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Minimax nonparametric hypothesis testing forsmall type I errors �yYuri I. Ingsterzx{, Irina A. Suslina k
AbstractUnder the white Gaussian noise model with the noise level " ! 0, westudy minimax nonparametric hypothesis testing problem H0 : f = 0 onunknown function f 2 L2(0; 1). We consider alternative sets that are de-termined a regularity constraint in the Sobolev norm and we suppose thatsignals are bounded away from the null either in L2-norm or in L1-norm.Analogous problems are considered in the sequence space.If type I error probability � 2 (0; 1) is �xed, then these problems werestudied in book [13]. In this paper we consider the case � ! 0. We obtaineither sharp distinguishability conditions or sharp asymptotics of the min-imax type II error probability in the problem. We show that if � is \nottoo small", then there exists natural extension of results [13], whenever if �is \very small", then we obtain classical asymptotics and distinguishabilityconditions for small �.Adaptive problems are studied as well.1 Introduction1.1 ModelLet us consider minimax nonparametric hypothesis testing problem on a mean ofan in�nite-dimensional Gaussian random vectorX = v + �; � = (�1; :::; �i; :::); v = (v1; :::; vi; :::) 2 l2; (1.1)�2000 Mathematical Subject Classi�cation. 62G10, 62G20yKey words and phrases. Minimax hypothesis testing, nonparametric signal detection, adap-tive hypothesis testing, intermediate eÆciency.zSt. Petersburg State Electrotechnical University (LETI), Dep. of Mathematics II, Prof.Popov str. 5, 197376, St.Petersburg, RussiaxThe work was �nished during the stay of Yu. Ingster at WIAS.{Research was partially supported by RFFI Grant 02-01-00262, by RFFI-DFG Grant 02-01-04001 and by Grand NSh-2258.2003.1.kSt.Petersburg Institute of Fine Mechanics and Optics (Technical University), Dep. of Math-ematics, Sablinskaya str. 14, 197101, St.Petersburg, Russia1



where �i � N (0; 1) are i.i.d. and l2 is the sequence space. Let a set V � l2 begiven. From an observation X of form (1.1), we test the null-hypothesis H0 : v = 0against alternative H1 : v 2 V .Sequence model (1.1) is equivalent to the functional white Gaussian noise modeldX"(t) = f(t) + "dW (t); t 2 (0; 1); f 2 L2(0; 1); (1.2)where W (t) is the Wiener process, " > 0 is a noise level. In fact, taking anyorthonormal basis f�ig1i=1 in the Hilbert space L2(0; 1), we pass to the randomvariables Xi and to the normalized Fourier coeÆcients vi,Xi = "�1 Z 10 �i(t)dX"(t); vi = "�1 Z 10 �i(t)f(t)dt = "�1(f; �i): (1.3)Under model (1.2), let a set F � L2(0; 1) be given. From an observation X"(t); t 2(0; 1), we test the null-hypothesis H0 : f = 0 against alternative H1 : f 2 F .For a test  1 we denote �( ) = E0( ); �"( ) = E";0( ) type I error probabilityand �( ; v) = Ev(1 �  ); �( ; f) = E";f(1 �  ) type II error probability for thealternative v 2 l2 or f 2 L2(0; 1). Here and later Ev; E";f stands for the expectationwith respect to the measure Pv; P";f that corresponds to observations (1.1), (1.2).For any � 2 (0; 1) let	� = f : �( ) � �g; 	";� = f : �"( ) � �gbe the sets of all tests of the level �.Under the sequence Gaussian model (1.1) let �( ; V ) = supv2V �( ; v) be themaximal type II error probability. Clearly, for any subset ~V � V ,�( ; ~V ) � �( ; V ):Set �(V; �) = inf 2	� �( ; V ):Clearly, for any � 2 (0; 1) one has0 � �(V; �) � 1� �; �(V; �)! 1; as �! 0;the function �(V; �) decreases in �, and, for any subset ~V � V ,�( ~V ; �) � �(V; �): (1.4)In particular, if ~V = fvg; v 2 V , then�(fvg; �) = �(T� � jvj); jvj2 =Xi v2i : (1.5)Here and later �(t) stands for distribution function of the standard Gaussian lawand T� is its (1� �)-quantile: �(T�) = 1� �.1We call test a measurable function on observation X or X" taking values in the interval [0; 1].2



The inequality (1.4) yields the evident lower bounds�(V; �) � supv2V �(fvg; �) = �(T� � infv2V jvj): (1.6)We use analogous de�nitions and notations for the functional model (1.2). Forthis case analogous relations holds true. In particular, for simple alternative F =ffg one has �"(ffg; �) = �(T� � kfk="), where k � k is L2-norm and�"(F; �) � supf2F �"(ffg; �) = �(T� � "�1 inff2F kfk): (1.7)We consider analogous hypothesis testing problemsH0 : v = 0; H1 : v 2 VR or H0 : f = 0; H1 : f 2 F" � L2(0; 1)under asymptotic variant of minimax setting assuming R!1; "! 0.For wide class of alternatives, these problems are well studied for a �xed levelof testing � 2 (0; 1), see [13] and Section 2 below. However for a lot of practicalhypothesis testing problems a statistician wants to have small or very small �. Inparticular, small or very small � are required in real-time signal detection problems.Under asymptotic approach this corresponds � = �R ! 0 or � = �" ! 0 (in whatfollows limits are assumed either as R!1 or as "! 0 unless otherwise stated).Namely, taking a family � = �R 2 (0; 1) or � = �" 2 (0; 1), we are interestedthe asymptotics of the families �(VR; �R) or �"(F"; �") (up to a vanishing term)and in conditions for minimax distinguishability, i.e., for�(VR; �R)! 0; �"(F"; �")! 0or for minimax nondistinguishability, i.e., for�(VR; �R) = 1� �R + o(1); �"(F"; �") = 1� �" + o(1):Also if �(VR; �R)! 0; �"(F"; �")! 0, then we want to construct test procedures R;  " providing �R; �"-level distinguishability, i.e., for R 2 	�R;  " 2 	";�"; �( R; VR)! 0; �( "; F")! 0:It follows from well-known asymptotics�(�x) � exp(�x2=2)=xp2�; as x!1; (1.8)that T� = q2 log��1 + o(1); as �! 0: (1.9)Using (1.9) we can rewrite (1.6), (1.7) for �! 0:�(VR; �R) � �(q2 log��1R � infv2VR jvj) + o(1); (1.10)�"(F"; �") � �(q2 log��1e � "�1 inff2F" kfk) + o(1): (1.11)3



