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Minimax nonparametric hypothesis testing for
small type I errors *

Yuri I. IngstertY  Irina A. Suslina !

Abstract

Under the white Gaussian noise model with the noise level ¢ — 0, we
study minimax nonparametric hypothesis testing problem Hy : f = 0 on
unknown function f € L2(0,1). We consider alternative sets that are de-
termined a regularity constraint in the Sobolev norm and we suppose that
signals are bounded away from the null either in Ly-norm or in Ly.-norm.
Analogous problems are considered in the sequence space.

If type I error probability a € (0,1) is fixed, then these problems were
studied in book [13]. In this paper we consider the case o — 0. We obtain
either sharp distinguishability conditions or sharp asymptotics of the min-
imax type II error probability in the problem. We show that if a is “not
too small”, then there exists natural extension of results [13], whenever if o
is “very small”, then we obtain classical asymptotics and distinguishability
conditions for small a.

Adaptive problems are studied as well.

1 Introduction

1.1 Model

Let us consider minimax nonparametric hypothesis testing problem on a mean of
an infinite-dimensional Gaussian random vector

X=v+ f, f: (51, ...,&', ), V= (1)1, .y Uy, ) S l2, (11)
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where & ~ N(0,1) are i.i.d. and [? is the sequence space. Let a set V' C [* be
given. From an observation X of form (1.1), we test the null-hypothesis Hy : v =0
against alternative H, : v € V.

Sequence model (1.1) is equivalent to the functional white Gaussian noise model

dX.(t) = f(t) +edW(t), t € (0,1), f € Ly(0,1), (1.2)

where W(t) is the Wiener process, € > 0 is a noise level. In fact, taking any
orthonormal basis {¢;}3°, in the Hilbert space L,(0,1), we pass to the random
variables X; and to the normalized Fourier coefficients v;,

X, = /01 6i(1)AX.(1), vi=e! /01 6 F(Ddt = (f.0).  (13)

Under model (1.2), let a set F' C Ly(0,1) be given. From an observation X, (t), t €
(0,1), we test the null-hypothesis Hy : f = 0 against alternative H; : f € F.
For a test ¢ ! we denote a(¢)) = Ey(v), a.(¢¥) = E. o(¢) type I error probability

and (¢, v) = E,(1 — ), B(¢, f) = E:;(1 — ) type II error probability for the
alternative v € [? or f € Ly(0,1). Here and later E,, E. ; stands for the expectation
with respect to the measure P,, P, y that corresponds to observations (1.1), (1.2).
For any a € (0,1) let

U,={¢ :a@)<a}, V.o={¢: a®)<a}

be the sets of all tests of the level a.
Under the sequence Gaussian model (1.1) let 3(¢, V) = sup,cy B(%,v) be the
maximal type II error probability. Clearly, for any subset V C V,

B, V) < By, V).

Set
B(V,0) = inf B(w,V).

Clearly, for any a € (0, 1) one has
0<B(V,a)<1—-0a; B(V,a)—>1, as a—0;
the function B(V, ) decreases in «, and, for any subset V C V,
B(V,a) < B(V,a). (1.4)
In particular, if V = {v}, v € V, then

B{v}e) = (To — o), o = v} (1.5)

Here and later ®(¢) stands for distribution function of the standard Gaussian law
and T, is its (1 — a)-quantile: ®(7,) =1 — o

"We call test a measurable function on observation X or X, taking values in the interval [0, 1].
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The inequality (1.4) yields the evident lower bounds

B(V, ) > sup B({v}, 0) = BT,  inf Jo)) (1.6)

veV

We use analogous definitions and notations for the functional model (1.2). For
this case analogous relations holds true. In particular, for simple alternative F' =
{f} one has B.({f},a) = ®(T, — || f||/¢), where || - || is Ly-norm and

Be(F,a) > sup B.({f},a) = ®(T, — & " inf || f]). (L.7)
feF fer

We consider analogous hypothesis testing problems
H()Z’U:O, Hli'UGVR or Ho:f:O, HlfGFECLg(O,l)

under asymptotic variant of minimax setting assuming R — oo, € — 0.

For wide class of alternatives, these problems are well studied for a fixed level
of testing o € (0,1), see [13] and Section 2 below. However for a lot of practical
hypothesis testing problems a statistician wants to have small or very small a. In
particular, small or very small a are required in real-time signal detection problems.
Under asymptotic approach this corresponds & = ap — 0 or & = a, — 0 (in what
follows limits are assumed either as R — oo or as € — 0 unless otherwise stated).

Namely, taking a family @« = ag € (0,1) or & = a, € (0,1), we are interested
the asymptotics of the families 8(Vg, ag) or B:(F:, ;) (up to a vanishing term)
and in conditions for minimax distinguishability, i.e., for

/B(VR,O{R) —>0, /BE(FE,OCE) -0
or for minimax nondistinguishability, i.e., for
B(Vr,agr) =1—ar+o0(1), B (F.,,a)=1—a.+o(l).

Also if B(Vg,ar) — 0, B:(F.,a:) — 0, then we want to construct test procedures
YR, Y. providing ag, a.-level distinguishability, i.e., for

d)R € \IlaRa wa € \Ils,asa /B(wRa VR) — 07 /B(wsaFE) — 0.

It follows from well-known asymptotics

®(—z) ~ exp(—z%/2)/zV2m, as z — oo, (1.8)

To =y/2loga!+0(1), as a—0. (1.9)

Using (1.9) we can rewrite (1.6), (1.7) for a — 0:

B(V, o) > B(y/2logag’ — inf [o]) + (1), (1.10)
Be(F.,02) > @(y/2loga 7 inf |[£]) + o(1). (1.11)

that



1.2 Alternatives of interest

It is well known (see [8], [13], Ch. 1) that, under the functional Gaussian model
(1.2) in order to obtain minimax distinguishability in nonparametric problem, one
needs:

e to remove "small enough” signals;
e to suppose that the set of signals is not too "hudge”.

In general, it is impossible to make a "minimax decision” without these assump-
tions.

To obey the first constraint, i.e. to measure the ”size” of the signal, a functional
norm is usually used. For instance, Ly,-norm, 1 < p < oo:

1 1/p
£l = ([ 1£@rdt) 1< p<o0r |fle = esssuppeat ()]

To obey the second constraint the signal is supposed to belong to some compact
set in a Banach space. The typical examples are the classes of smooth functions
like Holder, Sobolev or Besov spaces. To define these classes some semi-norms are
usually used. In particular, the Sobolev norm ||- ||, , is described by two parameters
o, q. Here the parameter ¢ > 0 characterizes the level of the smoothness and
q € [0, 00] characterizes the norm where the smoothness is measured.

In order to specify alternative sets in the functional space, let us consider the

norms || - ||o4, 0 > 0, ¢ € [1,00] in a subspace of Ly(0,1). If ¢ > 1 is an integer,
then we assume f(°~1) is absolutely continuous and set

1Fllog = Il + 1150 1160 = 156, (1.12)
where f(%) is o-th derivative of the function f and | - ||, is L,-norm. This is the

traditional Sobolev norm. For ¢ = 2 we can consider the equivalent norm

I£117.2 = IF15 + 1715 (1.13)

Ifo=1+71, 7€ (0,1), q € [1,00), then we set

1-h 1/q
1l = 1lla + 1700 17150 = sup 277 (/ FO@+h) - f")(t)"dt>

(1.14)
with evident modification for ¢ = oco. This corresponds to the Nikol’ski norm or
Besov norm || - [|5.4,00-

Note the following relation (see [13], inequalities (2.81), (2.82)). Let n = o —
1/q > 0. There exists a constant ¢ > 0 such that

[flln.c0 < €llfllaq- (1.15)



Taking a positive family r. = o(1) and H > 0, we consider alternative sets F.
of the form

Fe=F(re, Hyo,p,q) ={f € L2(0,1) : [[fllp = 7e, |fllog < H}.

We are interested in the cases o > 0 and either p=¢q¢ =2 or p =00, ¢ > 1/0, i.e.,
in alternative sets

Fe=F(re, H,0) ={f € Ly(0,1) = [[flla > 7e; |fllo2 < H}, (1.16)
Fe=F(re, H,0,q) = {f € L2(0,1) : [[fllc = 7, [[fllog < H}, g>1/0. (1.17)

Note that the results below hold true with change the norms || f|,.2, [|flls.q by
£ llo,20 [1/115.q

In order to specify alternative sets under the sequence Gaussian model (1.1)
take a quantity p € (0,00 and positive family pr < R. Introduce the norms
(quasi-norm for p < 1) in the sequence space

oo

b= |viailP, p < 00;  |v]ae = sup |vial. (1.18)
= 1<i<oo

lv

For a; = i”, we denote this norm by | - |,,. For o = 0, we use the notation | - |,.
Taking quantities p € (0,00], ¢ € (0,00], s >0, 7 > 0, R > pgr > 0, we
consider the alternative sets Vz determined by the inequalities

VR = V(PR7R1 T, S,p,Q) = {U € l2 : |U‘T,p 2 PR, |v‘s,q S R}

S

This set is [9-ellipsoid of semi-axes Ri~® with [P-ellipsoid of semi-axes pri~" re-
moved; if 7 = 0, then we remove [P-ball of radius pr. In this paper we are interested
in the cases either s =0 >0, p=q=2, 7T=0,orp=o00, s >7 > 0, ie, in
alternatives of the form

T

Ve =V(pr,R,0) ={vel®: Jv]a > pg, |v]s2 <R}, o>0, (1.19)
Ve =V(pr, R;7,8,9) ={v €1® : [V]roe > pr, |vsg <R}, s>7>0. (1.20)

Since Vi = 0 for R < pg, we assume R > pp later.

If p = ¢ = 2, then alternatives (1.16) roughly correspond to alternatives (1.19)
with pp = r./e, R = H/e. Moreover, if p =2, o > 0 is an integer and a function
f € Ly(0,1) has 1-periodic o-smooth extension on R!, then L,-norm and the
norm (1.13) can be presented in terms of Fourier coefficients §; = (f, ¢;) under the
standard trigonometrical Fourier basis {¢;} in Ly(0,1). Namely setting fo(t) =
> 0:0:(t), we have

oo oo
||f9||§ = Zef; ||f0||r272 = ZG?G?: a1 = 1, a;i = a§i+1 = (271'2')2” +1, 1> 1.
i=1 i=1

(1.21)
Relation (1.21) determines Sobolev norm in the space Wy of 1-periodic o-smooth
functions for all o > 0. Using (1.21) we set

Fo=F.(r,H o) ={fs : |0]s >, |0laz < H} (1.22)



Relations (1.3) yields the equality
/B(V(pRaR;a’)aa):/B(FEaa)) pR:T/Ea R:H/Ea

where the set
V(pr, R;a) = {v € l’: vy > pg, |v]a2 < R}
is analogous to set (1.19) with norm (1.18) for the sequence @ such that a; ~
(w3)?, i — oo, in (1.21).
However if p = oo, then the alternatives F, = F\(r., H,o,q) of form (1.17)
roughly correspond to the alternatives Vg = V(pg, R; T, s, q) of form (1.20) with

T=1/2, s=o0+1/2—1/q, pr=r:/e, R = HJe, (1.23)

see [13], Sections 2.7, 2.9. This is the main reason why we consider the alternatives
(1.20) with 7 > 0.

Our aim is to study the asymptotics 8(Vg, ag), R — oo and B.(F;,a.), € = 0
in hypothesis testing problems with alternatives (1.19), (1.20), (1.16), (1.17) and
to construct asymptotically minimax or consistent families of tests ¥g o, OT V¢ o,
for the case ap — 0 or o, — 0.

Combining (1.10), (1.11), we obtain the asymptotic lower bounds for p = 2

B(Vr, ar) > ®(y/2loga" — pr) + o(1), (1.24)
Be(Fe,a.) > ®(y/2logat —r./e) + o(1). (1.25)

If p = oo, then (1.10) yields, for alternatives (1.20),

B(V,ar) > ®(y/2loga —n "pg) +o(1), n=[(Rer)]/* ], (1.26)
where [n] is the integer part of n, because of (see Remark 5.4 in Section 5.6.2 below)

viganR v| =ng pr. (1.27)

We show later that lower bounds (1.24)—(1.26) are asymptotically sharp for the
case when ap, a. decrease fast enough.

Note that distinguishability is possible for large enough pr = pr(0), re = re(0).
The structure of these tests could depend on o > 0 which is often unknown to the
statistician in practice, and constructed for o = o7 test family could provide pour
distinguishability for alternative with differ ¢ = o3 # o7. Therefore we want to
construct test families that provide good distinguishability for any o from wide
enough interval ¥ = [0y, 01].

This leads to adaptive setting that first was studied in [21], [22] and corresponds
to alternatives of the form

Vr(X) = UE V(pr(o), R,0), (1.28)
R.(2) = U Flre(o), H,0), (1.29)

where the sets V(pg(0), R,0), F(r.(c), H,o) are defined by (1.19), (1.16) with the
radii pr = pr(0), 7. = re(0) depending on o € ¥ = [0y, 04].
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1.3 Structure of the paper

The paper is structured as follows.

In Section 2 we recall known results on distinguishability conditions for alterna-
tives (1.16), (1.17), (1.29) and on sharp asymptotics for alternatives (1.19), (1.20),
(1.28) for fixed o € (0,1). Mainly these results are contained in [13]. For alter-
natives (1.19), the sharp asymptotics are presented in terms of solution of specific
extreme problem in the sequence space. Also we recall some results from [4], [5],
[16] under probability density model. These results show that analogous to (1.25)
lower bounds are attained for alternatives analogous to (1.16) with & = o, and
H = H, small enough.

In Section 3 we present the main results for & — 0. We show that the quantities

af = exp (_672/(20'4-1)) . ol =exp (_RZ/(20'+1))

are critical rates for a,, ay for alternatives (1.16), (1.19) in following sense. If ap is
not too small, namely logaj' < log(ak) ™!, then we obtain sharp asymptotics for
alternatives (1.19) in terms of solution of specific extreme problem in the sequence
space that is somewhat different from the noted above. If ap is small enough,
namely log o' > log(a}) !, then we obtain sharp rates of testing p% = /2log aj'
that correspond to the lower bounds (1.24). Moreover if ag is very small, namely, if
o>1/2, (logag')?*/(loglogaz')* > R*, then we show that the lower bounds
(1.24) are attained. For alternatives (1.16), we obtain analogous rate asymtptotics.
For very small a,, we show that the lower bounds (1.25) are sharp.

For adaptive problems, we obtain sharp asymptotics for alternatives (1.28) rates
asymptotics for alternatives (1.29).

For alternatives (1.20) and any ar — 0, we obtain general formula for sharp
asymptotics. This yields various corollaries on the rates. For alternatives (1.17)
and a, — 0, we obtain analogous rate relations. Roughly, critical rates in ag, a.
correspond to aj = 1/R, af = e. Note that the upper bounds are provided by a
families of tests that does not depend on parameters determined alternatives (1.20)
or (1.17). Therefore we have no any problems on adaptation for these cases.

In Section 4 we formulate some properties of solutions of the extreme problems
noted above.

In Section 5 we give the proofs of theorems.

2 Previous results

Let either agp = a. € (0,1) be fixed or ag, a. be bounded away from 0 and
from 1. Then the problem under consideration was studied intensively, see [13] and
references in this book. Note that for p = ¢ = 2, o > 0 the distinguishability and
non-distinguishability conditions were obtained in [6]; in [1] the sharp asymptotics

of the quantities 8(V (pgr, R,0), @), B:(F(re, H,0),a) have been studied. The case
p = oo was studied in [8], [12], [13].



