature tensor and normal vector,

respectively, at the reference time t = 0, so that the pairs (g��; g
0
��); (b��; b

0
��);

(�i; �0i) are measures of the deformation of the surface. See [8] and [11], where the

deformation of a rubber balloon may serve as an illustrative example.

After carrying out the necessary di�erentiations in (78), we observe that the surface

entropy production depends linearly on

@T

@t
;
@2T

@U�@t
; w�

� ;�;
@w�

@U�
;
@b��

@t
: (80)

However, the inequality must hold for arbitrary values of these �elds, and thus we

conclude that the factors of the derivatives (80) must vanish, because otherwise

we could violate the inequality. This statement is discussed at length for various

circumstances and materials in [27]. The consequences are:

(i) surface free energy density, surface entropy density, surface stress and normal

stress do not depend on
@T

@U�
and b��; (81)
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(ii) there holds the Gibbs equation for surfaces, which may be written as

ss = � @�
@T

; S�� = �g�� +
1

2

@�

@g��
; S� = �g���k�

@�

@�k
; (82)

(iii) there remains the inequality

�T &s = _m[[( +
1

2
(� � w)2)]]� [[�ik(�i � wi)]]�k + [[

acX
a=1

�aJ
k
a ]]�

k � 0; (83)

which will be further exploited in Section 15.

13 Mechanical equilibrium

13.1 Equilibrium conditions

Mechanical equilibrium is established if the barycentric velocity �i is zero. On the

other hand, impermeable interfaces are de�ned by (�k)+=��k = w� so that there is

no (total) mass ux across the interface. Note that impermeable interfaces may still

allow a ux of partial masses.

Both cases lead to the same mechanical equilibrium conditions, which follow from

(77)2 and can

�[[�ik]]�i�k = S��b�� + S�
;� and � [[�ik]]� i��

k = g��(S
��
;� � S�b��): (84)

We conclude from the constitutive laws (83)1;2 and the conditions (84) for mechanical

equilibrium that the jump [[�ik]]�i�k of the Cauchy stress can be calculated if the

surface free energy density is known. The determination of the jump �[[�ik]]� i��k
needs additional information on the antisymmetric part S[��] of the surface stress

S��. However, it turns out that this jump is of minor importance, in particular it

is not needed to determine the jumps of the chemical potentials, see Sections 15.3

and 15.4 for more details.

We consider two interesting special cases. (i) If the bulk materials are mixtures of

nonviscous uids, their stress is represented by a pressure, �ik = �pÆik. If further-
more the surface free energy is a function of temperature only, �(T ), the equilibrium

conditions reduce to

[[p]] = 2�kM and
@�

@T

@T

@U�
= 0: (85)

We conclude that the pressure jump is proportional to the mean curvature of the

interface, see Section 2. This law was �rst derived by Laplace for spheres, [23]. In

addition, the temperature must be uniform on the interface.
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(ii) Now we assume that the surface tension depends exclusively on the normal vec-

tor, �(�i), which itself is a function of the surface parameters U�. Let us introduce

the function �̂(t; U�) = �(�i(t; U�)), and by means of the identity

@�̂

@U�
= �b���k�

@�

@�k
; (86)

we may rewrite the conditions (85) according to

�[[�ik]]�i�k = 2�̂kM+(
�1

b )���̂;��+(
�1

b )��;� �̂;� and �[[�ik]]� i��k = g��S
[��]

;� : (87)

13.2 Discussion and comparison with the literature

In 1950 C. Herring introduced a surface free energy density that depends on the

interfacial normal vector in order to study sintering processes where small particles

decrease their free energy by growing together, [19]. In the same article Herring also

considered interfacial elasticity and he showed that the surface stress tensor should

be calculated according to the relation (82)2, which follows here as a consequence

of the second law of thermodynamics.