1.2 Alternatives of interestIt is well known (see [8], [13], Ch. 1) that, under the functional Gaussian model(1.2) in order to obtain minimax distinguishability in nonparametric problem, oneneeds:� to remove "small enough" signals;� to suppose that the set of signals is not too "hudge".In general, it is impossible to make a "minimax decision" without these assump-tions.To obey the �rst constraint, i.e. to measure the "size" of the signal, a functionalnorm is usually used. For instance, Lp-norm, 1 � p � 1:kfkp = �Z 10 jf(t)jpdt�1=p ; 1 � p <1; kfk1 = ess sup0�t�1jf(t)j:To obey the second constraint the signal is supposed to belong to some compactset in a Banach space. The typical examples are the classes of smooth functionslike H�older, Sobolev or Besov spaces. To de�ne these classes some semi-norms areusually used. In particular, the Sobolev norm k�k�;q is described by two parameters�; q. Here the parameter � > 0 characterizes the level of the smoothness andq 2 [0;1] characterizes the norm where the smoothness is measured.In order to specify alternative sets in the functional space, let us consider thenorms k � k�;q; � > 0; q 2 [1;1] in a subspace of L2(0; 1). If � � 1 is an integer,then we assume f (��1) is absolutely continuous and setkfk�;q = kfkq + kfk0�;q; kfk0�;q = kf (�)kq; (1.12)where f (�) is �-th derivative of the function f and k � kp is Lp-norm. This is thetraditional Sobolev norm. For q = 2 we can consider the equivalent normkfk2�;2 = kfk22 + kf (�)k22: (1.13)If � = l + �; � 2 (0; 1); q 2 [1;1), then we setkfk�;q = kfkq + kfk0�;q; kfk0�;q = suph2(0;1) h��  Z 1�h0 jf (l)(t+ h)� f (l)(t)jqdt!1=q(1.14)with evident modi�cation for q = 1. This corresponds to the Nikol'ski norm orBesov norm k � k�;q;1.Note the following relation (see [13], inequalities (2.81), (2.82)). Let � = � �1=q > 0. There exists a constant c > 0 such thatkfk�;1 � ckfk�;q: (1.15)4



Taking a positive family r" = o(1) and H > 0, we consider alternative sets F"of the formF" = F (r"; H; �; p; q) = ff 2 L2(0; 1) : kfkp � r"; kfk�;q � Hg:We are interested in the cases � > 0 and either p = q = 2 or p =1; q > 1=�, i.e.,in alternative setsF" = F (r"; H; �) = ff 2 L2(0; 1) : kfk2 � r"; kfk�;2 � Hg; (1.16)F" = F (r"; H; �; q) = ff 2 L2(0; 1) : kfk1 � r"; kfk�;q � Hg; q > 1=�: (1.17)Note that the results below hold true with change the norms kfk�;2; kfk�;q bykfk0�;2; kfk0�;q.In order to specify alternative sets under the sequence Gaussian model (1.1)take a quantity p 2 (0;1] and positive family �R � R. Introduce the norms(quasi-norm for p < 1) in the sequence spacejvjp�a;p = 1Xi=1 jviaijp; p <1; jvj�a;1 = sup1�i�1 jviaij: (1.18)For ai = i�, we denote this norm by j � j�;p. For � = 0, we use the notation j � jp.Taking quantities p 2 (0;1]; q 2 (0;1]; s > 0; � � 0; R � �R > 0; weconsider the alternative sets VR determined by the inequalitiesVR = V (�R; R; �; s; p; q) = fv 2 l2 : jvj�;p � �R; jvjs;q � Rg:This set is lq-ellipsoid of semi-axes Ri�s with lp-ellipsoid of semi-axes �Ri�� re-moved; if � = 0, then we remove lp-ball of radius �R. In this paper we are interestedin the cases either s = � > 0; p = q = 2; � = 0; or p = 1; s > � � 0, i.e., inalternatives of the formVR = V (�R; R; �) = fv 2 l2 : jvj2 � �R; jvj�;2 � Rg; � > 0; (1.19)VR = V (�R; R; �; s; q) = fv 2 l2 : jvj�;1 � �R; jvjs;q � Rg; s > � � 0: (1.20)Since VR = ; for R < �R, we assume R � �R later.If p = q = 2, then alternatives (1.16) roughly correspond to alternatives (1.19)with �R = r"="; R = H=". Moreover, if p = 2; � > 0 is an integer and a functionf 2 L2(0; 1) has 1-periodic �-smooth extension on R1, then L2-norm and thenorm (1.13) can be presented in terms of Fourier coeÆcients �i = (f; �i) under thestandard trigonometrical Fourier basis f�ig in L2(0; 1). Namely setting f�(t) =Pi �i�i(t), we havekf�k22 = 1Xi=1 �2i ; kf�k2�;2 = 1Xi=1 a2i �2i ; a1 = 1; a22i = a22i+1 = (2�i)2� + 1; i > 1:(1.21)Relation (1.21) determines Sobolev norm in the space ~W �2 of 1-periodic �-smoothfunctions for all � > 0. Using (1.21) we set~F" = ~F"(r;H; �) = ff� : j�j2 � r; j�j�a;2 � Hg (1.22)5