2.1 Distinguishability conditions

Under the functional white Gaussian noise model let us consider the sets F, =
F(re, H,0) determined by (1.16) and let € — 0. Introduce the rates

rt = glo/Uotl), (2.1)
Then we have distinguishability conditions of the form

Be(Feya) > 1 —a iff r./rl —0; :
Be(Feya) — 0 iff r./rl — oco. (2.3)
Moreover, for r./r* — oo let us take integer-valued family

m=m, < (,r*)fl/tr — 674/(40'—{—1)

and consider equispaced partition of the interval (0, 1] into m sub-intervals
5j,m = (a].*l,ma aj,m]; Ajm = ]/m, ] = 1, ey, M.

Let us take normalized increments of the observing process X (t) in the sub-
intervals

Xjm =& 'm?(Xe(ajm) — Xe(aj-1m)) (2.4)
and consider x2-tests based on the statistics (2.4):
Yoo = Loy oom,  tme = (2m) 12 30 (X7, 1), (2:5)
1<j<m

Then a¢(¢:0) < a+ o(1), and B.(¢ea, Fr) — 0, as r./rr — oo (see [8], [13],
Theorem 3.9 (1)).
Let us consider the case p = ¢ = oo, o > 0. Introduce the rates
rt = (e2loge 1)/t (2.6)

€,00

Then distinguishability conditions are of the following form (see [8], [13], Theorem
3.9 (2)): there exist constants 0 < C; < Cy < oo such that for all @ € (0,1) one
has

Be(Fe,a) = 1 —a if limsupre/r; < Co;
Be(Fe, o) — 0 if liminfr,/r} > Ci.

Moreover, if liminfr,/r? > C for large enough Cj, then the relations

045('%/)5) — 0, 55(¢55FE) —0

are provided by the tests based on the thresholding of statistics (2.4):
o o ) / _ — * —1/o
wa,a o ]'Xs) XE - {121]%)1(” ‘Xj,m‘ > 2 logm}a m Me (Ts,oc) ' (29)
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For any o0y, 01, 0 < 0y < 01 < 00, these relations are uniform over o € [0y, 01].

It was shown in [19] that Cy = C; under some additional assumptions.

It follows from [13], Theorem 4.7 that the distinguishability conditions (2.7)—
(2.8) hold true for co = p > g > 1/0 with the change the rates (2.6) by

rt =1 (n) = (e2loge V) =6 —1/¢> 0. (2.10)

£,00 £,00

The quantities m. = m. (o) and statistics X, . depend on o in (2.9). However
there is presented in [13], Section 4.4.4 a test procedure that provides analogous
properties and does not depend on o. This test procedure is based on wavelet
transform. Here we give somewhat other test procedure providing analogous prop-
erties.

Let us take a family of collections

my =2, J.o<1<J.1, Jegx(loge ')/logloge ™, J.1x (loge ')logloge *
(2.11)
and corresponding collections of equispaced partitions of [0, 1] into m; sub-intervals.

Theorem 2.1 Taking collections (2.11) and corresponding partitions, let us con-
sider family of tests ¥} = 1x., where

X, ={ max max |Xjm|/Ti > 1}, T? =2(cl +logl), ¢ =log2,

Je <1< e 1 1<5<my

and statistics X;,, are determined by (2.4). Then a.(¢y}) — 0 and there ez-
ists Cv > 0 such that if liminfr./r} =~ > Ci, then B.(¢7, F.) — 0, where
F. = F(r.,H,0,q9), 0 —1/q > 0 and the rates are defined by (2.10). For any
ny > 0, o, 01, 0 < 09 < 01 < 00, this relation is uniform over (o,q) such that

o € log,01], o —1/qg>n,.

Proof of Theorem 2.1 is given in Section 5.9.

So, for any fixed a € (0,1), the rates 7}, r; . of form (2.6), (2.10) do not
depend on « in the distinguishability conditions (2.7), (2.8). These rates are much
slowly than “classical” rates r} = ¢ corresponding to “known” signal. Therefore, for
nonparametric alternatives of form (1.16), (1.17) and for any « € (0,1), minimax
efficiency of testing is much smaller then efficiency of testing for “known” signal.

These results are extended to the probability density model corresponding to
ii.d. sample Xi,..., Xy with unknown probability density p(z). Let X; € [0,1]
and p(z) be a probability density on the interval [0, 1] with respect to the Lebesgue
measure. We test the null-hypothesis Hy : p = 1 against the alternative H; : p =
1+ g, g € Gy where the set Gy = Gn(ry, H, o) consists of the functions g such
that

gl > 7w, lgloa <H, (9.,)=0, inf g(a)> 1.

This problem is analogous to hypothesis testing problem under the functional white
Gaussian noise model with ¢ = N~%/2 and the results are the same: for any o €
(0,1) the distinguishability conditions, as N — oo, are analogous to (2.2)—(2.3)
with the change r* of form (2.1) by rk = N~20/04o+1) (see [7]).

Extensions of these results for other p, g are given in [12], [13].
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2.2 Adaptive rates

Tests (2.5) are determined by integers m = m, and statistics X;,, that depend
on o for p = ¢ = 2 and we cannot provide good properties of these tests when
the parameter o is unknown. These lead to adaptive problem which first have
been studied in [21], [22] under the functional white Gaussian noise model (1.2) for
p=gq=2.

Suppose an interval ¥ = [og,01], 0 < 0y < 01 < oo be given. Taking a family
of the functions r.(c), o € ¥, let us consider alternatives of form (1.29). Let r(o)
be the rates determined by (2.1) and set

HL(S) = inf re(0)/r2(0).

It follows from (1.4) and results above that the relations H.(X) — oo are necessary

in order to obtain distinguishability for alternative (1.29). The problem is: are
these conditions sufficient for distinguishability?

The answer is "no” for p = ¢ = 2. Namely, introduce adaptive rates functions:

r* (o) = (e*logloge )7/ tD), (2.12)

It was shown in [21] that there exist constants 0 < D; < Dy < 0o such that
1. If there exists an interval A C ¥ of positive length such that

limsup sup 7 (0) /r%(0) < Dy, (2.13)
oEA

then B.(F.(X),a) > 1 — a.
2. If
lim inf in£ re(0) /%) > Do, (2.14)

oe
then B.(F.(X),a) — 0 for any a € (0,1).

Moreover, one can use “Bonferroni method” to construct “adaptive” test pro-
cedure. Let us take family of collections (2.11) and corresponding collections
of equispaced partitions of [0,1] into m; = 2' sub-intervals. Taking thresholds
C. = 2¢/logloge~1, let us combine test procedures (2.5) for collections my, i.e., we
set
Yl =1y, X, = {JE’OIISllaS)SE!Itml,E > C.}, (2.15)
where the statistics ¢, . are determined by (2.5). Then a,(1)2%) — 0 and under the
assumption (2.14) with large enough constant D,, one gets 3 (%, F.(X)) — 0.

Under the probability density model analogous results were obtained in [10].

So, the lack of knowledge of parameter o for p = ¢ = 2 leads to losses in
the rates of testing in (logloge')-factor. It is the payment for adaptation in the
problem (see [21]). It was shown in [11], [13] that one has the same effects for wide
class of adaptive problems with asymptotics of Gaussian type.
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2.3 Sharp asymptotics
2.3.1 GGaussian asymptotics: p =g = 2

This problem has been studied for the alternatives (1.19) under the sequence model
(1.1). Let us consider extreme problem

1 oo
u*(pr, R) = inf§ > 2} subject to (2.16)
i=1
Yoz > ph, Y 2 < R (2.17)
=1 =1

Let R — oo. Then, for any a € (0,1) and any family pr > 0, one has
B(Vg,a) = ®(T, — u(pgr, R)) + o(1) (2.18)

(see [1], [8]). Moreover, these relations are provided by test families ¥g o = 1i,>7,
based on the statistics

tr = Zw,(XZZ — 1), w; = ZER/u(pR, R), (219)

i=1

where {2;} is the extreme sequence and u?(p, R) is the extreme value for the problem
(2.16), (2.17); this yields >; wi, = 2.

Some properties of the extreme values u?(pg, R) and extreme sequence {z;} are
given in Section 4.1 (also see [13], Section 4.3.3). In particular for pr = o(R), we

have
w(pr, R) ~ Dy(0)p /™ RV, (2.20)

where Dy(o) is a positive continuous function. This yields distinguishability con-
ditions

B(Vr,a) > 1—a iff pr/pp — 0, (2.21)
B(Vr,a) = 0 iff pr/pp — oo, (2.22)

with the rates
ph = RV, (2.23)

Under the white Gaussian noise model for the sets F, = F(r., H,o) of form
(1.22) and € — 0 these yield the results of the form

B(F.,a) = ®(T, — @) +o0(1), @= Dy(o)(re/H)* "% (e/H) 2 (2.24)

The results above are extended the probability density model as well (see [2],
[8], [9]). The extension of these results for other p, g, 7 are given in [12], [13].
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2.3.2 Degenerate asymptotics: p = 0o

For the alternative Vg = V(pg, R, T, s,q) of form (1.20) we have different type of
asymptotics (see [8], [12], [13], Theorem 4.5):

B(Vg,a) = (1 —a)®(y/2logmg —mz"pr) +0(1), mgr= (R/pr)" ¢ ; (2.25)

moreover one can change /2logmpg by 1/2s Tlog R in (2.25). This yields distin-
guishability conditions

B(Vr,a) > 1 —a if limsuppr/pg <1, (2.26)
B(Vg,a) — 0 if liminfpg/px > 1, (2.27)

with the rates p}, defined by the relation
PR = AR™*(log R)¢=/2% A = (2/5)5=7)/28 (2.28)

see [13], Section 4.4.2. Under (1.23) these rates correspond to the rates (2.10).
Moreover, let us consider the randomized tests of the form

’d)R,a =a+ (1 - a)’d)R)
where non-randomized tests ¥ = 1, are based on thresholding:

lOgNR) iSNR)

X = (X sup Xl Tas > 1}, Tho=2{ (2800 S

(2.29)

here one can take any N < loglog R. Then these tests are asymptotically minimax
in the problem, i.e.,

a(Yra) <a+o0(l), B(VYra Vr) < (1 a)®(y/2logmg — mz pr) + o(1).

For any sg, s1, 6 > 0,0 < § < sp, sg < 81 < 00, the letter relation is uniform over
(s,7) such that s € [sp,s1], 0 <7 < s—4§. Note that these tests do not depend on
s>172>0, ¢g>0.

2.4 Sharp adaptive asymptotics

Sharp adaptive asymptotics were studied in [11], [13] under the sequence model
(1.1) for a wide class of alternatives. Taking family of function pg(c), o € X, we
consider alternatives V(%) of form (1.28). The results of [11], [13], Section 7.1.3,
are of the following form. Let u*(p, R, o) be defined by (2.16), (2.17) and set

ur(X) = inf u(pgr(o), R,0), Hr(X) = ug(X) — y/2loglog R. (2.30)

oEY

Then for any a € (0,1) one has:
1. Upper bounds:

BVa(R), @) < (1 — a)®(—Hg(%)) + o(1). (2.31)

12



2. Assume the minimum in (2.30) is "essential”, i.e., for any § > 0 there exists
nontrivial sub-interval Xg C X such that

sup u(pg(0), R,0) < ur(X) + 4.
(TEZ()

Then
B(Vr(%),a) > B(Vr(30),a) > (1 — a)®(—Hg(%)) + o(1). (2.32)

Moreover, it follows from [13], Section 7.3 that one can use the following con-
struction for tests family ¢, that provides the upper bounds (2.31). Let pj(0)
be the quantities such that

ur(pr(0), R, 0) = up(¥) + o(1).

Let Zg(p,0) = {2 z(p, )} be extreme sequence in the problem (2.16), (2.17), i.e.,

1
5 2 %P, 0) = ug(p, o),

and tg; = tg;(X) be the statistics determined by (2.19). Let us divide the interval
Y into M = My =< (log R)(loglog R)®, B > 1 sub-intervals 6g; = [o0g; 1,0R4], 1 <
| < M of the length |6z | < M ' and consider the collections of sequences

Zry = Zr(PR(OR1),0R1-1), L =1,..., M,

and collections of statistics try = tgzy,,. Set ¥E, = o+ (1 — @)Y,

Yt = 1y, Xp={X: 121131)\(/15 trg > y/2log M.}

where

Then

a(¥ie) S a+o(l), B Va(®)) < (1 - a)®(— Hr()) + o(1).

2.5 Intermediate efficiency

Let us consider probability density model. Observingi.i.d. sample X1, ..., Xy, X; €
[0,1] of size N, N — oo we test the simple hull-hypothesis on the uniformity of a
density on the interval [0, 1]:

Hy @ p(z) =1, z €10,1],
against simple alternative
H; : p(z) = pn(z), z €[0,1],

that corresponds to a given sequence of densities py(z) on the interval [0, 1].
Let py(z) = p(z) be fixed and a density p(z) be bounded and bounded away
from 0, as N — oo. Let the type I error probability @« = ay be such that the type
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IT error probability Gy (p, ay) is bounded away from 0 and from 1, as N — oc.
Then it is well known (see [20]) that the logarithmic rate of ay is determined by
the Kullback-Leibler distance between py(z) = 1 and p(z), namely

1
N tlogay' — K(p) = / p(z)logp(z)dz, as N — oc.
0

This case corresponds to Bahadur’s efficiency [20].
From the other hand, let us consider local alternatives of the form

H, : p(z) = py(z) = 1+ N 2g(z),

where n > 0, [|g|lla =1, (9,1) =0, ||g|lec < 00. Then, analogously to (1.5), for any
a € (0,1) one has

Bn(pn,a) = ®(T, —n) +0(1), as N — oo. (2.33)

This case corresponds to Pitman’s efficiency [20].
Intermediate efficiency was introduced in [15]. This corresponds to ay — 0 and
alternatives of the form

H, : p(z) =pn(z), pn(z) =14+10N ‘g(z), 0<(<1/2. (2.34)

It was shown in [4], [5], [16] that the relation analogous to (2.33) holds true for
alternatives of form (2.34) with 1/4 < ( < 1/2 and for ay — 0, logay' = o(N):

Bu(pw, an) = ®(y/2logay' —nNY?>7¢) +o(1), as N — oo.

Moreover, it was shown in these papers that if the function g belongs to the Sobolev
space W3, then this relation is provided by Neyman’s tests based on the first n = ny
Legendre polynomials (these tests are analogous to x2-tests under the Gaussian
model) for some sequences n = ny. Various data-driven versions of these tests
are studied in these papers. They corresponds to random n = n(X7y, ..., Xy). It is
easily seen that the estimations in these papers are uniform over g € Slﬂ’Z(H) for
any Sobolev ball

S?,Z(H) = {f € W21, ||f||1,2 < H’ (f’ 1) = 0}'
Set r;y =nN~¢, Hy=HN ¢, H>n, o=1,
Py = {p(z) =1+ g(2), z € [0,1], [lgll2>7n, llgllo2 < Hy, (9,1) =0}, (2.35)
Then for 1/4 < { < 1/2, we have the relation

By (Py,ay) = ®(y/2log oyt — ryNY2) 4+ o(1). (2.36)

Under the white Gaussian noise model (1.2) with ¢ = N~'/2 the set (2.35)
corresponds to the set F(r., H.,1) with

re =me® — 0, H,= He* —0.

Under the sequence model (1.1) this set corresponds to the set Vp = V(p, R, 1)
with

p=ne*"1 500, R=He* ' 500, 1<R/px1l.
Relation (2.36) corresponds to the equality in inequalities (1.24), (1.25).
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3 Main results

We consider the alternatives Vg of form (1.19), (1.20) under the sequence model
(1.1). We are interesting in the study of p = pr(ag) such that the family 5(Vg, ar)
is bounded away from 1 and from 0.