In 1972 and 1974 J.W. Cahn &D.W. Ho�mann put forward the studies on anisotropy

of interfaces, [20], [21]. They ignored interfacial elasticity and considered the case

where the interfacial free energy density � exclusively depends on the interfacial

normal vector �i. Cahn and Ho�mann substituted � by the capillarity vector �i,

which nowadays is called Ho�mann/Cahn vector, and they equipped �i with the

properties

� = �i�i; d� = �id�i; �id�i = 0: (88)

In [21] Cahn and Ho�mann established the equilibrium law

[[p]] = di�s � �: (89)

In our notation the operator di�s� reads

di�s � � = g��� i�
@�i

@�i
; (90)

While the explicit meaning of di�s� is not generally given in [21], it appears explicitly
in Garcke/Nestler/Stoth, [14], where a sharp interface limit of a phase �eld model

is carried out.

We now compare our results with the Cahn/Ho�mann law (89). To this end we start

from (84) and assume according to Cahn/Ho�mann that � exclusively depends on

�i. There follows with (88)

�[[�ik]]�i�k = 2�kM � g��� i�(
@�k�k

@�i
);� = �divs � �; (91)

which gives the Cahn/Ho�mann law (89) if the bulk stress �elds are isotropic.
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The tangential components of [[�ik]]�k are related to the antisymmetric part of the

surface stress tensor, S[��], because there results

[[�ik]]� i��
k = g��S

[��]

;� : (92)

Next we calculate the surface stress vector ti�, which gives the force per line element

of the interface. We introduce the surface vector

X i
� = �ijk�

j
��

k; (93)

which lies in the tangential plane and is perpendicular to the direction �. We obtain

ti� = �ijk�jXk
�g

��: (94)

This is the Ho�mann/Cahn representation of the surface stress vector, which is best

suited to study triple junctions.

Note that both the Cahn/Ho�mann relations (89) and (94) only hold if interfacial

elasticity is ignored and if temperature is uniform on the interface.

In the literature the Ho�mann/Cahn framework is used to compare the sharp in-

terface limit of phase �eld models with pure sharp interface models and to relate

the higher gradient coeÆcients of phase �eld models with the surface free energy

density �. Various examples are found to be in McFadden & Wheeler [38] , Nestler

& Wheeler [31], Garcke, Nestler & Stoth [14], Dreyer & Wagner [12].

Interfacial elastic e�ects have also already been considered by other authors. Alexan-

der & Johnson calculated jump conditions for disordered solid/liquid interfaces in-

cluding interfacial elasticity via the minimization of the Gibbs free energy [2]. Gurtin

& Voorhees propose balance equations to derive jump conditions with elastic e�ects,

and they give a systematic evaluation of the second law of thermodynamics, [17] and

[18]. However, their reasonings rely on the so called con�gurational forces, which

are not needed in the current study, where we exclusively deal with the classical

forces of mechanics.

14 The Stefan condition and its generalizations

In this section we discuss the assumptions that lead to the well known Stefan con-

dition

�w��+ [[qk]]�k = 0: (95)

The quantity �may depend on temperature and is called latent heat in the literature,

[25].

The Stefan condition must obviously result as a special case of the internal energy

balance (77)3, and we will now analyse the necessary assumptions. To this end let

us at �rst assume (i) �ik = �pÆik, and (ii) �i = 0, (iii)  s = �(T ), (iv) wi = w��
i so

that the energy balance (77)3 can be reduced to

�w��[[(u+
p

�
+
1

2
w2]] + [[qk]]�k = T

@2�

@T 2

@T

@t
� T

@�

@T
2kMw�: (96)
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In case that we neglect the kinetic energy of the interface, we may identify the latent

heat as � = �[[(u+ p
�
]], which is in accordance to classical thermodynamics. However,

even now the Stefan condition does not result. The �rst contribution on the right

hand side of (96) only vanishes either in processes with constant temperature, or if

the surface entropy density does not depend on T . However, this is an exceptional

case. But even then, there is a second contribution which is proportional to the

mean curvature and to the interfacial normal speed. Finally, it is important to note

that the surface parameters must be chosen so that (iv) is satis�ed. See [12], where

an example is given that a di�erent choice is often prefered due to numerical aspects.