Relations (1.3) yields the equality�(V (�R; R; �a); �) = �( ~F"; �); �R = r="; R = H=";where the set V (�R; R; �a) = fv 2 l2 : jvj2 � �R; jvj�a;2 � Rgis analogous to set (1.19) with norm (1.18) for the sequence �a such that ai �(�i)�; i!1, in (1.21).However if p = 1, then the alternatives F" = F (r"; H; �; q) of form (1.17)roughly correspond to the alternatives VR = V (�R; R; �; s; q) of form (1.20) with� = 1=2; s = � + 1=2� 1=q; �R = r"="; R = H="; (1.23)see [13], Sections 2.7, 2.9. This is the main reason why we consider the alternatives(1.20) with � > 0.Our aim is to study the asymptotics �(VR; �R); R!1 and �"(F"; �"); "! 0in hypothesis testing problems with alternatives (1.19), (1.20), (1.16), (1.17) andto construct asymptotically minimax or consistent families of tests  R;�R or  ";�"for the case �R ! 0 or �" ! 0.Combining (1.10), (1.11), we obtain the asymptotic lower bounds for p = 2�(VR; �R) � �(q2 log��1 � �R) + o(1); (1.24)�"(F"; �") � �(q2 log��1 � r"=") + o(1): (1.25)If p =1, then (1.10) yields, for alternatives (1.20),�(VR; �R) � �(q2 log��1 � n���R) + o(1); n = [(R�R)]1=(s��))]; (1.26)where [n] is the integer part of n, because of (see Remark 5.4 in Section 5.6.2 below)infv2VR jvj = n��R �R: (1.27)We show later that lower bounds (1.24){(1.26) are asymptotically sharp for thecase when �R; �" decrease fast enough.Note that distinguishability is possible for large enough �R = �R(�); r" = r"(�).The structure of these tests could depend on � > 0 which is often unknown to thestatistician in practice, and constructed for � = �1 test family could provide pourdistinguishability for alternative with di�er � = �2 6= �1. Therefore we want toconstruct test families that provide good distinguishability for any � from wideenough interval � = [�0; �1].This leads to adaptive setting that �rst was studied in [21], [22] and correspondsto alternatives of the form VR(�) = [�2�V (�R(�); R; �); (1.28)F"(�) = [�2�F (r"(�); H; �); (1.29)where the sets V (�R(�); R; �); F (r"(�); H; �) are de�ned by (1.19), (1.16) with theradii �R = �R(�); r" = r"(�) depending on � 2 � = [�0; �1].6



1.3 Structure of the paperThe paper is structured as follows.In Section 2 we recall known results on distinguishability conditions for alterna-tives (1.16), (1.17), (1.29) and on sharp asymptotics for alternatives (1.19), (1.20),(1.28) for �xed � 2 (0; 1). Mainly these results are contained in [13]. For alter-natives (1.19), the sharp asymptotics are presented in terms of solution of speci�cextreme problem in the sequence space. Also we recall some results from [4], [5],[16] under probability density model. These results show that analogous to (1.25)lower bounds are attained for alternatives analogous to (1.16) with � = �" andH = H" small enough.In Section 3 we present the main results for �! 0. We show that the quantities��" = exp ��"�2=(2�+1)� ; ��R = exp ��R2=(2�+1)�are critical rates for �"; �R for alternatives (1.16), (1.19) in following sense. If �R isnot too small, namely log��1R � log(��R)�1, then we obtain sharp asymptotics foralternatives (1.19) in terms of solution of speci�c extreme problem in the sequencespace that is somewhat di�erent from the noted above. If �R is small enough,namely log��1R � log(��R)�1, then we obtain sharp rates of testing ��R = q2 log��1Rthat correspond to the lower bounds (1.24). Moreover if �R is very small, namely, if� > 1=2; (log��1R )2�+1=(log log��1R )4� � R4; then we show that the lower bounds(1.24) are attained. For alternatives (1.16), we obtain analogous rate asymtptotics.For very small �", we show that the lower bounds (1.25) are sharp.For adaptive problems, we obtain sharp asymptotics for alternatives (1.28) ratesasymptotics for alternatives (1.29).For alternatives (1.20) and any �R ! 0, we obtain general formula for sharpasymptotics. This yields various corollaries on the rates. For alternatives (1.17)and �" ! 0, we obtain analogous rate relations. Roughly, critical rates in �R; �"correspond to ��R = 1=R; ��" = ". Note that the upper bounds are provided by afamilies of tests that does not depend on parameters determined alternatives (1.20)or (1.17). Therefore we have no any problems on adaptation for these cases.In Section 4 we formulate some properties of solutions of the extreme problemsnoted above.In Section 5 we give the proofs of theorems.2 Previous resultsLet either �R = �" 2 (0; 1) be �xed or �R; �" be bounded away from 0 andfrom 1. Then the problem under consideration was studied intensively, see [13] andreferences in this book. Note that for p = q = 2; � > 0 the distinguishability andnon-distinguishability conditions were obtained in [6]; in [1] the sharp asymptoticsof the quantities �(V (�R; R; �); �); �"( ~F (r"; H; �); �) have been studied. The casep =1 was studied in [8], [12], [13]. 7