3.1 Sharp and near to sharp asymptotics under the se-
quence model

3.1.1 The case p = g = 2 for not too small «

Let us consider the case p = ¢ = 2.

The problem with ap — 0, R — oo is of interest for pr/p5 — oo, pr < R,
where p}, are defined by (2.23).

First, suppose ar — 0 but not too fast; namely we assume

ar — 0, logag' = O(RY 2 +Y), (3.1)

According to the results of Section 2.1 for ag — 0, we are interested in the case
when distinguishability conditions hold true, however pg increase not too fast:

prR VO s oo, p = O(RVGT) (3.2
Let z = {2;}°, be a nonnegative sequence and

HNOz +1)

be the Gaussian measure corresponding to independent sequence X; ~ N(0, z22+1).
Let

oo

K2(2) = Ep: log(dP*/dP,) — % SN2 log(1 + 22)) (3.3)

i=1
be the Kullback-Leibler distance between the measures P? and P,. Let us consider
extreme problem

K*(p,R,0) = K?*p,R)= ianZ(’) subject to (3.4)
>z > p 222 27 < R (3.5)
i=1

(if o is assumed to be fixed, we omit o in notations later). Note that, in terms
of variables u; = 22 > 0, the function K?(2) is strictly convex and the set (3.5) is
convex. This implies uniqueness of extreme sequence z = {z;}, z; > 0.

There are given Section 4.2 some properties of solution of the extreme value
K?*(p, R, o) and extreme sequence Z = Zr(pg, o) in problem (3.4), (3.5). In partic-
ular, we have

K(pr, R) < u(pr, R) =< py /" R71/*. (3.6)
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Remark 3.1 The function K?(p, R, ) is convex in variables (p?, R?) (see Propo-
sition 2.8 in [13]). Jointed with (3.6), this implies that the function

fR(bh bZ) - K2(b1pR7 b2R7 0)/K2(pRa R7 0)

is uniformly Lipschitzian in (b1, b;) € D over any compact D C R% = {b; > 0,by >
0} (see [13], Lemma 5.1 in the proof of Proposition 5.6, (4)). In particular, there
exists C = C(D) > 0 such that, for R large enough,

|K2(b1pR, bgR, U)*KZ(pR, R, 0')‘ < CKZ(,OR, R, 0')(|b1*1|+|b2*1|) v (bl, bg) eD.

(3.7)
Moreover, the relation (3.7) is uniform over o € [0g,01], 0 < 0y < o7 such that
(3.2) holds for o = 0.

Let us slightly improve the assumptions (3.2), (3.1)

prRU7) 5 00, pp = o(RY/C7HY);
ar — 0, logag' = o(RYZ+1),
Under (3.8) we have
K(pr, R) ~ u(pr, R)/V2. (3.10)

Let Z = {z;} be extreme sequence in the problem (3.4), (3.5). Consider tests of the
form

1 7 X} 2
waR = l{tR>10ga§1}a lp = tR,Z = 5 <1 + 21'2 - log(l + 2 )) . (311)

Note that tg = log(dP?/dP,) for the extreme sequence {z;}.
For tests (3.11) one has

a(Yop) < agr, Yage(0,1). (3.12)
Proof of relation (3.12) is given in Section 5.1, Lemma 5.2 (1).

Theorem 3.1 Under assumptions (3.8) one has:
(1) Lower bounds.

B(Vi, ar) = @(y/2log az' — V2K (pr, R)) + o(1). (3.13)

(2) Upper bounds. For the tests (3.11),

B(Yay, Vi) < ®(1/2logay' — ﬁK(pR, R)) + o(1). (3.14)

The relations (3.13), (3.14) yield

B(Vg,ar) = ®(y/2logagy' — fK (pr, R)) + 0o(1). (3.15)

For any 0 < 0y < 01 < o0, this relation is uniform over o € [0y, 01|, such that
(8.8) holds with o = o7.
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Proof of Theorem 3.1 is given in Sections 5.1, 5.3.

Remark 3.2 It suffices to prove Theorem 3.1 for the case

Vlogag' = K(pr, R) + O(1). (3.16)

In fact, the lower bounds (3.13) are trivial for K(pgr, R) — \/logap' — oc.

If K(pgr,R) — \/logaz' — —oo, then the lower bounds (3.13) correspond to
B(Vr,ar) — 1. If we will prove (3.13) for the case (3.16), then, by passing to
ar > ag, we can get the case (3.16) and B(Vg, ag) > B(Vg,ag) > 1 — 4 for any
d > 0. This yields 8(Vg, ar) — 1. Analogously, the upper bounds (3.14) are trivial
for K(pgr, R) — \/logag' — —oo. If K(pgr, R) — y/logay' — oo, then, by decreas-
ing the families pg to satisfy (3.16), and using the monotonicity of the function
B(Yag, V(p,R,0)) in p, we easy see that if (3.14) holds true under (3.16), then
(3.14) holds true everywhere.

Using Proposition 4.1 (1) and relation (4.15) (see Section 4.2 below) one can
see that under (3.16), assumption (3.8) is equivalent to (3.9). For this reason we
can use (3.9) in the proof and in applications of Theorem 3.1.

Analogous situation holds for other theorems below and we omit analogous
remarks later.

Theorem 3.1 and relation (3.10) yield the following distinguishability conditions.

Corollary 3.1 Under assumptions (8.8) or (3.9) one has

/B(VRa aR) —0 l.ﬁ. V IOg aﬁl o K(,OR, R) — —00,
B(Ve,ar) = 1 iff y/logag' — K(pr, R) — oo.
This yields

B(Vg,ag) — 0, if liminf u(p, R)/\/2logay' > 1,
B(Vg,ag) — 1, if limsup u(pg, R)/\/2logag' <1

If the rates of the quantities pp or loga,' are somewhat smaller than in Theo-

rem 3.1, then we can extend the sharp asymptotics from Section 2.3.

Corollary 3.2 Let ar — 0 and

pRRfl/(40'+1) N OO, ,OR — O(R3/(80’+3)). (317)
Then
V2K (pr, R) = u(pr, R) + o(1), B(Vr,ar) = ®(y/2logay' — u(p, R)) + o(1).
(3.18)
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Proof of Corollary 3.2 is given in Section 4.2.
Let us consider the case

log ot < RY (ot o =< RY/(2oH1), (3.19)
For this case we can extend the distinguishability conditions from Corollary 3.1.
Theorem 3.2 Assume (3.19) for o > 1/2 or
limsup ppR YD < C(0), C(o) = (20/(1 — 20))"/%(1 +1/20)/*0+1)
for o < 1/2. Then one has
(1) B(Vi,ar) = 1, if \/logagp' — K(pg, R) — oo,
(2) B(Yay, V) = 0, if\/logag' — K(pr, R) — —oo.
Proof of Theorem 3.2 is given in Sections 5.2, 5.4.
3.1.2 The case p = q = 2 for small enough o and very small o
Let us consider the case p < R and one of two following assumptions holds true

R72/Cot) g az! — oo, (3.20)
prR V) oo, (3.21)

(analogously to Remark 3.2 the assumptions (3.20) and (3.21) are equivalent for
results below). For this case the lower bounds (1.24) are sharp or near to sharp.
Namely for an integer-valued family m = mpg, let consider x2-tests of level ap

Xmon = Lod>Tmagh  Xm = 2 X7, (3.22)
i=1

here and later T}, , is (1 — @)-quintile of the central chi-square distribution with m
degrees of freedom.

Theorem 3.3 (1) Assume (3.20), i.e., ar be small enough, and let us take m —
oo such that

m = o(logaz!), m °R = o((logaz')"?) (3.23)

(this is possible under (3.20)). Ifliminf pr/\/2logag' > 1, then B(X2, .., Vr) — 0.

(2) Assume ap be very small, namely,
o>1/2, R *(logap")?**/(loglogap')*” — cc. (3.24)
Let us take m — oo such that

mloglogaz' = o(logaz')?), m 2 R? = o((logaz')"/?) (3.25)
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(this is possible under (3.24)). Then one has

B(Xonan> Vr) < ®(y/2logag' — pr) + o(1).
Combining with (1.24), under (3.24) this yields the sharp asymptotics
B(Vr,ar) = ®(y/2logag' — pr) + o(1). (3.26)
Proof of Theorem 3.3 is given in Section 5.5.

Remark 3.3 For any 0 < 0y < 07 < oo, the relations of Theorem 3.3 are uniform
over o € [0y, 01], such that (3.20) or (3.24) hold with ¢ = o,. Therefore taking
tests family for ¢ = oy that does not depend on pg, we obtain distinguishability
conditions of Theorem 3.3 (1) or sharp asymptotics (3.26) of Theorem 3.3 (2)
uniformly over o € [0y, 01].

3.2 The case p =00
Let Vg = V(pr, R, 7, s, q) be alternative of form (1.20), 0 < pr < R. Set

mr = (R/pr)"/*™), ng=[(R/pr)"" "] = mp+0(1),

here and later [t] stands for the integer part of ¢, i.e., this is the integer k£ such that
t—1<k<t

Theorem 3.4 Let a family ar — 0 be given. Then one has

B(Vg,ag) = <I>(\/2(log ng +logagp') —ngy pr) + o(1). (3.27)
Moreover, let us consider the tests of the form
wR,IIR = ]‘XR,nR’ XR,aR = {X . sup ‘X,‘|/TQR’Z' > 1}, (328)

where
T2

CYR,i

= 2(logay' + logi + loglog(i + 1)).

Then for R large enough, one has

a(Vrar) < ar, BWrag, Vi) < q’(\/z(lognﬁ: +logag') —ng pr) +o(1). (3.29)

For any 0 < 5o < s1, 6 > 0, the relations above are uniform over (s,T) such that
s € [sg,81] and 0 <7 < s— 6.

Proof of Theorem 3.4 is given in Section 5.6.

Note that tests (3.28) do not depend on s > 0, ¢ > 0. Also one can verify
that if either 7 = 0 or log(ag/mg)™' < mz*"p% = o(R¥?*+1)) then my pgr =
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ng pr + o(1), and we can change np by mpg in (3.27), (3.29). For pr = o(R) we
have mpr — o0, ng ~ mpg, and Theorem 3.4 yields distinguishability conditions

B(Vr,ar) — 1 if limsuppr/pg,, > 1, (3.30)
B(Vr,ar) — 0 if liminfpg/pp,. <1, (3.31)

where
PRap = m’é\/Z(log mpg + logaz'). (3.32)

If pr = o(R) and log(ag/mg)~! < mz*" p%, then

~1/2s logR loglogapg'
mp ~ RY* (2(long+loga§1)) / , logmpg ~ P8 0898%

3.33
S 2s ( )

Using (3.33) and considerations analogous to Remark 3.2 we easy obtain the
following corollaries.

Corollary 3.3
(1) Let agr — 0, logag' = o(v/IogR). Then we get asymptotics analogous to
(2.25) that do not depend on ag:

B(Vr, ar) = ®(y/2logmp — mg"pg) + o(1) = ®(y/2s~ ' log R — mp"pr) + o(1).

Let log ayp' = dv/log R. Then

B(Vg,ag) = ® (\/231 log R + d\/y = mRTpR) +o(1)

Let ap — 0, logap' = o(log R). Then we have distinguishability conditions (3.30),
(3.81) with the rates py , . = p defined by (2.28) that do not depend on ag.
(2) Let (log R)? = o(logay'). Then

B(Vg, ag) = ®(y/2logag' — ng"pr) + o(1). (3.34)

Let (log R)? = o(logag'), logag' = o( R¥?*+V). Then
B(Vr, ar) = ®(y/2logag’ — my"pr) + o(1).
Let log ap' ~ d(log R)?. Then
1
Ve, ar) =® [/2logaz' + —— — my" +o(1).
/8( R R) < glp S\/ﬁ R ,OR) ( )

(3) Let log R = o(log ap'), pr = o(R). Then we have distinguishability condi-

tions (3.30), (3.31) with the rates p}, , = mp/2logag'.
(4) Let logap' = dlog R. Then

B(Vg,ag) = ® (\/Z(d +s 1) ]logR — mRTpR> + o(1).
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Let logap' ~ dlog R. Then we have distinguishability conditions (3.30), (3.31)
with the rates

* * T/s s—T)/2s — (s—7)/2s
Pron = P = AR (log )/ A= (2(d+57"))

)

which do not depend on ag.

Relation (3.34) corresponds to the equality in inequality (1.26).

3.3 Distinguishability conditions for the functional model

Let us consider alternatives (1.16), (1.17) under model (1.2). We assume loga, ' =
o(e~?) below.

3.3.1 The case p=q =2

Set
6. = 0.(0) = e oga . (3.35)

Introduce critical rates which depend on «.:

rt . =1, (o) = (e*loga 1) Uet1), (3.36)

€,0¢ €,0te

Observe that if §. = O(1), then 7} , — 0, if §. = o(1), then

Troe = o(g27/7+1), (3.37)
and if 6, < 1, then we can take

rt . =e(loga, ") (3.38)

€,0¢

Let us take an integer-valued family m = m., — oo and consider equispaced
partition of the interval (0, 1] into m, sub-intervals

Oim = (@j—1my Qjm); Qjm =J/m, j=1,..,m.
Let be X, are normalized increments of the observing process in the sub-intervals
Xjm = s*1m1/2(X5(aj,5) — Xc(aj-1e)), 5=1,...,m. (3.39)

The random variables X} ,, are independent standard Gaussian under H,. Let us
consider x2, . based on statistics (3.39):

an,a = 1{X12n>Tm,{x}’ X?n = ZX]Z,m (340)
j=1

Recall that T, , stands for (1 — a)-quantile of the chi-square distribution with m
degree of freedom.
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Theorem 3.5 Let 6. = O(1) (this corresponds to not too small ), and 1}, be
defined either by (3.36) or by (3.88) for 6. < 1.

(1) Lower bounds. There exists a constant Cy € (0,00) such that if
limsupr./r;,, < Cy, then B.(F, o) — 1.

(2) Upper bounds. There ezxists a constant C; € (0,00) such that if
liminfr,/r;, > Cy, then B.(F.,a.) — 0. Moreover, let us take m = m, ~ (rz)~'/°
and the family of chi-square tests x2, . of form (3.40). This yields . (¢e.q.) = .
Then one has B (Ye,a,, Fr) — 0, as liminfr,/r} , > Cy.

For any 0 < 0y < 01 < 00 such that 6.(o1) = O(1), these relations are uniform
over o € [0y, 01].

Proof of Theorem 3.5 is given in Sections 5.7, 5.8.

Note that analogous statements with the rates (3.36) were established in [17],
[3] for the case loga_.' = O(loge™').

Let us consider the case 6. — oo (this is analogous to the first relation (3.20)).
Let ¢x(t), k > 0 be Ly-normalized Legendre polynomials of degree k that provide
an orthonormal basis in Ly(0,1). Taking an integer-valued family m = m, — oo
and equispaced partition of the interval (0, 1] into m, sub-intervals §;,,, we set

Ginm(t) = m!2pr(mt — 5+ 1)1, .

This is an orthonormal basis in Ly(d,,,). Take an integer [ > 0. Consider or-
thonormal system in Ly(0,1) of the form {¢jrm, 0 < k <1, 1 < j < m} and
statistics

Xjgm = [ Gpm(dXc(t), 0< k<L 1<j<m  (3.41)
0j,m

a2

Note that random variables X ,, are independent standard Gaussian under H.
Let us consider chi-square tests based on statistics (3.41):

m 1
2 2 2
Xm(i+1),a0 = l{xfn.,l>Tm(l+1),a}’ Xm, = Zlkz Xjk,m’ (3'42)
j=1k=0

where, as above, Ty, (41, is (1 —a)-quantile of chi-square distribution with m(l+1)
degrees of freedom. Note that if [ = 0, then we obtain tests (3.40).
The following theorem is analogous to Theorem 3.3.