15 Interfacial equilibrium conditions and growth

laws

15.1 On the general structure of the interfacial entropy pro-

duction

The physical law whereupon the interfacial entropy production is positive in irre-

versible processes and zero in equilibrium gives rise to further important jump con-

ditions involving the chemical potentials at the interface. The derivation of these

conditions relies on the interfacial entropy inequality (83). In the next section we

will show that the interfacial entropy inequality can be brought into a sum of binary

products:

�T &s =
NX
A=1

FADA � 0: (97)

The quantities DA and FA are called driving forces and uxes, respectively, see also

Abeyratne and Knowles [1] for a very interesting example.

Driving forces that result from sharp interface limits of phase �eld models a derived

and discussed in [5], [6], and [12].

In equilibrium the interfacial entropy production is zero and always positive in

nonequilibrium processes. If the interfacial processes do produce interfacial en-

tropy, we exploit the inequality (97) as follows, see also Gurtin & Voorhees, [17] and

Liu [24]: We assume that there are constitutive laws that relate the driving forces

D1; D2; ::DN to the interfacial uxes FA as FA = ~FA(DB;W ), where W abbreviates

other variables that are not among the driving forces. We conclude from (97) that

&s assumes a minimum for DA = 0; and furthermore we have

(
@

@DB
(

NX
A=1

~FADA))jequ: = ~FBjequ: = 0; B 2 f1; 2; ::; Ng: (98)

In other words

DB = 0, FB = 0 in equilibrium: (99)
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Thus it follows that the uxes can be represented by

FA = �
NX

B=1

MABDB with MAB � positive de�nite. (100)

The matrix MAB contains the surface mobilities of the interface, which must be

determined experimentally. However, they also can be calculated from an underlying

kinetic theory. Section 2 provides an example for the latter case. The constitutive

law (100) is called growth law.

There exist an interesting limiting case. We recall that DA = 0 implies FA = 0.

However, if the surface mobilities are much larger than the bulk mobilities, we may

consider the limit MAB ! 1, and then we must have DB = 0, so that the uxes

FA remain �nite. In this case, the equilibrium conditions DA = 0 still holds, but

the uxes FA will be calculated from interfacial balance equations, and the process

under consideration is called di�usion controlled.

On the other hand, if the interface mobilities are comparable or smaller as the bulk

mobilities, the considered process relies on the law (100) and is called interface

controlled.

Next we identify the driving forces and uxes explicitly.

15.2 Alternative representation of the interfacial entropy

inequality

The exploitation of the interfacial entropy production (83) yields simple results only

if we consider the two special cases: (i) either the bulk materials consist of isotropic

uids or (ii) the bulk materials move at the interface exclusively in normal direction,

i.e.

in case (i): �ik = �pÆik or in case (ii): �i = ���
i: (101)

In both cases, the inequality (83) reduces to

�T &s = _m[[( +
1

2
(� � w)2)Æik � 1

�
�ik]]�i�k + [[

acX
a=1

�aJ
k
a ]]�

k � 0: (102)

From now on we consider exclusively the special case (ii).

For a further simpli�cation of the inequality (102), we de�ne the quantity

_m+=�
a = ( _mca + Jka �

k)+=�; (103)

which gives the total one sided ux of constituent a across the interface. The singular

mass balance (77)5 can now be written

[[ _ma]] =

NRX
r=1

Ma
r
a�

r; (104)
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and there holds due to (71)3
a
+=�
cX
a=1

_m+=�
a = _m: (105)

Next we eliminate the di�usion ux in the inequality (102) and take care for the

Gibbs/Duhem equation (21) to obtain

�T &s = _m[[
1

2
(� � w)2 � 1

�
�<ik>�i�k]] + [[

acX
a=1

_ma�a]] � 0: (106)

For a further exploitation of this form of the entropy inequality we need to know

the behaviour of the various constituents at the interface. In general there are four

di�erent kinds of constituents, and we put them into four groups as follows. The �rst

group contains constituents that may cross the interface without being subjected to

chemical reactions, i.e.