2.1 Distinguishability conditionsUnder the functional white Gaussian noise model let us consider the sets F" =F (r"; H; �) determined by (1.16) and let "! 0. Introduce the ratesr�" = "4�=(4�+1): (2.1)Then we have distinguishability conditions of the form�"(F"; �)! 1� � i� r"=r�" ! 0; (2.2)�"(F"; �)! 0 i� r"=r�" !1: (2.3)Moreover, for r"=r�" !1 let us take integer-valued familym = m" � (r�)�1=� = "�4=(4�+1);and consider equispaced partition of the interval (0; 1] into m sub-intervalsÆj;m = (aj�1;m; aj;m]; aj;m = j=m; j = 1; :::; m:Let us take normalized increments of the observing process X"(t) in the sub-intervals Xj;m = "�1m1=2(X"(aj;m)�X"(aj�1;m)) (2.4)and consider �2-tests based on the statistics (2.4): ";� = 1tm;">T�; tm;" = (2m)�1=2 X1�j�m(X2j;m � 1): (2.5)Then �"( ";�) � � + o(1), and �"( ";�; F") ! 0, as r"=r�" ! 1 (see [8], [13],Theorem 3.9 (1)).Let us consider the case p = q =1; � > 0. Introduce the ratesr�";1 = ("2 log "�1)�=(2�+1): (2.6)Then distinguishability conditions are of the following form (see [8], [13], Theorem3.9 (2)): there exist constants 0 < C1 < C2 < 1 such that for all � 2 (0; 1) onehas �"(F"; �)! 1� � if lim sup r"=r�";1 < C0; (2.7)�"(F"; �)! 0 if lim inf r"=r�";1 > C1: (2.8)Moreover, if lim inf r"=r�";1 > C1 for large enough C1, then the relations�"( ")! 0; �"( "; F")! 0are provided by the tests based on the thresholding of statistics (2.4): ";� = 1X" ; X" = f max1�j�m jXj;mj > q2 logmg; m = m" � (r�";1)�1=�: (2.9)8



For any �0; �1; 0 < �0 < �1 <1, these relations are uniform over � 2 [�0; �1].It was shown in [19] that C0 = C1 under some additional assumptions.It follows from [13], Theorem 4.7 that the distinguishability conditions (2.7){(2.8) hold true for 1 = p > q > 1=� with the change the rates (2.6) byr�";1 = r�";1(�) = ("2 log "�1)�=(2�+1); � = � � 1=q > 0: (2.10)The quantities m" = m"(�) and statistics Xj;m" depend on � in (2.9). Howeverthere is presented in [13], Section 4.4.4 a test procedure that provides analogousproperties and does not depend on �. This test procedure is based on wavelettransform. Here we give somewhat other test procedure providing analogous prop-erties.Let us take a family of collectionsml = 2l; J";0 � l � J";1; J";0 � (log "�1)= log log "�1; J";1 � (log "�1) log log "�1(2.11)and corresponding collections of equispaced partitions of [0; 1] intoml sub-intervals.Theorem 2.1 Taking collections (2.11) and corresponding partitions, let us con-sider family of tests  �" = 1X" , whereX" = f maxJ";0�l�J";1 max1�j�ml jXj;mlj=Tl > 1g; T 2l = 2(cl + log l); c = log 2;and statistics Xj;m are determined by (2.4). Then �"( �") ! 0 and there ex-ists C1 > 0 such that if lim inf r"=r�";1 > C1, then �"( �" ; F") ! 0; whereF" = F (r"; H; �; q); � � 1=q > 0 and the rates are de�ned by (2.10). For any�0 > 0; �0; �1; 0 < �0 < �1 < 1, this relation is uniform over (�; q) such that� 2 [�0; �1]; � � 1=q > �0.Proof of Theorem 2.1 is given in Section 5.9.So, for any �xed � 2 (0; 1), the rates r�" ; r�";1 of form (2.6), (2.10) do notdepend on � in the distinguishability conditions (2.7), (2.8). These rates are muchslowly than \classical" rates r�" = " corresponding to \known" signal. Therefore, fornonparametric alternatives of form (1.16), (1.17) and for any � 2 (0; 1), minimaxeÆciency of testing is much smaller then eÆciency of testing for \known" signal.These results are extended to the probability density model corresponding toi.i.d. sample X1; :::; XN with unknown probability density p(x). Let Xi 2 [0; 1]and p(x) be a probability density on the interval [0; 1] with respect to the Lebesguemeasure. We test the null-hypothesis H0 : p � 1 against the alternative H1 : p =1 + g; g 2 GN where the set GN = GN(rN ; H; �) consists of the functions g suchthat kgk2 � rN ; kgk�;2 � H; (g; 1) = 0; infx2[0;1] g(x) � �1:This problem is analogous to hypothesis testing problem under the functional whiteGaussian noise model with " = N�1=2 and the results are the same: for any � 2(0; 1) the distinguishability conditions, as N ! 1, are analogous to (2.2){(2.3)with the change r�" of form (2.1) by r�N = N�2�=(4�+1) (see [7]).Extensions of these results for other p; q are given in [12], [13].9