Theorem 3.6
(1) Let 6. — oo and 1}, be defined by (3.38). Then one can take C, = V2 in

Theorem 3.5, (2) (recall that under (3.38) one can take Cy = /2 in Theorem 3.5,
(1) by (1.25)).

Moreover, let o =1+, 7 € (0,1], I > 0 be an integer. Consider the chi-square
tests X (111).0. Of form (3.42) with m = m. — oo such that

m =o(loga; ), m e ! =o((logo;)?) (3.43)
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(this is possible for 6. — oo; compare with (3.28)). Then 55(X,27LE(1+1),%,F5) — 0,
as liminf 7‘5/7‘:,“5 > /2.
(2) Suppose
o>1/2, e*(loga,")* ! /(logloga, ')* — oo, (3.44)
Let us take m = m, — oo such that
mlogloga.' = o(loga;)V?), m2e2 = o((loga;')?)

(this is possible under (3.44), compare with (3.25)). Then

65(X72n€(l+1),asa Fs) < (I)(\/ 2 IOg a;l o TE/E) + 0(1)

Combining with (1.25) under (3.44), this yields the sharp asymptotics

Bu(Fy o) = &(y/2Toga, | — 1./e) + o1). (3.45)
Proof of Theorem 3.6 is given in Section 5.10.

Remark 3.4 Analogously to Remark 3.3 for any 0 < 0y < 07 < oo such that
(3.43) or (3.44) hold with o = oy, the relations of Theorem 3.6 are uniform over
o € |09, 01]. Therefore taking tests family for o = o that does not depend on r,
we obtain distinguishability conditions of Theorem 3.6 (1) or sharp asymptotics
(3.45) of Theorem 3.6 (2) uniformly over o € [0y, 01].

So, if a — 0, then rates (3.36), (3.38) depend essentially on a.. In the case
5. = o(1) one can consider the factor loga, ! in rates (3.36) as the payment for
small type I error with respect to rates (2.1).

3.3.2 The case p =00

Let us consider the case p = 0o, n =0 — 1/g > 0. Introduce the rates

r = (e2log(eae) )" < (2 1og(a,) )P G, = min(e, a,). (3.46)

£,0s,00

Under (1.23) rates (3.46) correspond to rates (3.32), i.e., e 'r} = Phan:

£,0te,00

Theorem 3.7 There exist constants 0 < Cy < C < oo such that

Be(Fe,ae) = 1 if limsupre/r;, . < Cy, (3.47)
Be(Fe, o) — 0 df liminfr./r?, > Ch. (3.48)

Moreover let us consider family of tests
Yeao = la. ..y X = {slgg)lggﬁl Xjm|/Ti > 1}, my =24, (3.49)

where Ty = (2(cl +loga; ! +logl))/?, ¢ = log2 and the statistics X,,, are deter-
mined by (3.39). Then a.(Yeq.) < @ for small enough € > 0, and if Cy is large
enough in the right-hand side of (3.48), then one has Be(VYea., F:) — 0

For any ny > 0, 0 < 09 < o1 < o0, these relations are uniform over o €
[00,01], q such that n =0 —1/q > np.

Proof of Theorem 3.7 is given in Section 5.11.
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3.4 Adaptive setting
3.4.1 Sequence space

Let us consider the sequence model (1.1). Let the parameter o be unknown and an
interval X = [0y, 01 be given. Taking a family of the functions pr(o), o € 3, we
consider alternatives of form (1.28). Let a family ar — 0, logay' < R2, be given.
Set

g = loglogay'/log R < 2

and assume that there exists a limit

7= lim 75; 0<7 <2
R—oo
We set (1) = oo for 7 = 0 and o(7) = 1/7 — 1/2 for 7 > 0. Also we set
o1(1) =2/ — 1/2.
Let 0y > o(r). Then relation (3.20) is fulfilled uniformly over ¥. In view
of Remark 3.3 taking test family from Theorem 3.3 (1) for 0 = oy, we obtain
distinguishability conditions with pr = inf,cx pr(0):

if liminf —2% <1, then B(Va(S),ar) — 1,
\/2log o'
if limsup Pr > 1, then B(Vgr(¥),agr) — 0.

\2logag!

Moreover if oy > o1(7), then the relation (3.24) fulfilled uniformly over .
Analogously, we have sharp asymptotics (3.26) that provided by tests family from
Theorem 3.3 (2) for o = 0.

Let 01 < o(7). Then the relation (3.9) is fulfilled uniformly over . It fol-
lows from results of Section 3.1.1 that tests procedures depend essentially on o.
Therefore we have adaptive problem in this case.

Theorem 3.8 Let 0, < o(1). Let K*(pg, R,0) be defined by (3.4), (3.5). Set

Kg(¥) = iggK(pR(a)aRa o), Ha(%,ar) = V2 (KR(Z) - \/10g108R+ logaR1> :
(3.50)
(1) Upper bounds

B(Va(R), ar) < ®(—Hr(E, ar)) + o(1). (3.51)

(2) Lower bounds. For the case logag' = O((loglog R)?), assume that the
infimum in (3.50) is ”essential”, i.e., for any 6 > 0 there exists nontrivial sub-
interval Yy C Y such that

sup K(pr(o), R,0) < Kg(%) + 4.
ocX

Then
,B(VR(E), aR) > ,B(VR(E()), aR) > (I)(*HR(E, aR)) + 0(1) (352)
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Let us describe the structure of test procedure ¢y ,, that provides the upper
bounds (3.51). Let p% (o) be the quantities such that

Kgr(pr(o),R,0) = Kg(X) + o(1).

Let Zg(p, o) be extreme sequence in the problem (3.4), (3.5). Let tg; = tg:(X)
be the statistics determined by (3.11). Let us divide the interval ¥ into M = My
sub-intervals,

0pi=lori-1,0m1], 1<1< M, Mx(logR)(Kg(%))”, B>1,
of the length |6r;| < M ! and consider collections of sequences

Zry = Zr(pR(OR1), 0R01), 1=1,., M

and collections of statistics tr; = tr zp,. Set

Y = lag, s XRap = {X : 12112)1%4)5R’l > (logag' + logM)}. (3.53)

Then one has

A(Viag) < @r, BYiag: Va(E)) < (—Hr(E, ag)) +o(1). (3.54)

Proofs of Theorem 3.8 and relations (3.54) are given in Section 5.12.
Taking into account Corollary 3.2, we get

Corollary 3.4

(1) Let (logap')? = o(loglog R). Then we can change in Theorem 3.8 the
quantity Hr(X, ag) by the quantity Hr(X) defined by (2.80) that does not depend
on ag.

Let log ap' = o(loglog R). Then we have distinguishability conditions that does
not depend on ap:

b

if liminf 7*21;(1(1021% <1, then B(Vr(%),agr) —1,
by

if limsup un(>) > 1, then B(Vr(X),agr) — 0,

v2loglog R

where the quantity ugr(X) is defined by (2.30).
(2) Let logay' > (loglog R)%. Then in Theorem 3.8, we can change the quan-

tity Hg(%, ) by the quantity Hg(%, az') = V2(Kg(X) — /logaz!).
Let log ap' > loglog R. Then we have distinguishability conditions:

Kr(¥
if liminfﬂ <1, then B(Vr(X),ar) — 1,
Vlog agt
Kr(¥
if limsup r(®) > 1, then B(Vgr(Y),ar) — 0.

Vlogap'
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3.4.2 Functional space

Let us consider functional model (1.2). For given interval ¥ = [0y, 07| and a family
of functions r.(c), o € ¥, we consider alternatives of form (1.29). For a family
a. — 0 analogously to above, we set

=logloga, '/loge™ !, 7.<2+0(1).

Assume there exists a limit
7= lim7, €0,2],
e—0

and set o(7) = oo for 7 =0 and o(r) =1/7 — 1/2 for 7 > 0.

Taking into account Remark 3.4, we consider the case o1 < o(7). Let the
quantities . = d.(o) be defined by (3.35). The assumption o1 < o(7) yields
d:(0) — 0 uniformly over o € ¥.

Let us define adaptive rate function:

T as(o (e'(logloge ™' + loga, 1))/ +D), (3.55)

) =
Note that (compare with (2.12) and (3.36))

(e*(logloge 1))/, as o < loge™!
€ ! 3.56
Te as(g) { (e*(log a 1))o/ (o1, as a; ' > loge L. (3.56)

Theorem 3.9 Let 01 < o(7). There exists constants 0 < Cy < Cy < oo such that:
(1) Lower bounds. If there exists an interval A C X of positive length such that

limsup sup r¢ () /r?% (o) < Cy,

ogEA &
then B.(Fe(X), o) — 1;
(2) Upper bounds. If
lim inf ing re(o)/ree % (0) > Cy, (3.57)
S N

then B.(F.(X), a.) — 0.
The following test procedure provides upper bounds (3.57). Let us take families
Jeo < Jea such that

27(71(.15104»1) _ T(ld (0_1)’ 270’0(.151171) _ ,rad (0_0)

T T E,oe £,

For all integer 1, J., <l < J.1, let us take the collection of statistics anl, my = 2!
of form (3.40). Set

W =1y, Xo={X: , max, lenl/Tm,,ds > 1} (3.58)

with & = a./M, M = J.1 — Jep; recall that T,, o stands for (1 — a)-quantile of
the chi-square distribution with m degree of freedom.
Then for large enough Cy in (3.57), one has

o (Y1) < o, B(Y2%,, F.(X)) — 0. (3.59)
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Proof of Theorem 3.9. By (3.56), for the case a_ ' < loge ' the lower bounds
of Theorem follow directly from the statement (1) in Section 2.2 (see (2.13)). For
the case a,' > loge ™! the lower bounds of Theorem follow from the lower bounds
of Theorems 3.5. The proof of the upper bounds (3.59) for family of tests (3.58) is
given in Section 5.13.

So, for the case a; ! < loge™! one has no additional payments for small type

I errors in the rates of testing; more precisely, this payment is included into the
payment for adaptation. From the other hand, for the case a_! > loge™! one has
no additional payments for adaptation: this payment is included into the payment
for small enough type I errors.

4 Some properties of extreme problems

4.1 Extreme problem (2.16), (2.17)

The results of this section are contained in [13], Section 4.3.

Using the Lagrange multipliers rule for a convex extreme problem (2.16), (2.17)
in terms of variables u; = 2? > 0 and returning to variables z; > 0,, one can
easy describe nonnegative extreme sequence {z; g} and the extreme value u% =
u?(pg, R). We have

1
2 4 . - 20\1/2 .
Up = Nz Som; zir=z(1—z;7))", =z =i/n,

heret, =t fort > 0and ¢, =0 fort < 0. The quantities 2z =2r >0, n=ng >0
are determined by the equations

nz251,n = p%, n1+2"z252,n = R?.
The quantities S;,, { = 0,1, 2 are determined by the relations

Son = nt Z (1—23)? = Sy(0) + O(n 1),

1<i<n
Sin=n""Y (1-2)=S(0)+0(n"),
1<i<n
Sam=mn" 3 2;7(1—2i") = S3(0) + O(n "),
1<i<n
where
1 1 1
So(@) = [ (1= a*)ds, Si(e)= [ (1-a*)ds, S(0)= [ a*(1-a*)ds.
0 0 0

(4.1)
Assume pr = o(R). Then ng — oo and we have the relations

n~ Dy(0)(R/pr)"?, 2z~ Dy(c)py "> RV% | u(pg,r) ~ Do(a)pa /> Rl(/2a’)
4.2
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where the functions D;(o) > 0, [ = 0, 1,2 are continuous Lipshician and bounded
away from 0 over o € [0y, 01] for any 0 < oy < ;. Therefore for any a € (0,1), we
get

BV, o) = ®(Ts — i) +0(1), 1= Dy(o)py; />R (4.3)

For any 0 < 0y < 01 < 00, the relations above are uniform over o € [0y, o1].

4.2 Extreme problem (3.4), (3.5)

We give the outline of the study of the extreme problem (3.4), (3.5) for pr < R
assuming R — oo. Using the Lagrange multipliers rule for a convex extreme
problem (3.4), (3.5) in terms of variables u; = 27 > 0 and returning to variables
z; > 0, one can write the equations for extreme sequence {z;} in the problem

22

1+z

if either A = 0 or x = 0, then we have the strict inequality in the first or in the
second inequalities (3.5), if z; > 0, then C; = 0. It is easily seen that we can take
A>0, u>0and C; =0, when X\ — ui?° > 0. Setting

A=22, u=2"n"", (4.5)

= A +C;, A>0, pu>0, C;>0, Cizl=0; (4.4)

we can rewrite the equations (4.4) in terms of variables
P2=22¢(0,1+kK,), ko=@ -1 n=ngp>1
We get

2 22(1 - xz2”)
z. =
Y1 —22(1 — z¥o)’

the variables z, n are determined by the relations

z; =0, 1>n,

T =1i/n, 1<i<mn; (4.6)

>z = n2Si(n,2) = p, (4.7)
Y 22 = n't72%5,(n,z) = R?, (4.8)
i=1

and .
K*(pr, R) = 50z Sy(n, 2).

Here, as n — oo,

Sim) = w3 e = 8i(a) + Ol ) (19)
Sonz) = n! 2 1‘;(21 “)U) So(2) + O(nY; (4.10)
So(n,z) = ! *41; ( At lxi;;”)—i—log(l—z (1-&0))) (4.11)
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In (4.9)—(4.11) we set

~ B 1 1 — 20 s B 1 1.20’(1_1.20')
Sl(z)—/ﬂ o sz(z)_/U dz, (4.12)

1—2%(1—z% 1 —2%(1 — z2)

So(z) =21 ./01 (1 it;& ftg") +log(1 — 2*(1 — :cz"))> dz. (4.13)

The integrals in (4.12)-(4.13) converge for any z € (0,1 —b), b> 0, and as z — 0,

Si2) = Si(o)+ O(), 1= 1,2 So(z) = %sg(a) +0(),

where the quantities Si(o), [ = 0,1, 2 are defined by (4.1).

Note that for any R > 0, pr € (0, R) there exist unique z = zp, n = ng
determined by relations (4.7), (4.8).