�1 = fa j _m+
a = _m�

a ; _m
�

a 6= 0g: (107)

The members of the second group of constituents cannot cross the interface, because

they experience the interface as an impermeable wall, i.e.

�2 = fa j _m+
a = 0; _m�

a = 0g: (108)

The third group contains constituents appearing on both sides at the interface, and

they are involved in interfacial chemical reactions, i.e.

�3 = fa j _m+
a � _m�

a =

NRX
r=1

Ma
r
a�

rg: (109)

Finally there is a fourth group �4 = �+
4 [��4 of constituents that are also involved

in interfacial chemical reactions but they appear either on the \+" side or on the

\-" side of the interface, i.e.

�
+=�
4 = fa j _m+=�

a = (+=�)
NRX
r=1

Ma
r
a�

rg: (110)

We proceed to rewrite the inequality (106) and in particular the second jump bracket,

which now can be written

[[

acX
a=1

_ma�a]] =
X
a2�1

_ma[[�a]] +
X
a2�3

< _ma > [[�a]] +

NRX
r=1

�r
X
a2�3

Ma
r
a < �a > +

NRX
r=1

�r(
X
a2�+

4

Ma
r
a�

+
a +

X
a2��

4

Ma
r
a�

�

a ) : (111)
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Next we assume that the constituent a = 1 belongs to �1, and we eliminate _m1 by

means of the side condition (106). The �nal result reads

�T &s = _m[[(�1 +
1

2
(� � w)2)� 1

�
�<ik>�i�k]]+X

a2�1

_ma[[�a � �1]] +
X
a2�3

< _ma > [[�a � �1]]+ (112)

NRX
r=1

�r(
X
a2�3

Ma
r
a < �a > +

X
a2�+

4

Ma
r
a(�

+
a �

1

2
[[�1]]) +

X
a2��

4

Ma
r
a(�

�

a +
1

2
[[�1]]) :

Note that the representations (106) and (112) of the interfacial entropy production

are equivalent. However, the representation (112) will be only applied to identify

driving forces and uxes for the special case that (i) the solid phase is a disordered

solid, i.e. there are no privileged lattice sites, and (ii) no vacancies appear.

The other interesting case is: (i) the solid has a sublattice structure, so that privi-

leged lattice sites can be described, and (ii) vacancies are taken into account. This

case will be treated on the basis of the representation (106).

15.3 Identi�cation of uxes and driving forces for disor-

dered solids without vacancies

In this section we consider interfaces between two uids, between uids and dis-

ordered solids without vacancies, and between two disordered solid phases without

vacancies, respectively. In these cases and unlike when ordered solids are involved,

the only side condition is given by (105). Thus we may directly identify the uxes

and driving forces in the inequality (112) by its comparison with the general in-

equality (97). We read o� the uxes

FA =
n
_m; _ma2�1 ; < _ma2�3 >; _m

+

a2�+
4

; _m�

a2��
4

;�r2f1;2:::;NRg

o
; (113)

and the corresponding driving forces

DA = f [[(�1 +
1

2
(� � w)2)� 1

�
�<ik>�i�k]]; [[�a � �1]]a2�1 ; [[�a � �1]]a2�3 ;

(
X
a2�3

Ma
r
a < �a > +

X
a2�+

4

Ma
r
a(�

+
a �

1

2
[[�1]]) +

X
a2��

4

Ma
r
a(�

�

a +
1

2
[[�1]]))r2f1;2:::;NRg

g:

(114)

15.3.1 Evolution to equilibrium, growth laws

If all the interfacial processes happen without entropy productions, and if N con-

stituents are able to cross the interface, there follow N + NR conditions for the

28



interfacial values of concentrations and stresses:

[[�1 +
1

2
(� � w)2)]] = [[

1

�
�<ik>]]�i�k

[[�a � �1]] = 0 for a 2 �1 [ �3; a = 1 2 �1;

(
X
a2�3

Ma
r
a < �a > +

X
a2�+

4

Ma
r
a(�

+
a �

1

2
[[�1]])+ (115)

X
a2��

4

Ma
r
a(�

�

a +
1

2
[[�1]])r2f1;2:::;NRg

= 0 for r 2 f1; 2; :::NRg

Recall that these interfacial equilibrium conditions hold if either no interfacial en-

tropy production appears or if all the surface mobilities are large, so that we may

consider the limit MAB ! 1. In this case we must set DB = 0 to obtain �nite

uxes FA, and the uxes will be calculated from the interfacial balance equations.