2.2 Adaptive ratesTests (2.5) are determined by integers m = m" and statistics Xj;m" that dependon � for p = q = 2 and we cannot provide good properties of these tests whenthe parameter � is unknown. These lead to adaptive problem which �rst havebeen studied in [21], [22] under the functional white Gaussian noise model (1.2) forp = q = 2.Suppose an interval � = [�0; �1]; 0 < �0 < �1 < 1 be given. Taking a familyof the functions r"(�); � 2 �, let us consider alternatives of form (1.29). Let r�"(�)be the rates determined by (2.1) and setH"(�) = inf�2� r"(�)=r�"(�):It follows from (1.4) and results above that the relations H"(�)!1 are necessaryin order to obtain distinguishability for alternative (1.29). The problem is: arethese conditions suÆcient for distinguishability?The answer is "no" for p = q = 2. Namely, introduce adaptive rates functions:rad" (�) = ("4 log log "�1)�=(4�+1): (2.12)It was shown in [21] that there exist constants 0 < D1 < D2 <1 such that1. If there exists an interval � � � of positive length such thatlim sup sup�2� r"(�)=rad" (�) < D1; (2.13)then �"(F"(�); �)! 1� �.2. If lim inf inf�2� r"(�)=rad" (�) > D2; (2.14)then �"(F"(�); �)! 0 for any � 2 (0; 1).Moreover, one can use \Bonferroni method" to construct \adaptive" test pro-cedure. Let us take family of collections (2.11) and corresponding collectionsof equispaced partitions of [0; 1] into ml = 2l sub-intervals. Taking thresholdsC" = 2plog log "�1, let us combine test procedures (2.5) for collections ml, i.e., weset  ad" = 1X"; X" = f maxJ";0�l�J";1 tml;" > C"g; (2.15)where the statistics tm;" are determined by (2.5). Then �"( ad" )! 0 and under theassumption (2.14) with large enough constant D2, one gets �"( ad" ; F"(�))! 0:Under the probability density model analogous results were obtained in [10].So, the lack of knowledge of parameter � for p = q = 2 leads to losses inthe rates of testing in (log log "�1)-factor. It is the payment for adaptation in theproblem (see [21]). It was shown in [11], [13] that one has the same e�ects for wideclass of adaptive problems with asymptotics of Gaussian type.
10



2.3 Sharp asymptotics2.3.1 Gaussian asymptotics: p = q = 2This problem has been studied for the alternatives (1.19) under the sequence model(1.1). Let us consider extreme problemu2(�R; R) = inf 12 1Xi=1 z4i subject to (2.16)1Xi=1 z2i � �2R; 1Xi=1 z2i i2� � R2: (2.17)Let R!1. Then, for any � 2 (0; 1) and any family �R > 0, one has�(VR; �) = �(T� � u(�R; R)) + o(1) (2.18)(see [1], [8]). Moreover, these relations are provided by test families  R;� = 1tR>T�based on the statisticstR = 1Xi=1wi(X2i � 1); wi = z2i;R=u(�R; R); (2.19)where fzig is the extreme sequence and u2(�; R) is the extreme value for the problem(2.16), (2.17); this yields Piw2i;R = 2.Some properties of the extreme values u2(�R; R) and extreme sequence fzig aregiven in Section 4.1 (also see [13], Section 4.3.3). In particular for �R = o(R), wehave u(�R; R) � D0(�)�2+1=2�R R�1=2�; (2.20)where D0(�) is a positive continuous function. This yields distinguishability con-ditions �(VR; �)! 1� � i� �R=��R ! 0; (2.21)�(VR; �)! 0 i� �R=��R !1; (2.22)with the rates ��R = R1=(4�+1): (2.23)Under the white Gaussian noise model for the sets F" = ~F (r"; H; �) of form(1.22) and "! 0 these yield the results of the form�(F"; �) = �(T� � ~u) + o(1); ~u = D0(�)(r"=H)2+1=2�("=H)�2: (2.24)The results above are extended the probability density model as well (see [2],[8], [9]). The extension of these results for other p; q; � are given in [12], [13].
11



2.3.2 Degenerate asymptotics: p =1For the alternative VR = V (�R; R; �; s; q) of form (1.20) we have di�erent type ofasymptotics (see [8], [12], [13], Theorem 4.5):�(VR; �) = (1� �)�(q2 logmR �m��R �R) + o(1); mR = (R=�R)1=(s��); (2.25)moreover one can change p2 logmR by p2s�1 logR in (2.25). This yields distin-guishability conditions�(VR; �)! 1� � if lim sup �R=��R < 1; (2.26)�(VR; �)! 0 if lim inf �R=��R > 1; (2.27)with the rates ��R de�ned by the relation��R = �R�=s(logR)(s��)=2s; � = (2=s)(s��)=2s; (2.28)see [13], Section 4.4.2. Under (1.23) these rates correspond to the rates (2.10).Moreover, let us consider the randomized tests of the form R;� = � + (1� �) R;where non-randomized tests  R = 1XR are based on thresholding:XR = fX : supi jXij=TR;i > 1g; T 2R;i = 2� logNR; i � NR,log i + log log i; i > NR, (2.29)here one can take any NR � log logR. Then these tests are asymptotically minimaxin the problem, i.e.,�( R;�) � � + o(1); �( R;�; VR) � (1� �)�(q2 logmR �m��R �R) + o(1):For any s0; s1; Æ > 0; 0 < Æ < s0; s0 < s1 <1, the letter relation is uniform over(s; �) such that s 2 [s0; s1]; 0 � � � s� Æ. Note that these tests do not depend ons > � � 0; q > 0.2.4 Sharp adaptive asymptoticsSharp adaptive asymptotics were studied in [11], [13] under the sequence model(1.1) for a wide class of alternatives. Taking family of function �R(�); � 2 �, weconsider alternatives VR(�) of form (1.28). The results of [11], [13], Section 7.1.3,are of the following form. Let u2(�; R; �) be de�ned by (2.16), (2.17) and setuR(�) = inf�2� u(�R(�); R; �); HR(�) = uR(�)�q2 log logR: (2.30)Then for any � 2 (0; 1) one has:1.Upper bounds: �(VR(�); �) � (1� �)�(�HR(�)) + o(1): (2.31)12