Let n — oo and z be bounded away from 1. These yield 22 are bounded and

p% = nz?, RZxn?122 nx (R/pr)'/" — oo, 2% =< p¥ T R, (4.14)
K%(pp, R) < nz* < pi /" R-V/7. (4.15)
Observe that if n is bounded and 1 + k,, — 22 is bounded away from 0, then

using (4.6), (4.8), (4.10) we get R = O(1), which is impossible for R — oco. Also
one easily seen that

R? ~ p} ~ 2K*(pg, R), if 1+ kK, 2> =0 and n=O(1). (4.16)

Let us study the asymptotics for the case n — 00, z — 1, 22 < 1+ K,,. Setting
2 2 2 2 n*’

=1-49, =n¢/(1-19)), —-1<7= 7, = , 4.17

: r = n5/(1-4) o), A= (@)

we can rewrite (4.6) in the form

20
2=TT" 4 1<i<n (4.18)
L

Assume T — 0o, T = 0o(n?’). Set m = 71/2% ~ n§'/?*. Rewriting (4.7) we have

1 1
2 _ 2 _ 2\, 1/20 1 _
PR = zi = (14+n%)r Som —n+O(1), Spm=— ———
B 1<1§:<n m1§n1+(z/m)2

(4.19)
We can replace the normalized sums S, ,, in (4.19) by the integrals

61127 /(1 - 20), o< 1/2

logd !, oc=1/2,
c(o), o>1/2

dzx
14 20

n/m
Sn,m - In,m + O(mil)a In,m - /
J0

where c(o) = [°(1 + t*7)"'dt, o > 1/2. This yields

2no/(1—20), o<1/2
p% ~ ¢ nlog(n/T), oc=1/2 . (4.20)
n¥rl/20-1c(g), o> 1/2
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Next, assume —1 < 7 < B, for some B > 0. Set

2 2 | =2 ~2 2 2
=27 + PR, = E zZi, 2] = . 4.21
Pr 1 T PRy PR Vo 1 r+1 ( )

Using (4.18) we have

Pr = (T40°7)Sn,—n+O0(1), Spr=

’ 2<i<n
If o > 1/2, then S, ;, < n. Therefore if —1 < 7 < B, then

1 n'"2/(1 - 20), o<1/2
T+ 120 logn, oc=1/2 "

=240, o>1/2.  (4.22)

Pr™ % nlogn, o=1/2" Pr =

It follows from (4.20), (4.22) that p%/n — oo, as z — 1, n — oo for o > 1/2.
Also using (4.18) and evaluations above one can verify that, for any b € (0, 1),

min 27 > (b —1)(1+0(1)), > 27=<pp as z—1, n— oo.
1<i<bn 1<i<bn

Since V ¢ > 0 3 d > 0 such that z — log(1 + z) > dz for z > ¢, this yields

1
K*(pr,R) = 3 2(212 —log(l1+2})) < p%, as z—1, n— oo. (4.23)

(2

On the other hand, using (4.17), (4.18) and rewriting (4.8), we have

2 20 .2 __ 20 2 20
R = Zzzi—Z(n —Tzi—z)

1<i<n 1<i<n
20 - - 20 -
= 5o r1 1n2 T On*) — 1% ~ % 1 1n2 22, (4.24)

since Y cicp 127 = n* 11 /(20 + 1) + O(n??) and 70% = o(n* 1) by (4.20), (4.22).
It is easily seen from (4.20), (4.21), (4.24) that if 7 is bounded away from —1,
then the item 27 is not essential for the rates of p%, R?. This yields

prR V) o0 for o >1/2, liminfppR Y®*™) > C(5) for o < 1/2,
(4.25)
where

Clo) = (20/(1 — 20))Y2(1 + 1/20)/2@7+D) (4.26)

Let 7 — —1. Then the item 2? is essential for the rates of p% and it may be
essential for the rates of R?. Relations (4.25), (4.26) hold true, for z — 1, n — oo.
Relations (4.14)—(4.16), (4.23), (4.25) yield the following statements.

Proposition 4.1

(1) Let either K*(pg, R) = o(R¥?°*1)) or pp = o(RY?°+1)). Then z — 0,
n — oo and relations (4.14)—(4.15) hold true.

(2) Let pr < RY?7+1) and either 0 > 1/2 or o < 1/2, limsup pgR~Y/7+1) <
C(o). Then n — oo, the quantities z are bounded away from 0 and from 1 and

relations (4.14)—(4.15) hold true as well.
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Assume pp = o( RY/(?7+1)). By Proposition 4.1 (1), this yields z — 0 and
1
K2 (o, ) = w(pn B)(1/240()), KXpm )= 3 2 (140(2). (4.27)
1<i<n

Proof of Corollary 3.2. Relation (4.15) and the second relation (3.17) yield
22K (pr, R) = o(1). Therefore relations (3.18) follow from (4.27) and (3.15). O

5 Proofs of Theorems

5.1 Proof of Theorem 3.1 (1)

It suffices to consider the case

K(pr, R) = \/logay' + O(1). (5.1)

and assumptions (3.9) and (3.8) are equivalent under (5.1) (see Remark 3.2).
Let us consider Bayesian hypothesis testing problem on a probability measure
P corresponding to random vector X:
H()ZP:P(), H1:P:P

TR

(5.2)

where P, = [ P,mr(dv) is the mixture over the prior mz. Denote B(Py,, ar) the
minimum of the type IT error probability in the problem (5.2) for given type I error
probability ag. It suffices to verify that

B(Pry, o) = ®(\/2logay' — V2K (pr, R)) + o(1);
mr(Vk) = 1, Vg =V(pgr, R,0).

In fact, let 7z be conditional measure with respect to the condition v € Vj, i.e.
wr(A) = mr(ANVg)/7r(Vg) and Pp = P; .. Since 7R is supported on Vg, for any
a € (0,1) we have B(Vg, ag) > B(Pg, ag). On the other hand, it follows from [13],
Proposition 2.1, and inequalities (2.32), (2.49) that, for any a € (0, 1),

. 1 . 1 )
\B(Pryp, ar) — B(Pr,ag)| < §|P7rR — Prli < §|7TR —7glt <1 —mr(Vr),

where | - |; is the total variation distance.
Let us consider extreme problem (3.4), (3.5) with slightly changed quantities

P =pR(1+6), R>=R*(1-9). (5.5)

We take § = §i such that
it > >nt (5.6)
where n = ngp, z = zp be the quantities determined by (4.7), (4.8). The first

relation in (5.6) and (3.7) yield K(pr, R) = K(pr, R) + o(1), and we can change
K(pr, R) by K(pg, R) in relation (5.3).
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Let {z;} be the extreme sequence in the changed problem (3.4), (3.5) and

T = N(0,{z]}) = HN (5.7)

be the Gaussian measure on (1%, B), where B is the Borel o-algebra of subsets in
I2. This corresponds to independent Gaussian coordinates v; ~ N (0, 2?) of random
mean vector v € [?. Note that

P, /Pmdv HN02+1 (5.8)

is the Gaussian measure that corresponds to independent X; ~ A (0,2? + 1). The
log-likelihood ratio tg = logdPy./dP, is of form (3.11). According to Neyman-
Pearson’s Lemma the quantity 3(a, Pr,) is of the form

Bla, Pry) = Prp(tr < Tra), (5.9)
where Tg o is (1 — a)-quintile of the statistic ¢t in P,-probability, i.e.,
Po(tR 2 TR’Q) = (.

Denote

1
Err=Ep, tp = 2 > (2 —log(1 + 27)),

z'

7?_R—\/varp tR— ZZ;I, )\R: (tR*Eﬂ-’R)/G'ﬂ-,R.

Clearly,
E.r = K*(pr, R), U,Zr,R ~2F; r (5.10)

(the latter relation follows from (4.27)).

Let z; be determined by (4.6) with n = ng, z = zg determined by (4.7), (4.8)
for the changed extreme problem (they are of the same rates as for the original
problem and we use the same notation).

Lemma 5.1 Let n — oo and sup; 22 = O(1) (by (4.14), these hold under (3.8)).
Then Ag — £ ~ N(0,1), in Py, ,-probability.

Proof. In P, -probability, the random variables tx are distributed as
~ 1
W@mm+52n,n:ﬁ@—n,ngmnammd

Note that uf = EY;* = 602%. Tt follows from (4.6) that

Zz? = nz*, sz = nz®,
i

i
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and the Lyapunov ratio Ay is of the rate

ok
(VarpﬂRtR)

This yields the statement of the lemma. O
The next lemma is formulated in more general form that we need for the proof

of Theorem 3.1 (1), because we'll use it for the proof of Theorem 3.4 below.

Lemma 5.2 Let tg = logdPr,/dPy be a log-likelihood ratio (not necessarily for
the priors of form (5.7)), and Tg o be (1 — a)-quantile of tg under Py,. Then
(1) For any Ty one has

lOg(PO(tR > TR)) < —Tkg.

This yields Tr o < loga ™.

(2) Let A\g = (tr — Ex Rr)/0xr, where Exgr, 0-r — 00 be a quantities (not
necessarily defined by above) such that A — ¢ in Py, -probability. Let Tp = E, p+
ArOx R, ar — @ € R and assume, for the random variable ¢ and the quantity a,

log(Ee™* 9150) = o(h), as h— oo, (5.11)
Then
lOg(PO(tR > TR)) =—Tr+ O(Uﬂ,R)- (512)
If logap' = Exp + aroxr, ar — a (by (5.10), this corresponds to assumption
(5.1) for priors (5.7)), then this yields
Than = logag' + 0(0x,r)- (5.13)

Note that Lemma 5.2 (1) yields relation (3.12).
Proof. First, since the measure P, is absolute continuous with respect to Fj,
we have Ep,e'® = Ep (dPy,/dP,) = 1. Using the Markov inequality we get

Py(tg > Tg) = Py(e'® > ™) < e TREp e’ = ¢ TR,

This implies Lemma 5.2 (1).
Next, we can write tp = Tg + 0x Mg, Where g = Agp —ar — ¢ —a in Pr,-
probability. Moreover,
Py(tr > Tg) = Ep,, e P lysrey = efTREP"R e T L e 0)
= e’TREpﬂR Zy R, Zp=e "1y (5.14)
Note that the random variables Zp are bounded and Zp — 7 = e*“‘ll{oa} in
Py ,-probability and EZ > 0. Therefore Ep, Zh/EZ" — 1 for any h > 0. This
yields there exists a family hp — oo such that Ep, ZRR|EZMR — 1. Assuming
hr = o(0x r) and using the inequality EY® > (EY)? for Y > 0, b > 1 and (5.11),
we have
1 Orx.R On,R hry __ On,R hp o
og(Ep, Zg"") > log(Ep, Zg") = —=(log(EZ"*)+0(1)) = o(0x r). (5.15)
Lemma 5.2 (1) and relations (5.14)—(5.15) imply Lemma 5.2 (2). O
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Remark 5.1 Note that if Ay is asymptotically standard Gaussian, i.e., { = & ~
N(0,1), then relation (5.11) holds true. In fact, direct calculation and (1.8) give

EeM 910 = "W 2P(—a — h) ~ e /% /(a + h)V 2. (5.16)

In view of Lemma 5.1, we can apply Lemma 5.2 to the problem under consideration.
Moreover, relation (5.11) holds true for the case a > H and ¢ = &y is lower
H-truncated standard Gaussian variable £ ~ N (0, 1):

e =H+(€ Muem—{5 200 Pea<n={3" 127 )

In fact, by a > H we have £g = £ for £ > a and we repeat calculations (5.16).

Remark 5.2 Let us take sequences m — oo, z = 2, > 0 and consider chi-square
statistics x2, of form (3.22) and Gaussian measure 7 = N (0, {2}) corresponding to
zi=2z,1=1,...,m; z; = 0 for ¢ > m. Then the statistics £y are of the form

22

m
tr = 2 — —log(l + 22);
EZo0+ 2% 2 & )
the quantities F, g, o7 p are of the form

Exr= %(22 —log(1 + 2%)), afr,R = %24.

Analogously to the proof of Lemma 5.1 we see that the random variable Ag is
asymptotically N'(0, 1)-Gaussian in P, ,-probability. Setting Tr = F, r and apply-
ing Lemma 5.2, we obtain the large deviation inequality for chi-square statistics
Xom

(22 —log(1 + 2%)); (5.18)

(22 —log(1 + 2%)) + o(22y/m).  (5.19)

log Po(x2, > m(1 + 2%)) < —

SIERIE

log Po(x2, > m(1 + 2%)) = —
Let us prove relation (5.3). Using (5.9), (5.10) (5.13) and Lemma 5.1 we have

/B(PﬂRaaR) - Pﬂ'R(tR < TR,(!) - P7TR <)‘R <

o <10g ap' — K2(pg, R) ‘1:0([((51?,, R))

V2K (5 ) ) +old)

We can write

logar' — K*(pn, F) = (Viogag' ~ K(5m, B)) (Viogar' + K (pn, ).

Under the assumption (5.1) the second factor is 2K (pg, R) + O(1). This yields
relation (5.3).
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In order to verify relation (5.4), note that
1—7TR(VR) S’]TR(Sl <p§z)+ﬂ'R(Sg >R2); Sl :Z’Uiz, 52:Zi2”1)z.2_
By construction of mg, we have
Zz (14 8)p%, p% =< nz?
Z,LZU 2 _ 1 o 6) ’ R2 — n1+2022’

Var,,(S1) =2 Z zi < n2t, Var,,(Ss) = 2 224"2:4 = pltiot
i

Therefore using the Chebyshev inequality we get

7n(S1 < #) < 7a(1Ss — Ean(S0)] > 8h) < Varen(S0)/8%0% =< (n8?) " =5 0
ﬂ-R(SZ > Rz) < 7TR(|52 — E.,rR(Sz)‘ > 6R2) < VaI'.,rR(Sg)/(SzR4 = (n(52) — 0.

These yield relation (5.4). O

5.2 Proof of Theorem 3.2 (1)

It suffices to show that for any € > 0 there exist C > 0, Ry > 0 such that if R > Ry
and \/logay' — K(pgr, R) > C, then B(Vg,ag) > 1 —¢.

The proof follows to the scheme of Section 5.1 and we note the differences only.
Note that n = ngp — oo and z = z are bounded away from 0 and from 1 in the
case (see Proposition 4.1 (2)). First, we take 6 = Bn~/? in (5.5) with B such
that mg(Vz) > 1 — £/2 for large enough R (these correspond to evaluations in the
end of Section 5.1). Under this choice we get K (g, R) < K(pg, R) + By for some
B, = By(B). Note that E, p = K?(pg, R) < 02 p in the case under consideration.
Other evaluations are analogous to above. O

5.3 Proof of Theorem 3.1 (2)

Analogously to Section 5.1 it suffices to assume (5.1) (see Remark 3.2). We study

the distributions of statistics ¢t determined by (3.11) under alternatives v € Vj.
Set i
trn —
ER(U) - E“tR’ U%(U) - VarvtR; )\1),R - Riﬁv(v)
or(v)

Since
E,X? =1+4+v}, Var,X? =2+ 4v?,
we have

2

Eg(v) = %Z ( & -(1+v7) — log(1 + zf)) : (5.20)

1+z
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22

1
AE1R(v) - EvtR - K2(pR7 R) = 5 Z 1 _|_122 (Uzz o ZiZ)’ (521)
2 1 z; 2

Lemma 5.3 For the set Vg = V(pg, R,0), one has

inf AFg(v) > 0.

veEVR

Proof. Taking into account (4.4), (4.5) one has, for all 1,

2
S A 4G, A>0, p>0, Ci>0, Ciz2=0.
1+ 2
Therefore
2
2 2%
2AER(U):21+22(v3—z§):AZ(vf—zf)—uZF (v —22)+ ) Ci(v; —27).

Recalling definition (1.19) of the set Vg = V(pg, R,0) and relations (4.7), (4.8),
we have

Y(wi—z)>0, Y ¥ —2)<0, Y Ci(vi-2z)=> Cw}>0.
This yields the statement of Lemma. O

Recall that under assumption (3.8), relation (4.6) holds and z — 0 . These
yield gr = sup; 22 — 0, and we have

Z{1 2.21).2
(3 <2 < (3 7 71 _
2y S S L P T
4 22 4
1 1 o 2
DB e R A D wr (G B DR D DE s

In view of (4.27),

z 2 2
sy " gy " on B,

This yields that, uniformly over v € I2,
(24 0(1))K?(pr, R) < ox(v) < 2K*(pgr, R)(1 +0(1)) + o(AER(v)).  (5.23)

Assume AER(v)/K(pr, R) — oco. It follows from the Chebyshev inequality and
(5.23) that

B(thag,v) = P,(tg <loga ') = P,(Eg(v) —tg > Eg(v) —logay')
< ox(v)
= (Egr(v) —loga')?

— 0,
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because of Er(v) —loga™' = AEg(v) + O(K(pg, R)).
Assume
AFa(v) = O(K (pr, R)). (5.24)
By (5.23) this yields
o2(v) ~ 2K*(pr, R) (5.25)

In P,-probability, the random variable A,  is distributed as

Ar ~ Y (ariUi +briVi), Ui= (& —1), Vi=&, &~N(0,1) iid, (5.26)

(2

% >0, b Al
AR, = =\, i = T 5,
T 204(v)(1+ 22) B op(u)(1+22)
Ap=7) ap; Br=) bh; 24p+Br=1, (5.27)

and by (4.15),

aj = max aiz,i = O(z"/K*(pr, R)) = O(n™") — 0.