Recall that we have called such process di�usion controlled.

Obviously, we also may meet situations where the various surface mobilities are

of di�erent order. For example, it may happen that chemical reactions establish

equilibrium much faster as the two other processes. In this case we have

(
X
a2�3

Ma
r
a < �a > +

X
a2�+

4

Ma
r
a(�

+
a �

1

2
[[�1]])+

X
a2��

4

Ma
r
a(�

�

a +
1

2
[[�1]])r2f1;2:::;NRg

= 0 for r 2 f1; 2; :::NRg and (116)

FA = �
NX

B=1

MABDB for A;B 2 f1; 2; :::Ng:

15.3.2 Examples for interfacial equilibrium conditions

In this section we assume that all considered processes are di�usion controlled so

that the driving forces are zero. The following examples serve for an illustration of

the resulting conditions.

Single substance The interface separates two di�erent phases, which both consist

of a single substance. In this case we have c1 = 1 and the chemical potential �1
becomes the speci�c Gibbs free energy, g. Correspondingly, there follows only a

single condition from (115), which read

[[�1 +
1

2
(� � w)2)]] = [[

1

�
�<ik>]]�i�k with �1 = g =  � 1

3�
�kk: (117)

If we neglect the kinetic energy and if the substance is mechanically described by

an isotropic stress, i.e. �ik = �pÆik, there follows the classical result
[[g]] = 0 with g =  +

p

�
: (118)
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In Section 2 we have already recognized the jump condition (118) as the base for

the classical Gibbs/Thomson law. We conclude now that the Gibbs/Thomson law

only holds in uids, because in general we have �<ik> 6= 0 in solids.

Binary mixture Now let us consider an interface that separates two phases con-

sisting of binary mixtures. We assume additionally that both constituents may cross

the interface without chemical reactions. From (115) we read o� the two conditions

[[�1 +
1

2
(� � w)2]] = [[

1

�
�<ik>]]�i�k and � [[�1]] + [[�2]] = 0: (119)

Thus only if we neglect the kinetic energy and assume again an isotropic stress, we

obtain the known result

[[�1]] = [[�2]] = 0: (120)

Solid/liquid interface with �ve constituents In this example we consider a

solid/liquid interface, (+=�). There are three constituents, A;B;C, in the solid and
four constituents, A;B;D;E, in the liquid. The constituents A;B are found to be

in both phases, while C;D;E cannot cross the interface. Furthermore we assume

that within the interface there is a chemical reaction between the constituents C

and D, i.e.

CC+ + DD� = 0: (121)

For example, if oxygen appears in the liquid as the molecule O2, it dissociates into

2O within the interface before it can occupy a lattice site of the solid.

Thus we read o� from eqn. (115) three conditions, viz.

[[�A +
1

2
(� � w)2]] = [[

1

�
�<ik>]]�i�k;

[[�A]]� [[�B]] = 0; (122)

CMC�
�

C + DMD�
+
D = 0:

Furthermore there are three special ux conditions, viz.

(JkC)
� = � _mc�C ; (JkD)

� = � _mc�D; (JkE)
� = � _mc�E: (123)

This example may also serve to illustrate that a suÆcient number of conditions are

available to determine all unknowns at the interface. To this end we simplify the

considered process, by assuming (i) mechanical and interfacial chemical equilibrium

is established, (ii) the temperature is uniform and constant, (iii) the barycentric

velocity, �i, vanishes, and (iv) the bulk uxes are given by Ficks law

Jka = �
acX
b=1

mab
@(�b � �1)

@xk
: (124)
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Let us further assume that the mechanical problem, that we discussed above have

already been solved. Then there remain eight unknowns at the interface, viz. seven

concentrations, c+A; c
�

A; c
+
B; c

�

B; c
�

C ; c
�

D; c
�

E, and the normal speed, w�, of the interface.