2. Assume the minimum in (2.30) is "essential", i.e., for any Æ > 0 there existsnontrivial sub-interval �0 � � such thatsup�2�0 u(�R(�); R; �) � uR(�) + Æ:Then �(VR(�); �) � �(VR(�0); �) � (1� �)�(�HR(�)) + o(1): (2.32)Moreover, it follows from [13], Section 7.3 that one can use the following con-struction for tests family  adR;� that provides the upper bounds (2.31). Let ��R(�)be the quantities such thatuR(��R(�); R; �) = uR(�) + o(1):Let �zR(�; �) = fz4i;R(�; �)g be extreme sequence in the problem (2.16), (2.17), i.e.,12Xi z4i;R(�; �) = u2R(�; �);and tR;�z = tR;�z(X) be the statistics determined by (2.19). Let us divide the interval� intoM =MR � (logR)(log logR)B; B > 1 sub-intervals ÆR;l = [�R;l�1; �R;l]; 1 �l �M of the length jÆR;lj �M�1 and consider the collections of sequences�zR;l = �zR(��R(�R;l); �R;l�1); l = 1; :::;M"and collections of statistics tR;l = tR;�zR;l : Set  adR;� = � + (1� �) adR , where adR = 1XR ; XR = fX : max1�l�M" tR;l > q2 logM"g:Then �( adR;�) � � + o(1); �( adR;�; VR(�)) � (1� �)�(�HR(�)) + o(1):2.5 Intermediate eÆciencyLet us consider probability density model. Observing i.i.d. sampleX1; :::; XN ; Xi 2[0; 1] of size N; N !1 we test the simple hull-hypothesis on the uniformity of adensity on the interval [0; 1]:H0 : p(x) � 1; x 2 [0; 1];against simple alternativeH1 : p(x) = pN(x); x 2 [0; 1];that corresponds to a given sequence of densities pN (x) on the interval [0; 1].Let pN(x) = p(x) be �xed and a density p(x) be bounded and bounded awayfrom 0, as N !1. Let the type I error probability � = �N be such that the type13



II error probability �N(p; �N) is bounded away from 0 and from 1, as N ! 1.Then it is well known (see [20]) that the logarithmic rate of �N is determined bythe Kullback-Leibler distance between p0(x) � 1 and p(x), namelyN�1 log��1N ! K(p) = Z 10 p(x) log p(x)dx; as N !1:This case corresponds to Bahadur's eÆciency [20].From the other hand, let us consider local alternatives of the formH1 : p(x) = pN(x) = 1 + �N�1=2g(x);where � > 0; kgk2 = 1; (g; 1) = 0; kgk1 <1: Then, analogously to (1.5), for any� 2 (0; 1) one has �N(pN ; �) = �(T� � �) + o(1); as N !1: (2.33)This case corresponds to Pitman's eÆciency [20].Intermediate eÆciency was introduced in [15]. This corresponds to �N ! 0 andalternatives of the formH1 : p(x) = pN (x); pN(x) = 1 + �N��g(x); 0 < � < 1=2: (2.34)It was shown in [4], [5], [16] that the relation analogous to (2.33) holds true foralternatives of form (2.34) with 1=4 < � < 1=2 and for �N ! 0; log��1N = o(N):�N(pN ; �N) = �(q2 log��1N � �N1=2��) + o(1); as N !1:Moreover, it was shown in these papers that if the function g belongs to the SobolevspaceW 12 , then this relation is provided by Neyman's tests based on the �rst n = nNLegendre polynomials (these tests are analogous to �2-tests under the Gaussianmodel) for some sequences n = nN . Various data-driven versions of these testsare studied in these papers. They corresponds to random n = n(X1; :::; XN). It iseasily seen that the estimations in these papers are uniform over g 2 S01;2(H) forany Sobolev ball S01;2(H) = ff 2 W 12 ; kfk1;2 � H; (f; 1) = 0g:Set rN = �N��; HN = HN�� ; H > �; � = 1;PN = fp(x) = 1 + g(x); x 2 [0; 1]; kgk2 � rN ; kgk�;2 � HN ; (g; 1) = 0g; (2.35)Then for 1=4 < � < 1=2, we have the relation�N (PN ; �N) = �(q2 log��1N � rNN1=2) + o(1): (2.36)Under the white Gaussian noise model (1.2) with " = N�1=2 the set (2.35)corresponds to the set F (r"; H"; 1) withr" = �"2� ! 0; H" = H"2� ! 0:Under the sequence model (1.1) this set corresponds to the set VR = V (�; R; 1)with � = �"2��1 !1; R = H"2��1 !1; 1 < R=� � 1:Relation (2.36) corresponds to the equality in inequalities (1.24), (1.25).14