Lemma 5.4 Let random variables variables Mg be of form (5.26), (5.27) and a3 =
sup; a%ﬂ- = o0(1). Then Ag are asymptotically standard Gaussian.

Proof. Let Ap = o(1). Clearly,

2
FE (ZU/R,iUi) :2AR—>O, BR: 1+O(1), ZbR,i‘/i NN(O,BR)

This yields Lemma (5.4) for the case Ap = o(1). Let Ap < 1. Set
Ip={i: by; >agr}, |Ir| = #Ig,
and consider the representation Ap = 5\%) + S\g) + 0r, where

5\%) = Z (ariUi +bgiVi) = Z Wi, 7\%) = Z briVi, Or= Z ag,qUs.
i¢ln i¢In iclp iclp
Note that
Var(6p) =2 Y ah; < 2a3|lpl, 1> ) bk > agl|lgl.

iEIR iEIR

This yields Var(dg) = o(1), dg — 0. Clearly, S\g) and Xg) are independent and
A2 N(0, By), where By = Yicry 0% i- Observe that, for some B > 0,

Y. EZW}<BY (ay; +br;) <B (aéZafm + aRZbé,i> = o(1),

i¢lg i¢Ip

Var(j\g)) = Z (2(1?2,1' + bi?,i) =1,
i¢ln
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because of
Ap = Za%’i <1, > aé’i =o(1)
i iclg

- - . . 1(1)
This yields the Lyapunov condition and asymptotic normality of A, 5. O

In view of Lemma 5.4 and (5.25), under (5.24) we have, uniformly over v € 2,

B(Yan;v) = Po(tr <loga™') = ®((loga™ — Er(v))/or(v)) +o(1) =
o((loga '~ K*(pr, R) — AEg(v))/vV2K (pr, R)) + o(1). (5.28)

Using Lemma 5.3 and (5.28), we have

B(Yan Ve) < ®((loga * — K*(pr, R))/V2K (pr, R)) + o(1).

At last, note that under assumption (5.1)

loga™ — K*(pr, R) = (Vloga ! — K(pg, R))(vloga™! + K(pg, R)) ~
2(Vloga™" — K(pr, R))K (pr, R).

This yields the statement of Theorem. O
Remark 5.3 Let us describe deeper sense of Lemma 5.3 that corresponds to ex-

treme properties of the Gaussian priors (5.7) in the mixture (5.8).
The statement of Lemma 5.3 corresponds to the inequality

inf Y E,, log(dP,,/dPy) > ZEP log(d Py, /dP).

veVR i
Clearly this follows from the inequality

inf ZEP log(d Py, /dPy) >ZEP log( Py, /dPy), (5.29)

pellp

where Il is a set that consists of sequences of priors g = {u;(du)} such that

N Eut>ph, > iE,u’ < R (5.30)

Let P be the set of probability measures on the real line that are absolutely
continuous with respect to the standard Gaussian measure F,. Let us consider the
functions

¢(P,Q) = Eplog(dQ/dFy), P,Q€P, ¢(P)=¢(P,P), PeP

(possibly, ¢(P) = oo or ¢(P,Q) = oo). It is easily seen that ¢(P,Q) is convex
(linear) in P and concave in Q. Also since the function log(z) is concave and using
Jensen’s inequality, we have

¢(P,Q) — ¢(P, P) = Eplog(dQ/dP) < log Ep(dQ/dP) = 0.
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Therefore

@(P) = sup ¢(P,Q),

QeP

and ¢(P) is convex in P.
Let P = P,, Q = P, be a mixture over priors 7, u on (R', B). Then we set

¢(m, 1) = ¢(Pr, Pu),  p(m) = o(Pr).

It follows from above that ¢(m, 1) is convex (linear) in m and concave in p,
sup (r, 4) = (), (5.31)
u

and () is convex in 7 as well.
Let us rewrite the inequality (5.29) in the form
inf Zqﬁ Wiy ) > th i), (5.32)

p€Ellp

where m; = N(0,2?) are Gaussian measures that correspond to the extreme se-
quence in (3.4), (3.5) (clearly 7 € IIg).

In order to verify (5.32), let us try to maximize the left-hand side of (5.32) over
7, i.e., consider maximin extreme problem

H(pg, R) = sup inf > (pi, ). (5.33)
7 HElR i

Using convex properties of this problem and applying minimax theorem we can
replace the supremum and infimum in (5.33). Using (5.31) we have

H(pRaR) = lenf suquﬁ ,LLz:ﬂ—z) = lnf Zsupqﬁ ,LLz:ﬂ—z)
pellpg 7 .
= ulerhf Z(p wi) = 1nf Zh ), (5.34)
where
h(z) = inf{p(u) : E,u’ = 2%} (5.35)
u

Let us show that the extreme measure p* in (5.35) is the Gaussian measure
p* = N(0,2%). (5.36)
In view of relations above, this yields the inequality (5.32). Since
@(u) = h(z) = (2* ~ log(1 + ")) /2.

the extreme problem (5.34) is the same as the extreme problem (3.4), (3.5); also
H(pr, R) = K(pgr, R) in (5.33) and this equals to the right-hand side of (5.32).
In order to verify (5.36) note that the function ¢(u) is of the form

o(p) = Ep,(9(z, p)logg(z, p)), g(z,p) = /exp(*u2/2 + zu)p(du).
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The function ¢(u) is strictly convex and the constraint set in (5.35) is convex as
well. Tt follows from the method of subdifferentials (this corresponds to a formal
derivative dp/0u, compare with [13], Section A.6) and the Kuhn—Tucker Theorem
that it suffices to verify the following relation: there exist constants A, B such that

dp

8_M( * u) = Ep, (exp(—u2/2 + zu) log g(z, u*)) +1=Au®*+ B (5.37)
(the constant B corresponds to the constraints £,1 = 1). However for p* =

N(0, 2?), we have

1 2,.2
(2, 4") = ———exp |
g V14 22 2(14+22))°

1 2
Ep, (exp(—u2/2 + zu) log g(z, u*)) =3 log(1 + 2°) +

D) (1 +u?).

This yields (5.37).

5.4 Proof of Theorem 3.2 (2)

It suffices to show that for any € > 0 there exist C > 0, Ry > 0 such that if R > R,
and y/logap' — K(pr, R) < —C, then B(ay,, Vz) < €. The proof follows to the

scheme of Section 5.3. Recall that n — oo and z are bounded away from 0 and
from 1 in the case (see Proposition 4.1 (2)). For this reason the relation (5.23) is
changed by

biK*(pr, R) < 0%(v) < byK*(pr, R) + bsAER(v),

for large enough R and some positive constants b;, [ = 1,2,3. Lemma 5.3 holds
true as well and other evaluations are analogous. [

5.5 Proof of Theorem 3.3
Define the quantities Ty = m(1 + 2%), zr by the relation

L(Tg,m) = m(z5 — log(1 + 2%))/2 = logay', (5.38)

i.e.,
Tr =m+ 2logag' +mlog(l + 23), Tr > Tma; (5.39)

the latter inequality follows (5.18). It suffices to consider the case logay' < p2%.

Since m = o(logag'), we have
25 —log(1+ 2%) = 2m tlogay' — oo, 2% ~ 2m 'logay', zz — oo,

log(1 + z3) =< log zg, mlog(1l + z3)/logay' =< 25 log zg — 0. (5.40)
It suffices to show that under assumption of Theorem 3.3 (1),

sup Pv(an <Tg) —0, (5.41)
vEVR
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and under assumption of Theorem 3.3 (2),

sup P,(x,, < Tr) < ®(y/2logag' — pr) + o(1). (5.42)

veEVR

It is easily seen that the function f(h) = P, (x2%, < T) decreases in h > 0 and
it suffices to consider the case when

P) = 30 = o (5.43)
=1
Set
m 2 2
pfn(v) = va, Amwy = Xm — T pm(v)’ afn(v) =2m + 4pfn(v).
i=1 om(v)

Applying Lemma 5.4 we see that the random variables A,,, are asymptotically
standard Gaussian in P,-probability, uniformly over v € I2. Therefore

Tr —m — p? Top —m — o2
PU(an < TR) = PU ()‘m,v < f e pm(v)) =& ( i m pm(v)) +0(1)

Om (V) om (V)
21 -1 52 log(1 2
=& < ogap pm(’U) +m og( + ZR)) +0(1)_ (5-44)
om(V)
Let us estimate p?,(v) for v € V. By (5.43) we have
Pm(V) =pr— > v, Y v <m ™ Y v <m R’
i=m+1 i—m+1 Py
This yield
PR > P(v) > pi —m >R (5.45)

Under assumptions of Theorem 3.3 using (5.40) we have
m *R? = o(logag'), mlog(l+zy) = o(logag'), om(v) ~ 20m(v) ~ 2pg. (5.46)

For any § > 0, if liminf 2(loga,')/p% < 1 — 4, then (5.44), (5.46) yield (5.41).
Under assumptions of Theorem 3.3 (2) it suffices to assume \/2logap' — pr =
O(1). In this case using relations (3.25), (5.40), (5.45), (5.46) we have

2logag' — pr(v) = (y2logag' — pr)(y/2logag' + pr) + o(pr)
= (2y/2logag' +O(1))(y2logag' — pr);
mlog(l+2°) =< mlog((logag')/m) = o(y/logag").

since logag'/m — oco. In view of the first relation (3.25), (5.44) and the third
relation (5.46), these yield relations (5.42). O
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5.6 Proof of Theorem 3.4
5.6.1 Lower bounds

Set pr = ng"pr. It suffices to consider the case

\/2(10gnR +logag') — pr = O(1). (5.47)

This yields

logag' = p5/2 —logng + O(pr) — oo, pr > \/2logng +O(1) = co. (5.48)

Since B(Vg, @) decreases in a > 0, it follows from (2.25) that, for any axr — 0,

B(Vr,agr) > ®(y/2logmg — mz" pr) + o(1).
If log o' = o(y/Togmy), then
mpr — 00, logng =logmgr+o(l), pr=myz pr+o(l). (5.49)
This yields the required lower bounds.

Let {e;, 7 =1,2,...} be the standard basis in {2, i.e.,

L, 1=7 .
ej:{eij}; eij:{o it 1 <1< 0.

Observe that
v* = [)RenR S VR, "U*| = ﬁR- (550)

It follows from (1.10), (5.50) that

B(Ve,ar) > ®(y/2logag' — pr) + o(1).

If (logmz)? = o(logay'), then this yields the required lower bounds.
Therefore it suffices to assume, for any B > b > 0 and R large enough,

by\/logmp < logay' < B(logmg)?, (5.51)

which yields (5.49). Denote n; = [ng(1 — 1/log(ngay'))], where [t] is an integer
part of t. Let us take the collections

Viw = {vj = pri "ej, mi+1<j <ng}, Va, = {0 = prnyTej, m+1<j < ng}.

Clearly, V,,, C Vg for any ¢ > 0 and, since v;; > wv;; Vi, it is easily seen that
B(Vagsar) > B(Vap, ar) (compare with Proposition 2 and Lemma 3.1 in [14]).

Therefore it suffices to verify that

B(Vop ) > @(/2(logmp + log ag!) — pr) + o(1).
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Set
ng

log(nrag')

for some ¢ > 0 under (5.51). Take the priors

CNp

1 = 1 >k >
+o(1), ur=prn;"; ng (log nn)?’

k= nNp —N1 = (552)

k

-1
7TR:]€ 255i+n1’

i=1

where 8, is Dirac mass at the point v € I2. This yields 7(V,,,) = 1. Under (5.47),
(5.51), (5.52) we have

ur = pr + o(1), \/logk +logay' = \/long +log ag' + o(1), (5.53)
and it suffices to verify that, for the Bayesian hypothesis testing problem (5.2),

1k
B(ar, Pry) > @(\/2(10gk +logag') —ug) +o(1); Pr, = z > Poiiny  (5.54)
i—1

(compare with Section 5.1). The likelihood ratio is of the form

ar;,

1 k

Lemma 5.5 Let £ ~ N(0,1), \/2 logk + logozgl1 —ur = 0(1), k — oo. Then
L7rR = kil exp(uf{/2 + uRé-R) +Nr + 0(1), fR — é- ~ N(07 l)a (556)
in Py, -probability, where np = ®(v/2logk — ug).
Proof. It is easily seen that for any ¢ € R one has
k
Prp(Lnp <t) =k 'Y Py, (Lnp <t) = Puye(Lnp <), w*=0p, 1
i=1

and it suffices to verify that (5.56) holds in P,«-probability. On the other hand, in
P,+-probability, the random variables L,, are distributed as

—1

1 k
P exp(uy/2 + urér) + 2 NRk—-1, TRk-1 = ﬁ Z exp(—u%/2 + ug&),

where &; are i.i.d. standard Gaussian. It follows from [13], Proposition 4.10 and
Corollary 4.5 that, in probability,

Nri-1 = ®(y/2log(k — 1) — ug) + o(1)

(to apply Corollary 4.5 one can take u, = ug, we; = ue—D, = y/2log(k — 1), pe; =
(k—1)"'for 2 <i<kand w,; = oo in other cases). This yields the lemma. O

Set
Hp =up—+/2logk, E.pr=— logk+uf{/2, Ar = (log L, — Ex r)/ug. (5.57)
Under (5.47) one has H > O(1), and Hp = O(1) for logay' < (logmpg)/2.
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Lemma 5.6 Assume (5.56) with ng > ®(v/2logk — ug), ng = O(1) in Pr,-
probability. Then one has under (5.47), in Py, -probability,

(1) if Hr — oo, then A — & ~ N(0,1);

(2) if HR — H € R, then Agr — & g, where £ g is determined by (5.17).

Proof. Let Hr — oo. Then

E.r= Hg\/2logk+ H3/2 > ur, FE.p+tup—>o00 VteR.

Using (5.56), for any ¢t € R we have

Pr.(Ar <t) = Pr, (L, < exp(Ergr+tug)) =

P (exp(Er,r + urér) < exp(Ex g + tug) — nr +o(1)) =

P(e"r¢® < e™r(1 + kg)) = P(€r < t + (g) = ®(t) +o(1),  (5.58)
where, in P, _-probability,

— o(1 log(1+ &

exp?gﬂ; _i t)u)R) =o(l), Cr= : u_}: 2 = oll).
Let Hp — H € R'. Then

(5.59)

KRp =

00, t>—H,
—o0, t< —H.
For any t > —H, using (5.56) analogously to above we have (5.58), (5.59). If
t < —H, then Pr,(Agr < t) = Pry (Lr, < exp(Exr+tug)) - 0. O

Let us return to the proof of (5.54). By (5.48) it suffices to consider the case

Err+tug =ugr(Hg+1t)+O(1) — {

logoz]z1 = FErr+agrugr, ar—rac Rl,
and either Hp — oo or Hp — H € R'. Observe that if Hy — H, then we have
logag' = (Hg + ag)ug — H%/2 = (H + a)ug + o(ug) — co.