For its determination we thus need eight equations. The �rst six equations are

already be given by the conditions (122) and (123), and there are two further jump

conditions for the constituents A and B that may cross the interface, viz.

��w�(c
+
A� c�A)+ ((JkA)

+� (JkA)
�)�k = 0; ��w�(c

+
B� c�B)+ ((JkB)

+� (JkB)
�)�k = 0:

(125)

15.4 Identi�cation of driving forces and uxes for ordered

solids and with vacancies

15.4.1 Statement of the problem: Solid/liquid interfaces in semiinsulat-

ing Gallium Arsenide

In this section we consider the interface between a liquid and an ordered solid with

sublattice structure and vacancies. Interfaces in semi-insulating Gallium Arsenide

(GaAs) will serve as an important example, where the distinctions to the previous

case with disordered solids can at best be illustrated.

Single crystal GaAs contains the major elements gallium and arsenic, and addition-

ally various trace elements, which are of most importance in order to fabricate semi-

conducting or semi-insulating GaAs, respectively. All constituents occupy three

sublattices of face-centered cubic (fcc) symmetry. The sublattices are indicated by

three Greek letters: �; �, . The lattice � is dominantly occupied by gallium, while

the arsenic is the major substance on the lattice sites of sublattice �. The sublattice

 indicates an interstitial lattice, where the dominant elements are vacancies. For

a proper application of single crystal semi-conducting or semi-insulating GaAs as a

wafer material, it is crucial that the trace elements are distributed homogeneously

on the lattice sites of the three sublattices. In order to remove dislocations, which

appear during the process of crystal growth, a special heat treatment of the wafer

becomes necessary. However, the heat treatment might start a di�usion process,

where the trace elements move preferably towards the vicinity of the dislocations

and �nd here thermodynamic conditions so that the formation of liquid droplets,

dominantly formed by the arsenic, sets in. The complete thermodynamic model

that takes care for 16 constituents is described in [36], [37], [9], [10].

Here we consider a simpli�ed case with a solid/liquid interface. The three sublattices

of the solid are occupied by gallium (Ga), arsenic (As) and vacancies (V ). We

assume that Ga is only found on sublattice �, while the other constituents can be

found on all three sublattices. Thus there are seven constituents in the solid, viz.

Ga�; As�; As�; As; V�; V�; V: (126)

and GaL; AsL in the liquid, so that Ga and As can cross the interface while the

vacancies are created or annihilated here.
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We are confronted here with two new problems: (i) There are several side conditions

due to the fact that all three sublattices have the same number densities, nSL, of

sublattice sites. (ii) The creation or annihilation of vacancies at the interface is

obviously not accompanied by creation or annihilation of mass.

15.4.2 Interfacial entropy inequality for ordered solid/liquid interfaces

The two mentioned problems require a change of the thermodynamic description by

a transition from the one sided mass uxes to one sided mole uxes. There holds

_m+=�
a = ( _mca+J

k
a �

k)+=� =Ma _n
+=�
a =Ma( _nya+j

k
a�

k)+=� with _m =

a
+=�
cX
a=1

Ma _n
+=�
a :

(127)

The newly introduced quantities are: Ma - molecular weight, _n - total mole ux,

_n
+=�
a - one sided mole ux, ya -mole fraction, j

k
a - mole di�usion ux.

Next we re-scale the chemical potentials according to ~�a = Ma�a. The unit of

the chemical potential has thus been changed from Joule/kg to Joule/mole. We

consider vacancies as massless particles, ie. we setMV� =MV� =MV = 0, however,

nevertheless they are carrier of energy and entropy. For this reason we introduce

the following rule: The rescaled chemical potentials ~�V�, ~�V� , ~�V of the vacancies

are nonzero.