3 Main resultsWe consider the alternatives VR of form (1.19), (1.20) under the sequence model(1.1). We are interesting in the study of � = �R(�R) such that the family �(VR; �R)is bounded away from 1 and from 0.3.1 Sharp and near to sharp asymptotics under the se-quence model3.1.1 The case p = q = 2 for not too small �Let us consider the case p = q = 2.The problem with �R ! 0; R ! 1 is of interest for �R=��R ! 1; �R � R,where ��R are de�ned by (2.23).First, suppose �R ! 0 but not too fast; namely we assume�R ! 0; log��1R = O(R2=(2�+1)): (3.1)According to the results of Section 2.1 for �R ! 0, we are interested in the casewhen distinguishability conditions hold true, however �R increase not too fast:�RR�1=(4�+1) !1; �R = O(R1=(2�+1)): (3.2)Let �z = fzig1i=1 be a nonnegative sequence andP �z =Yi N (0; z2i + 1)be the Gaussian measure corresponding to independent sequence Xi � N (0; z2i +1).Let K2(�z) = EP �z log(dP �z=dP0) = 12 1Xi=1(z2i � log(1 + z2i )) (3.3)be the Kullback-Leibler distance between the measures P �z and P0. Let us considerextreme problemK2(�; R; �) = K2(�; R) = infK2(�z) subject to (3.4)1Xi=1 z2i � �2; 1Xi=1 z2i i2� � R2 (3.5)(if � is assumed to be �xed, we omit � in notations later). Note that, in termsof variables ui = z2i � 0, the function K2(�z) is strictly convex and the set (3.5) isconvex. This implies uniqueness of extreme sequence �z = fzig; zi � 0.There are given Section 4.2 some properties of solution of the extreme valueK2(�; R; �) and extreme sequence �z = �zR(�R; �) in problem (3.4), (3.5). In partic-ular, we have K(�R; R) � u(�R; R) � �2+1=2�R R�1=2�: (3.6)15



Remark 3.1 The function K2(�; R; �) is convex in variables (�2; R2) (see Propo-sition 2.8 in [13]). Jointed with (3.6), this implies that the functionfR(b1; b2) = K2(b1�R; b2R; �)=K2(�R; R; �)is uniformly Lipschitzian in (b1; b2) 2 D over any compact D � R2+ = fb1 > 0; b2 >0g (see [13], Lemma 5.1 in the proof of Proposition 5.6, (4)). In particular, thereexists C = C(D) > 0 such that, for R large enough,jK2(b1�R; b2R; �)�K2(�R; R; �)j � CK2(�R; R; �)(jb1�1j+jb2�1j) 8 (b1; b2) 2 D:(3.7)Moreover, the relation (3.7) is uniform over � 2 [�0; �1]; 0 < �0 < �1 such that(3.2) holds for � = �1.Let us slightly improve the assumptions (3.2), (3.1)�RR�1=(4�+1) !1; �R = o(R1=(2�+1)); (3.8)�R ! 0; log��1R = o(R2=(2�+1)): (3.9)Under (3.8) we have K(�R; R) � u(�R; R)=p2: (3.10)Let �z = fzig be extreme sequence in the problem (3.4), (3.5). Consider tests of theform  �R = 1ftR>log��1R g; tR = tR;�z = 12 X1�i�n z2iX2i1 + z2i � log(1 + z2i )! : (3.11)Note that tR = log(dP �z=dP0) for the extreme sequence fzig.For tests (3.11) one has�( �R) � �R; 8 �R 2 (0; 1): (3.12)Proof of relation (3.12) is given in Section 5.1, Lemma 5.2 (1).Theorem 3.1 Under assumptions (3.8) one has:(1) Lower bounds.�(VR; �R) � �(q2 log��1R �p2K(�R; R)) + o(1): (3.13)(2) Upper bounds. For the tests (3.11),�( �R; VR) � �(q2 log��1R �p2K(�R; R)) + o(1): (3.14)The relations (3.13), (3.14) yield�(VR; �R) = �(q2 log��1R �p2K(�R; R)) + o(1): (3.15)For any 0 < �0 < �1 < 1, this relation is uniform over � 2 [�0; �1], such that(3.8) holds with � = �1. 16



Proof of Theorem 3.1 is given in Sections 5.1, 5.3.Remark 3.2 It suÆces to prove Theorem 3.1 for the caseqlog��1R = K(�R; R) +O(1): (3.16)In fact, the lower bounds (3.13) are trivial for K(�R; R) � qlog��1R ! 1.If K(�R; R) � qlog��1R ! �1, then the lower bounds (3.13) correspond to�(VR; �R) ! 1. If we will prove (3.13) for the case (3.16), then, by passing to~�R > �R, we can get the case (3.16) and �(VR; �R) � �(VR; ~�R) > 1 � Æ for anyÆ > 0. This yields �(VR; �R)! 1. Analogously, the upper bounds (3.14) are trivialfor K(�R; R)�qlog��1R ! �1. If K(�R; R)�qlog��1R !1, then, by decreas-ing the families �R to satisfy (3.16), and using the monotonicity of the function�( �R; V (�; R; �)) in �, we easy see that if (3.14) holds true under (3.16), then(3.14) holds true everywhere.Using Proposition 4.1 (1) and relation (4.15) (see Section 4.2 below) one cansee that under (3.16), assumption (3.8) is equivalent to (3.9). For this reason wecan use (3.9) in the proof and in applications of Theorem 3.1.Analogous situation holds for other theorems below and we omit analogousremarks later.Theorem 3.1 and relation (3.10) yield the following distinguishability conditions.Corollary 3.1 Under assumptions (3.8) or (3.9) one has�(VR; �R)! 0 i� qlog��1R �K(�R; R)! �1;�(VR; �R)! 1 i� qlog��1R �K(�R; R)!1:This yields �(VR; �R)! 0; if lim inf u(�; R)=q2 log��1R > 1;�(VR; �R)! 1; if lim sup u(�R; R)=q2 log��1R < 1:If the rates of the quantities �R or log��1R are somewhat smaller than in Theo-rem 3.1, then we can extend the sharp asymptotics from Section 2.3.Corollary 3.2 Let �R ! 0 and�RR�1=(4�+1) !1; �R = o(R3=(8�+3)): (3.17)Thenp2K(�R; R) = u(�R; R) + o(1); �(VR; �R) = �(q2 log��1R � u(�; R)) + o(1):(3.18)17