This yields a + H > 0, and if a + H = 0, then we go to the case logay' =
o(+/logmp) that was considered above. Therefore it suffices to assume a + H > 0,
if Hp = O(1). Taking into account Lemmas 5.5, 5.6 and Remark 5.1 we can apply
Lemma 5.2 with o, p = ug and E, g defined by (5.57). This yields the relation
Tray = logag'+o(ug) for (1—ag)-quantile of the log-likelihood ratio tz = log Ly,
Furthermore, using Lemma 5.6 we have

,B(O[R, PWR) = PwR(tR S TR,aR) = P,rR (Eﬂ',R + ARO-W,R S lOg O{}El + O(’LLR)) =

| 1B,
P, ()\R < 8% L 0(1)> = P, (Mg < ag + 0(1)) — ®(a).
UR
On the other hand, under (5.47), (5.53) we have
| L tlogk — u/2
ap — OgaR +u0g 'LLR/ — (\/2(10gaR1 + logk) - UR)
R
2(log o' + logk) +
% (\/ (OgaR2 Og ) UR) ~ \/2(10gaE1 +10gk) — Uup.
UR

This yields (5.54). O
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5.6.2 Upper bounds

It suffices to consider the case ¢ = oo that corresponds to the ”widest” alternative.
For tests (3.28) and ay small enough, using (1.8) we get the first relation (3.29):

a(YRrap) = Po(Xray) < ZPU(\XH > Topi) < 22‘1)(*71@,1')
=1 =1

aR 1/2) aR ad 1

Z exp(— 5
V27T Tag,i B \/_z 14log(i + 1)y/logi + log oz’

Next, by construction of the tests (3.28) and since T; = T,, ; increases in ¢, one
has, for any v = {v;} € [? and any m > 0,

< OR.-

B(WYRrag,v) < 1nfR,(|X| <T;)< CI)(mln( — i) < ®(Tim) — max lv;]).  (5.60)

Lemma 5.7 Setm = mp = (R/pr)"/¢~"), ng = [mg], ng1 = ng+1=mz(1+6)
for some § > 0. Then one has the inequality

inf max |v;| > pgrng". (5.61)

veEVR i<mp

Proof of the lemma (compare with Lemma 4.2 in [13]). Fix v = (v, ..., Up, ...) €
Vg and let 4 > np,. Since

supi”|v;| > pr, supé’ly;| <R, s>71 >0,
i i

we have _
i | v \v,

| P R s <m>ST ( 1 )ST
= < —i" 0 = | — <|l—= :
PR PR PR 1 1+46

Therefore the supremum sup, i"|v;| is attained in some iy < ng, and we have

max |v;| > |vi,| = (Jvi,|i7)iy " > prng”- O
i<mp

Since T, pn = \/2(log ag' +logn) + o(1), using (5.60) and (5.61) we have the
second relation (3.29):

B(Wran, Vi) < ®(Tapnp — Mg PR) \/2 (logng +logag') —ny"pr)+0o(1). O

Remark 5.4 It follows from (5.50) and Lemma 5.7 that

> > > > .
ng PR vlenf |v] 1)1envf sup|vz\ vleanR inlaX|vz‘ PRN R

By (1.10), this yields relation (1.26).
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5.7 Proof of Theorem 3.5 (1)

For rates (3.38), taking Cy = /2 we get Theorem 3.5 (1) directly from inequality
(1.25). Therefore we need to consider the case . = o(1). It suffices to assume
Te XT7, -

Let us take integer-valued family m = m,, an integer d > ¢ and d-differentiable
function ¢(t), t € R' supported on [0, 1], ||¢|lo = 1. Set

Gei(t) =m2p(mt —i+ 1), i=1,..,m;  f(t,0) =D 0:64(t);, 0 € R™.
=1

Clearly, the functions ¢, ;(t) have disjoint supports, the functions f.(¢,0) are sup-
ported on [0, 1]. One can verify that

1£eC Ol =16 (1 fe( )2 < em|6] (5.62)

where ¢ = ¢(¢, d) is a positive constant and | - | is the Euclidean norm in R™ (see
[13], inequality (2.80) and Lemma 3.8, for the inequality in (5.62)). Let us take

m=m, ~ (2cr./H)™Y" — oo, (5.63)

by (3.37), where c is the constant from (5.62). Under the assumption 6, = o(1)
this yields
loga, ' = o(m,). (5.64)

Introduce the set
FEam = {fﬁ(:g) 10 € Rma ‘9‘ - Ts}:

corresponding to the sphere of radius r. in R™. It follows from (5.62) that F, ,, C
F.. This yields B (F; m, ) < Be(Fe,a.). On the other hand, passing to random
variables X; = e 7! [} ¢.i(t)dX.(t) and to parameters v; = e }(f, de), i = 1,...,m
we see that

/BE(FE,m: as) - /B(Smil(rs/s): as);

the last quantity corresponds to testing of the hypothesis v = 0 against alternative
v € S™ !(r./e) under n-dimensional Gaussian model X = v + £, v € R™; here
S™1(p) is the sphere of radius p in R™. It is well known (see [13], Example 2.2 in
Section 2.3) that

B(S™ H(p), @) = G(Tha, p7),

where G(t,p%) = P,(x2, < t), v € R™, |v| = p is the distribution function of
non-central chi-square distribution with m degrees of freedom and parameter of
non-centrality p?, and Ton o is (1 — a)-quantile of the central chi-square distribution
with m degrees of freedom, i.e., Py(x2, > Tm.o) = . Therefore it suffices to verify
that there exists Cy > 0 such that if

limsupr./r;, < Cy, (5.65)

then B8(S™ '(p), a:) = Py(x2, < Tm.a.) — 1 uniformly over v € R™, |v| =r./e.
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For all v € R™, |v| = p one has
EU(szn) =m+ p2) Varv(XEn) =2m + 4p2

Using the Chebyshev inequality we see that (5.65) follows from the relation

(T 0. — M — pg)/\/2m5 +4p? = 00, p.=r./E. (5.66)

Since 8. = o(1), under (5.63) we have p? = o(m,). Recalling (5.19), let us take
z = 2z, such that

loga, ' = m, (2> — log(1+ 2%))/2 + o(2*m}/?).
Using (5.64) we see that
z=0(1), T, 0. = m(1+2°), loga, ' ~m.2*/4 (5.67)

and the left-hand side of (5.66) is of the rate (m.2%> — p?)/+/2m.. Therefore
it suffices to verify that limsupp?/m.2> < 1. By (5.67) this is equivalent
limsupr?/e*m,loga;! < 4. By (5.63) the last relation follows from (5.65) with
Co = (4(H/2¢)V/7)7/tetD) - O

5.8 Proof of Theorem 3.5 (2)

The proof follows to the scheme of Section 5.5. We consider chi-square tests of form
(3.40). Take z = 2., T, = m.(1 + 2?) such that L(T,, m.) = logo,!; the function
L(T,m) is defined by (5.38). Analogously to (5.39) using (5.18), (5.19) we have

T. =m, + 210ga;1 + me log(1 + zsz), Te > T, o -

The letter relation yields P.o(x2,. > T.) < c.. It suffices to verify that, uniformly
over f € Fy,
P.;(x. <T.)—0, ase—D0. (5.68)

It suffices to consider the case
[ fllz = 7e X 72, (5.69)

Let us consider the orthonormal projection to the subspace that consists of the
step functions

Prof =Y himlgm fim=m [ f0d.
j=1 3,m
Set

pe(f) = [|1Prm. f

|2/8a U?(f) =2m + 4P§(f), )‘s,f = (X12nE — Me — Pg(f))/(fs(f)
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Applying Lemma 5.4 we see that the random variables ). ; are asymptotically
standard Gaussian in P j-probability, uniformly over f € Ly(0,1). Therefore

Pl <T.) =& (21°g o - pg(j)(j[)mf log(1 + Zg)) Yo(1).  (5.70)

Note the following statement: for any oy > 0 there exist constants B; > 0, By >0
such that for any p € [1,00], 0 € (0,0¢), f € L,(0,1), ||flls, < oo and any integer
m > 1 one has

1P fllp > Billfllp — Bam 7| flop- (5.71)

(this corresponds to Proposition 2.16 in [13]). For any B > 0 we can take C; > 0
such that
B.Ci — HB; > B. (572)

Set pt =r?,./e. Recall that we take the quantities m, ~ (r?, ) */?. Using (5.71)

£,0e

for p = 2 and by definitions (1.16) of the set F. for small enough ¢ > 0 and
uniformly over f € F,,

[P fll2 2 Bire = HByr(140(1)) > Br,  pe(f) > Bp.. (5.73)

First, suppose d. = o(1), (3.36) and take B > 2 in (5.72). Note that (p!)* ~
m.loga_ ', and under (5.69),
22 —log(1+ 22) = 2m_tloga, ! < §Uot2/Uetl) 0 2, — 0,
() *loga, ' ~ (p2)?/me ~ 827 VETD 0, g (f) ~ \/st,
melog(1 + 22)/o.(f) ~ z \/m5/2 N\/mE 22 —log(1 + 22) \/210ga

(02)?[oe(f) ~ (p2)*/v/2me ~ \[(log ;1) /2; 2log e, /o.(f )ZO(\/loga; )-

Therefore the argument in the braces (5.70) is y/(log a;1)/2(2 — B%+0(1)) — —oo.
This yields (5.68).
Next, suppose 6. — 0 > 0 and let the rates be defined by (3.38). We have

(p2)? =loga, ', 22 —log(l+22) =2m " loga, " ~ 260720 o (f) < pl.

This yields liminf z > 2;(d,0) > 0 and there exists a constant M = M(d,0) > 0
such that, for small enough £ > 0,

me log(1 + 22) < Mm, (22 — log(1 + 22)) = 2M log(a, ).

We get
2loga, ' — p2(f) +melog(1 + 27) < (p7)*(2 — B +2M).

Therefore taking B? > 2+ 2M we see that the argument in the braces (5.70) tends
to —oo. This yields (5.68). O
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5.9 Proof of Theorem 2.1

First, using relation (1.8) we have

Je,1 my Je1 Je1

()< X Y Pl Xim| >T) =2 3 m@(-T) =< 3 1% 0.

l:‘]E,O j:l l:‘]E,O l:‘]E,O

Next, note that if

1
6 FeL:0,1), |oll=1, X=c[ 9(dx.), v=c"(f6) T>0,
then we have
P i((X|<T)=®(T — ]) = @(-T — [v]) < (T — [v]).

Setting
¢j,ml = mll/zdj,mu Ujl(f) = Eil’rnll/z/(s f(t)dta

7,my
observe that

— —1/2
Jmax fua(f)l = e m | Pro, s,

and for any f € Ly(0,1) we have
/BE(w:’f) < min min Ps,_f(|Xj,ml| < T1l) <

Je,0<I<Je,1 1<j<my

. . o, . . -1, —1/2
5 0in,  min &(T; —fop(f))) = | min,  ®(Ti =& my || Prm, fllo). (5.74)

Inequality (1.15) yields the embedding
F.re,H,0,q) C F.(r.,H;,n,00), Hy=cH, n=0-1/qg>0. (5.75)

By (5.75) it suffices to consider the case ¢ = oo with the change (o, H) by (n, H;).
Let f € F, = F.(r.,H;,n,00). Let us take | = I.(n) such that m; = 2! ~
(r? o) /", where 1}, are determined by (2.10). Clearly,
Joo <l ~hi(n)loge ' < J.1, Ty~ ha(n)y/loge 1.

where
hi(n) =2/(2n+1)1og2, ho(n) =2(2n+1)""2 (5.76)

Using inequality (5.71) for p = oo and taking C; such that
Blcl - B2H1 = B, B > Chg(’l’]), C > 1, (577)
we see that, for € small enough uniformly over f € F,,

ey 2 Proflloe > €7 (e ) TPU(B + 0(1)) = (B + o(1)y/loge 1 > CTy.

Thus the argument of the function ® in (5.74) is no larger then (1 — C)T; — —o0.
This yields G: (¢}, F.) — 0. O
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5.10 Proof of Theorem 3.6

Set m, = (I + 1)m,. Analogously to Section 5.8, we take z = z,, T, = m.(1 + 2?)
such that L(T;,m.) = loga_ . We have

T. = m, + 2loga;1 + m, log(1 + 252), T, > Th. o.-

The letter relation yields PE,U(XEH,E,I > T.) < a.. Let us consider the orthonormal
projection of the space L(0, 1) to the subspace that consists of the piecewise poly-
nomial of degree < [ (no necessary continuous) functions that correspond to the
partition of [0, 1) to sub-intervals §;,, = [(j — 1)/m,j/m], j=1,....m

m 1
P’rm,lf = Z Z fjk,m¢jk,m; fjk,m - (fa ¢]k,m)
§=1k=0

Set

pe(f) = |1 Prmafllz/e,  02(f) = 2 +4p2(f), ey = (Xom,q — e — P2 (f))/0e(f)-

Applying Lemma 5.4 we see that the random variables A, ; are asymptotically
standard Gaussian in P, ;-probability, uniformly over f € Ly(0,1). Analogously to
(5.70) we have

2loga, ' — p2(f) + melog(1 + 22)
oe(f)

Lemma 5.8 There exists B = B(o) > 0 such that for any f € Ly(0,1), [|flls2 <
0o, and any integers m > 0, [ > 0, one has

Poj(Xm <T.)=@ ( ) + o(1). (5.78)

[Prmafllz > [[f1l2 — B*m || f][7- (5.79)
Proof of the lemma. Observe the following approximation property.

Proposition 5.1 Let 0 = [+ 7, 7 € (0,1]. There ezxists B = B(o) > 0 such
that for any f € Ly(0,1), || f|ls2 < oo, one can find a piecewise polynomial p,,; of
degree <l satisfying

1f — podlls < B[], (5.50)

Proof of the proposition. Let 7 € (0,1) and [|f[|7, be defined by (1.14). Let
[ > 1. For each j = 1,...,m let us take polynomials in ¢ € d,, ; of degree < I:

piat,z) =3 [ () (t — z)*

s=0

R p;(t) = m-/ém,]- p;i(t, z)de.

Applying the integral Taylor formula,
i
1) = pialt) = C [ (1) ~ fO@)(E— ) du, C=((1-1))
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we have, for z,t € §,,,

fe)—elt) = Cm/'nfuw@nfmm»@uVHMda

— fO()]
SIOROINE— Q/WJ/;] o af duds
Applying the Cauchy inequality for ¢ € 5m,j, we get
FO(z))2
(F(t) ~ ps())? < xWU)mm

O);
2T
8 /(;m,j /,;m!j [ — 2" dudz < m20—2 / / o dudz.

Set pma(t) = p;(t) for t € 6, ;. We have, for u = z + h, |h| <m!,

HWWW%:i/_U@—MWMt

FO(2))2
S m20' 1 Z/ / 2T( )) du dz
2 m~1! 1-h () T _ @) T 2 2

Ifl =0, 7 €(0,1), then we set p;(t) = m [; . f(z)dz and repeat the estima-
tions. ’

Let 0 = 1+ 1 > 0 be an integer and [/ f[|}., be defined by (1.12). Then we set
p;(t) = pji(t,z;), zj = (j — 1)/m. Applying the Taylor formula

£() = piult, z;) O/f )t — w)ldu, C =1/l

and the Cauchy inequality once again we have, for ¢ € 4, ,

(f(t) - pj(t))2 _ C2 < tf(”)(u)(t _ u)”ldu) < C2m720+1 /{s (f(”)(u))Qdu,

Y O0m,j

prWM—Z/ J(0)de < CPm (| f0,) O

Clearly, the orthonormal projection provides better approximation property in
Ly(0,1). This yields (5.80) with the change p,,; by the orthonormal projection of
f to the space of piecewise polynomial functions:

If = Progflla < Bm”=?| f[ls2. (5.81)

Then we use the equality
1£12 = 1 Praafllz + [1f = Pradfls:
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Jointed with (5.81), this yields (5.79). O

Next considerations repeat the proof of Theorem 3.3 with the change pr by
r./e, m = by M., pm(v) by p:(f) and R by He~!. We consider the case || f||2 = 7.
and apply inequality (5.79) instead of (5.45). O

5.11 Proof of Theorem 3.7
5.11.1 Lower bounds

Analogously to Section 5.7 let us take integer-valued family n = n., an integer
s > o and s-differentiable function ¢(¢), ¢t € R' supported on [0, 1],

6l =1, [[¢llc=d, [[0llg0 = a,

for some d > 0, a = a(o) > 0. Setting f.i(t) =r.d(nt —i+1)/d, i=1,..,n, we
see that the functions f.,; have disjoin supports on [0, 1] and

||fs,i||2 - 'rsnil/Z/da ||fs,i||oo =Te, ||f5,i||q,a S arsnail/q/d - arsn"/d.
Take n ~ (ar./dH)~'/" such that ar.n"/d < H. We have fei € F. YVi=1,..,n.