The general interfacial entropy inequality (102) can thus be written

�T &s =
a
+=�
cX
a=1

Ma _n
+=�
a [[

1

2
(� � w)2 � 1

�
�<ik>�i�k]] + [[

acX
a=1

_na~�a]] � 0: (128)

We assume that the +=� refers to solid and liquid, respectively, and we write in

detail

�T &s = (MGa _nGa� +MAs( _nAs� + _nAs� + _nAs ))[[
1

2
(� � w)2 � 1

�
�<ik>�i�k]]+

_nGa� ~�Ga� � _nGaL ~�GaL + _nAs� ~�As� + _nAs� ~�As� + _nAs ~�As � _nAsL ~�AsL+

(129)

_nV� ~�V� + _nV� ~�V� + _nV ~�V � 0:

There are four additional side conditions:

(i) Conservation of mass

_nGa� = _nGaL ; _nAs� + _nAs� + _nAs = _nAsL : (130)

(ii) Equal number densities of lattice sites

_nGa� + _nAs� + _nV� = _nAs� + _nV� = _nAs + _nV : (131)
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These conditions serve to eliminate four one sided uxes in the interfacial entropy

inequality. We chose _nGaL , _nAsL, _nV� , _nV , and obtain

�T &s = _nGa�(~�Ga� � ~�GaL � ~�V� + [[
MGa

2
(� � w)2 � MGa

�
�<ik>�i�k]])+

_nAs�(~�As� � ~�AsL � ~�V� + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]])+

_nAs�(~�As� � ~�AsL + ~�V� + ~�V + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]])+ (132)

_nAs (~�As � _nAsL ~�AsL � ~�V + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]])+

_nV�(~�V� + ~�V� + ~�V ) � 0:

15.4.3 Identi�cation of uxes and driving forces

We compare the interfacial entropy inequality ((132)) with the general form (97) to

identify �ve uxes

FA = f _nGa� ; _nAs�; _nAs� ; _nAs ; _nV�g (133)

and �ve driving forces

DA = f~�Ga� � ~�GaL � ~�V� + [[
MGa

2
(� � w)2 � MGa

�
�<ik>�i�k]];

_nAs�(~�As� � ~�AsL � ~�V� + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]];

_nAs�(~�As� � ~�AsL + ~�V� + ~�V + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]]; (134)

~�As � _nAsL ~�AsL � ~�V + [[
MAs

2
(� � w)2 � MAs

�
�<ik>�i�k]];

~�V� + ~�V� + ~�Vg:

15.4.4 Interfacial equilibrium conditions for solid/liquid interfaces in

GaAs

In this section we assume that all considered processes are di�usion controlled, so

that the driving forces are zero. We neglect as usual the kinetic energy, and in this
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case the resulting conditions read

~�Ga� � ~�GaL � ~�V� = [[
MGa

�
�<ik>�i�k]];

~�As� � ~�AsL � ~�V� = [[
MAs

�
�<ik>�i�k]];

~�As� � ~�AsL + ~�V� + ~�V = [[
MAs

�
�<ik>�i�k]]; (135)

~�As � ~�AsL � ~�V = [[
MAs

�
�<ik>�i�k]];

~�V� + ~�V� + ~�V = 0:

These �ve conditions together with the four side conditions (130) and (131) yield

nine algebraic equations, that may be used to determine the nine interfacial number

densities of the constituents if the mechanical part of the problem has been solved.

In case that the bulk phases are homogeneous and in equilibrium, there exist an

alternative method to derive the jump conditions (135). This method relies on the

exploitation of the statement, that for given and �xed values of temperature and

external load, equilibrium in a two phase mixture is established by the minimum

of the available free energy. This approach is carried out for the GaAs problem

without mechanical phenomena by Wenzl, Mika, Henkel, [36], and Wenzl, Oates,

Mika, [36], and with mechanical/chemical coupling by Dreyer, Duderstadt [9], [10].

In either case, the jump conditions (135) that apply when ordered solids are involved,

cannot be obtained as a special case from the jump conditions (115), which give the

classical textbook results for interfacial conditions. We have shown here that the

latter only hold in disordered mixtures, a fact which is not mentioned in many

textbooks.