Let us take a prior 7, on Ly(0,1) and consider corresponding mixture

g = nil Z 6fs,“ Pﬂ's - /Ps,fﬂ'[__-(df) = nil Z PE,fE,,;'
i=1 ) i=1

Since 7. (F;) = 1, it suffices to obtain the lower bounds for the quantities G, (o, Px,)
in the Bayesian hypothesis testing problem on a measure P, which generates ob-
servations X, of form (1.2),

Hy : P=P., against H;: P=P,_. (5.82)

Hypothesis testing problem (5.82) is equivalent to
Hy: P=Pyagainst H, : P=P, ,=n"Y P,.., (5.83)
i=1

where {e;}" , is the standard basis in R",

n

1 ~1/2
Tem =M Zépiei, pe =ren Y /de.

i=1

Let us verify the inequality

Be(0i, Pr,) > ®(y/2logn + loga; ! — p.) + o(1). (5.84)

To prove (5.84) it suffices assume \/2 logn +loga_! — p. = O(1). However hy-
pothesis testing problem analogous to (5.83) has been studied in Section 5.6.1 and
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inequality (5.84) corresponds to (5.54) with the change ug, k, ar by pe, n, a. that
was established in Section 5.6.1 under the same constraints.
Using (5.84) we see that suffices to verify that

lim sup ps/\/Q(logn +logogt) < 1. (5.85)

*
€,0:00"

To prove (5.85) we can assume 7, < r In this case one can see that
loga, ' +logn =< loga, ' +loge . (5.86)
If limsup 7. /r} < Cj for Cj small enough, then (5.85) follows from (5.86). O

€,0t, 00

5.11.2 Upper bounds

For test family (3.49) using relation (1.8) we have, for a, small enough,

oo my )
as(d)s,ag) S ZZPE,U(‘Xj,ml| Z ﬂ) — 2Zmlq)(_T'l) ~
=1 j=1 =1

oo

2 & o, e
T 22 e TE)/Ti< 23 (el +loga ) T <o

=1

Next considerations are analogous to Section 5.9. In view of (5.75) it suffices
to consider the case ¢ = oo with the change 0 by n =0 —1/q and H by H; = cH.
Let f € F, = F.(re, Hi,n,00). We have relation (5.74) and take [ = [.(n) such that
2t~ (r* )Y/ where r* are defined by (3.46). We get

€,0g, €, ,00

T, = h(n)\/logff1 + (n+1/2)logaz) +0(1), h(n) =2(2n+1)"/2
Using inequality (5.71) for p = oo and taking C; such that
B = B,C, — B,H, > max(h(n),V2),
we see that, uniformly over f € F,,

e 'my | Pl flloo > € 11 0 oo) TV/P(B + 0(1)) ~ By/log(a.e) .

Therefore the argument of the function ® tends to —oo in (5.74). This yields
/Bs(ws,afa FE) _> 0 D

5.12 Proof of Theorem 3.8
5.12.1 Lower bounds

Our considerations follow to [13], Section 7.2. It suffices to consider ¥ = ¥, and

sup K2(pn(0), R, 0) = K2(%) +o(1); Kn(%) = \/loglog R+ logag + O(1)
o€cX
(5.87)
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Moreover it suffices to assume
logay' = O((loglog R)?), 7=0, o(r) =00, (5.88)

since the required lower bounds follows from Theorem 3.2, (1) for the case
log ag'/(loglog R)?) — oco. Under (5.87), (5.88) we have

Kgr(¥) > y/loglog R+ O(1) —» o0, Kpg(X) = O(loglogR), (5.89)

relations (3.9), (4.14)-(4.27) hold uniformly over o € ¥. Moreover relation (3.17) is
valid uniformly over og = o € ¥ and using Corollary 3.2, (3.18) we can change the
quantities v/2K (pg(c), R) by the quantities u(pg(c), R defined by (2.16), (2.17).
Note also that it suffices assume logap' > by/loglogR, b > 0. In fact, if
log ap' = o(/Toglog R), then the lower bounds easy follow from (2.32), because of
Hgr(X) = Hgr(ag,X) + o(1) in this case.
Take an integer-valued family

M = My — 0o, Mz = (logR)/(loglogR)?, B > 1. (5.90)
This yields

\/log M +logay' = \/log log R + log az' + o(1).

Take collections
O'R’ZZO'(]—i-lhR, 1SZSM, hR:(O'l—O'U)/M—}O.

For each [, let us consider extreme problem (3.4), (3.5) with 0 = og,, pr = pr(or,)
and with the change (5.5), (5.6), where the quantities z = zp;, n = ng; are
determined by relations analogous to (4.7)—(4.13). We omit the index R below to
simplify the notation. Let z = {z,} be the extreme sequence in the problem.
Recall that by (5.87), (5.89), one has, uniformly over (I, 1),

2 =0, 1>, oz~ oz (1= (i/m)*), 1 <i<m, (5.91)
1

uy = 3 > 2 =2K5(%) + o(1), (5.92)

mzt =< p?, n 72 =< R mzt < KA(%). (5.93)

Relations (5.91)—(5.93) yield (see (4.14), (4.15))
2% AR Zo(RY), = (RIp) = (RIKLAE)A > B (5.94)
for some b > 0, where ¢(o) = (o +1/4)"'. For j #1, j,l=1,.., M, we set
n" = max(n;,n;), n = min(n;,n).

It follows from (5.90), (5.94) that there exists ¢ > 0 such that for any H > 0,

log(n™/n~) > c(loglog R)? > 2H loglog R, (5.95)
>z < zZzn < Kp()(n /n*)? = o((log R)" ). (5.96)
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Let m = N(0,{z?}) be the Gaussian measure on [? of form (5.7) that corre-
sponds to independent v; ~ N (0, 2121) Take measures P,, and mixtures 7 = mg, Py
of the form

Ls- Ls (dv)
T=—Sm, P=—S'P, P,r:/PUmdv.
M =1 M =1 l l

It follows from consideration in Section 5.1 that
Wl(V(p(G'l),R,O'R’l) =1+ 0(1) Vl, 1 S l S M,

see (5.4). This yields

w(V(D) = - 2 m(V(D) > 1 3 m(V(plor), Ryon) = 1+ (1),

=1 =1
Therefore it suffices to prove the lower bounds for the Bayesian hypothesis testing
problem on a probability measure P that generates random observations X = {X;}:

H[)ZP:P(), H1:P:Pﬂ-.

Recall that, by (5.8), P, is the Gaussian measure corresponding to independent
X; ~N(0,27; + 1) and the likelihood ratio L = L = dP,/dP, is of the form

2 2
Zz,in'

1+ 27,

1 1

M
L= M ZL[, Ll = dP.,rl/dPg = exp(tl), tl = — Z (
=1 2 i

— log(1 + zlzz)) )

Next considerations follow to the scheme of Section 5.6.1. The following lemma
is analogous to Lemma 5.5.

Lemma 5.9 Assume (5.87)-(5.89), (5.90). Let € ~ N'(0,1), u = v2Kx(X). One
has, in P,-probability,

L7r = Mﬁl€uz/2+u£R+nR) §R — 6) Mr Z (D( V 2lOgM—U)+O(1), Mr = O(l) (597)
Proof. For any t € R one has

M
Po(Lr <t)=M "> Py(L: <t)

=1

and it suffices to verify that (5.97) holds in P,,-probability for all {, 1 <1 < M.

Fix [ (next consideration are uniform over [, 1 <! < M). In P, -probability,
the random variables X7 are distributed as & (z7; +1), where & ~ N(0, 1) are i.i.d.
Therefore the random variables ¢; are Py, -distributed as

1
ly ~ Zwi + B, wi= 52121(512 —-1), E= KQ(ZI):
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where K%(z) = K%(X) + o(1) are defined by (3.3). By (5.92),

E(t) = ky, Var(t) = 2} = 2B+ o(1),

N | —

1<i<n

here and later expectations and variances correspond to the measure P. The
Lyapunov ratio is of the form

_ > BE(w))
(i B(w?))”

Therefore using (5.89), (5.91)-(5.93) we easily get, in P,,-probability,

=0(n; ') =0o(R"), b>0.

¢r = (log L — u*/2)/u — € ~ N(0,1).

Set

ZL Zexp

Jﬂ Jﬂ
It remain to verify that, in Py,-probability,

nr > ®(y/2logM —u) +o(1), ng=0(1). (5.98)
Simple calculation and (5.96) give, for j # [,

E(L;) = H(l — 2:]2-’1-21271-)*1/2 — 1, as szlzfz — 0.

i

This yields E(ng) = 1+ o(1), and by ng > 0, we get the second relation (5.98).
To verify the first relation (5.98) note that random variables ¢;, j # [ are Py-
distributed as

1y, Zhi+1
tj ~ Z’wi]’ + Elj + AEU, W;; = _Zji(fi - 1) 2’ ] E(wi]-) = 0,
; 270 zi;i+1
where
1 32.. 1 22.212.
E,;=— 2k 1 1), AE;=- ot~ N(0,1 d
Y 2¥(z;,i+1 o5 ”) PR I 01 11
By (5.92), (5.96), it is easily seen that
AE; < Z 21212121 — 0, k= Z zj,; +o( —u?/? +o(1), (5.99)
Var(t Zz” +o(1) =ul+o(1) < njz;, py = Ewj; < 25, (5.100)

rir = Cov(t;, tx) = (Zz )—01, j#k, j#1, k#1.  (5.101)
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The first relation (5.98) is contained in the proof of Lemma 7.2, relation (7.24)
in [13] with the change P by P, and € by R. Note that the proof of relation
(7.24) in [13] does not use the structure of the statistics L, = dP,,/dP, but its
Py-distributions only. Let us verify the assumptions of the lemma. Our case corre-
sponds to

Wej =1/2log M, u.j =u;, D, =u—/2logM, l.; =t;, pejr = Tjr/UjU.

These yield relations (7.19) and (7.20) with p.; = M ! in [13]. Relation (7.21)
in [13] follows from (5.101). Relations (7.22) follow from (5.99)—(5.100) and from
two-dimensional version of the Bahr-Essen inequality (compare with the proof of
Lemma 7.3 in [13]). The evaluation of the Lyapunov ratio is analogous to one in
the proof of Lemma 5.1 above. O

Next considerations repeat ones from Section 5.6.1 with the change k& by M and
up by u = v/2Kg(¥). This yields the required lower bounds. O

5.12.2 Upper bounds
We study test family 9%, determined by (3.53). Set

ap = ap/M, Tg=1log((ax)™).

The first relation (3.54) easily follows from Lemma 5.2 (1):

R,QR

M
a(¥il) <> Py(try > Tr) < Mexp (—Tg) = ag.
=1

To verify the second relation (3.54) it suffices to assume
K(pr(o),R,0)=K(X) VoeX;, HgrE ar)=0(Q). (5.102)
This yields p%(0) = pr(o). Note that, under (5.102), one has
V(p,R,0)CV(p,Rc ), K(p,R,0)>K(p,R,0), pr(c) < pr(c )forc >0 .
(5.103)
Take v = vg € Vg(X) and let v € Vg(dgy), ie.,
vg € V(pr(or), R,0r), 0ORr € 0gry, 1 €{1,..., Mg}.
It follows from (5.103) that
V(pr(or), R,0r) C V(pr(ors), R, 0R1-1)-

It suffices to verify that

sup  Py(tas < Tr) < ®(y/2log((aq) ) — VZK(E)) +0(1). (5.104)

vEV(pr(oR,1),R0R1-1)
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By the construction of statistics tg;, the left-hand side of (5.104) is the left-hand
side of (3.14) for the set Vg = V(pr(ori), R,0r:-1) and with the change ap by
a}. Under (5.102) it is easily seen that assumptions (3.8), (3.9) are fulfilled for
ory < 01 < o(71) (see Remark 3.2). Applying Theorem 3.1 (2) we get the upper
bounds of the type (5.104) with the change Kr(X) by Kr = K(pr(ors), R, 0r1-1).
By (5.102), it remains to verify that

Kr(¥) = K(pr(ogry), R,ory) < K(pr(ogry), R,0p1-1) + o(1). (5.105)

Lemma 5.10 Assume (3.2) with 0 = 0 € % and let n = ng(c’) be the quantity
determined by (4.7), (4.8). Let 6 = + 8, 6 >0, dglogn = o(1). Then there
exists C > 0 such that, for R large enough uniformly over o € %,

K(pr,R,0) > K(pgr, Rn’®,0") > K(pgr, R,0 )(1 — C(n°® —1)). (5.106)

Proof. Let Z = Zz(pg, 0 ) be the extreme sequence in the problem (3.4), (3.5) with
o =o0,ie., K(2) = K(pg,R,0). Since z = 0 for i > n, the sequence Z satisfies
the constraint (3.5) with the change o' by ¢ and R by Rn’. Therefore K(z) >
K(pgr,Rn®,0"). This yields the first inequality (5.106). The second inequality
(5.106) follows from Remark 3.1, (3.7). O

"

We apply Lemma 5.10 to the case 0 = og; 1, 0 = op. By (4.14) we have
logn = O(log R). By the choice of M = (log R)(Kr(%))®, B > 1, we have

6n<1/M, nfh—1~ dplogn =logn/M = O((Kn(X))"").

This yields inequality (5.105). O

5.13 Proof of upper bounds of Theorem 3.9

Since Py(x2, > Tm.a) = @, we have the first relation (3.59):

a(es.) < Z PO(XE,” > Tma.) < Mé, = o.

JE,0<l<JE,O

Let us verify the second relation (3.59). It suffices to assume 7. (o) = Clr;"‘ii(a),
where C is large enough. For an integer [,

h<Ii<li lye (Jeo,Jep+1], bl €[q—1,Jc1),
let 0¥ be determined by relation

2—{7(1” — ,rad (O'(l)), U(lo) 2 01

€,0¢

o) < op.

bl —

Let 0 € [0, 0(Y] (next consideration are uniform over [y < I < I; and over
o € [oW,o=V]). Tt suffices to verify that

sup  Pef(Xi, < Tmpa) = 0. (5.107)
f€F(re(0),H,o)
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Since logloga, ' < (2 4+ o(1))loge™!, we have M = J.1 — Joo < Jo1 < loge™ '

Note that

b(l) =16V — (1= 1)V = —1/4, 724 (o D)/red (oW) = 200 = 2~ 1/4,

£,ae £,ae

This yields r.(c""Y) < r.(c) and there exist D > 0 such that F(r.(o), H,o) C
F(Dr.(c®W), H,o®). Relation (5.107) follows from

sup Py, < Timpa.) = 0. (5.108)
FEF(Dre(c®),H,a®)

However for C; large enough, relation (5.108) follows directly from Theorem
3.5 (2) that is applied to the case 0 = o), a, = @&,. In fact, since o) < oy + 0o(1)
and o1 < o(7), we have 6, = o(1):

logé, ' =loga. ' +log M = o(e 227 +1).

Taking into account (3.36), (3.55), we have

o® /(40® 41
r;"&s(a(l)) = (54(log o, +log M)) fem D
o /(4™ 41
~ (64(log a, ' +loglog 6*1)) [ rgis(o(l)). O
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