16 Local equations of balance in Lagrange coor-

dinates

16.1 Equations of balance for partial masses, momentum,

energy and entropy

The special jump conditions (77), which are formulated by means of Euler coordi-

nates, will now form the base for a derivation of the corresponding jump conditions

in Lagrange coordinates.

We start with the relations (77)1, (39), (40) involving normal vectors and interfacial
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normal speeds in Euler and Lagrange coordinates:

_m = ��J
s
G

g
WN ; with [[ _m]] = 0; �i =

s
G

g
J

�1

F kiNk; wi = �i+=� + F
ij
+=�W

j:

(136)

We conclude from (136)1 and (136)3 that the products �J and J
�1

F kiNk are contin-

uous across the interface:

[[�J ]] = 0; [[J
�1

F ki]]Nk = 0: (137)

Recall that we consider as before exclusively the case, where the barycentric velocity

is restricted to normal motion, i.e. �i = ���
i at the interface. Furthermore we

restrict the surface parameters so that a surface point moves exclusively in normal

direction, i.e. we set wi = w��
i. In this case, the eqn. (136)4 implies �

i
�F

ijW j = 0.

Finally we recall the de�nitions (52), and de�ne accordingly

�0 = �J; �0a = �aJ; Ĵka = J
�1

F kiJ ia; q̂k = J
�1

F kiqi: (138)

We insert these relations and de�nitions into the jump conditions (77). There follow

the corresponding jump conditions in Lagrange coordinates:

��0WN [[�
i]]� [[�̂ik]]N

k =

r
g

G
((S��

;� � S�b��)�
i
� + (S��b�� + S�

;�)�
i)

��0WN [[(u+
1

2
W 2

NF
ijF ij)Æks � 1

�0
�̂ikF is]]NkN s + [[q̂k]]�k =r

g

G
(�@us

@t
� us(w

�
� ;� � 2kMw�) + S��(g��w

�
� ;� � b��w�) + S�(

@w�

@U�
+ w�

� b��))

(139)

��0WN [[ca]] + [[Ĵka ]]N
k =

r
g

G

NRX
r=1

raMa�
r

��0WN [[s]] + [[
1

T
(q̂k �

aSX
a=1

�aĴ
k
a )]]N

k =

r
g

G
(�@ss

@t
� ss(w

�
� ;� � 2kMw�) + &s)

with &s � 0:

Note that the write hand sides of the eqn. (139) are not transformed into Lagrange

coordinates.

The form of the kinetic energy in the internal energy balance (139)3 results as follows:

[[
1

2
(� �W )2]] = [[

1

2
F ijF ik]]W jW k = [[

1

2
F ijF ik]]N jNkW 2

N =

=< F ij > [[F ik]]N jNkW 2
N =

1

2
[[W 2

NF
ijF ij]];

(140)

where the last equality relies on the Hadamard condition (30)2, which implies

< F ij > [[F ik]]N jNk =< F ij > [[F ij]]: (141)
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16.2 Interfacial entropy production

In this section we derive the interfacial entropy production corresponding to its

counterpart in Euler coordinates. As before we consider exclusively the special case

where the temperature is continuous across the interface, [[T ]] = 0. We multiply the

interfacial entropy balance (139)4 by T , and subtract the resulting equation from the

balance of internal energy (139)4. There follows the interfacial entropy production

in Lagrange coordinates

��0WN [[( +
1

2
W 2

NF
ijF ij)Æks� 1

�0
�̂ikF is]]NkN s+[[

aSX
a=1

�aĴ
k
a )]]N

k =

r
g

G
(�T &s) � 0:

(142)

The quantity  Æks � 1

�0
�̂ikF is is known as the Eshelby tensor in the mechanical

literature. Eshelby has introduced this tensor in [13], see also Liu [24] and Mura

[29] for further examples that illustrate the role of the Eshelby tensor.

In order to obtain from (142) useful equilibrium conditions and growth laws, we have

at �rst to specialize the second bracket involving chemical potentials and di�usion

uxes. However, this procedure can be done according to the same strategy that we

have developed in Section 15, and will not carried out here.
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