Proof of Corollary 3.2 is given in Section 4.2.Let us consider the caselog��1R � R2=(2�+1); �R � R1=(2�+1): (3.19)For this case we can extend the distinguishability conditions from Corollary 3.1.Theorem 3.2 Assume (3.19) for � � 1=2 orlim sup �RR�1=(2�+1) < C(�); C(�) = (2�=(1� 2�))1=2(1 + 1=2�)1=2(2�+1);for � < 1=2. Then one has(1) �(VR; �R)! 1; if qlog��1R �K(�R; R)!1;(2) �( �R; VR)! 0; if qlog��1R �K(�R; R)! �1:Proof of Theorem 3.2 is given in Sections 5.2, 5.4.3.1.2 The case p = q = 2 for small enough � and very small �Let us consider the case � < R and one of two following assumptions holds trueR�2=(2�+1) log��1R !1; (3.20)�RR�1=(2�+1) !1: (3.21)(analogously to Remark 3.2 the assumptions (3.20) and (3.21) are equivalent forresults below). For this case the lower bounds (1.24) are sharp or near to sharp.Namely for an integer-valued family m = mR, let consider �2-tests of level �R�2m;�R = 1f�2m>Tm;�Rg; �2m = mXi=1X2i ; (3.22)here and later Tm;� is (1��)-quintile of the central chi-square distribution with mdegrees of freedom.Theorem 3.3 (1) Assume (3.20), i.e., �R be small enough, and let us take m!1 such that m = o(log��1R ); m��R = o((log��1R )1=2) (3.23)(this is possible under (3.20)). If lim inf �R=q2 log��1R > 1; then �(�2m;�R; VR)! 0.(2) Assume �R be very small, namely,� > 1=2; R�4(log��1R )2�+1=(log log��1R )4� !1: (3.24)Let us take m!1 such thatm log log��1R = o(log��1R )1=2); m�2�R2 = o((log��1R )1=2) (3.25)18



(this is possible under (3.24)). Then one has�(�2m;�R ; VR) � �(q2 log��1R � �R) + o(1):Combining with (1.24), under (3.24) this yields the sharp asymptotics�(VR; �R) = �(q2 log��1R � �R) + o(1): (3.26)Proof of Theorem 3.3 is given in Section 5.5.Remark 3.3 For any 0 < �0 < �1 <1, the relations of Theorem 3.3 are uniformover � 2 [�0; �1], such that (3.20) or (3.24) hold with � = �0. Therefore takingtests family for � = �0 that does not depend on �R, we obtain distinguishabilityconditions of Theorem 3.3 (1) or sharp asymptotics (3.26) of Theorem 3.3 (2)uniformly over � 2 [�0; �1].3.2 The case p =1Let VR = V (�R; R; �; s; q) be alternative of form (1.20), 0 < �R � R. SetmR = (R=�R)1=(s��); nR = h(R=�R)1=(s��)i = mR +O(1);here and later [t] stands for the integer part of t, i.e., this is the integer k such thatt� 1 < k � t.Theorem 3.4 Let a family �R ! 0 be given. Then one has�(VR; �R) = �(q2(lognR + log��1R )� n��R �R) + o(1): (3.27)Moreover, let us consider the tests of the form R;�R = 1XR;�R ; XR;�R = fX : sup jXij=T�R;i > 1g; (3.28)where T 2�R;i = 2(log��1R + log i+ log log(i+ 1)):Then for R large enough, one has�( R;�R) � �R; �( R;�R ; VR) � �(q2(lognR + log��1R )�n��R �R)+ o(1): (3.29)For any 0 < s0 < s1; Æ > 0, the relations above are uniform over (s; �) such thats 2 [s0; s1] and 0 � � � s� Æ.Proof of Theorem 3.4 is given in Section 5.6.Note that tests (3.28) do not depend on s > 0; q > 0. Also one can verifythat if either � = 0 or log(�R=mR)�1 � m�2�R �2R = o(R2=(2s+1)), then m��R �R =19



n��R �R + o(1), and we can change nR by mR in (3.27), (3.29). For �R = o(R) wehave mR !1; nR � mR, and Theorem 3.4 yields distinguishability conditions�(VR; �R)! 1 if limsup �R=��R;�R > 1; (3.30)�(VR; �R)! 0 if lim inf �R=��R;�R < 1; (3.31)where ��R;�R = m�Rq2(logmR + log��1R ): (3.32)If �R = o(R) and log(�R=mR)�1 � m�2�R �2R, thenmR � R1=s �2(logmR + log��1R )��1=2s ; logmR � logRs � log log��1R2s : (3.33)Using (3.33) and considerations analogous to Remark 3.2 we easy obtain thefollowing corollaries.Corollary 3.3(1) Let �R ! 0; log��1R = o(plogR). Then we get asymptotics analogous to(2.25) that do not depend on �R:�(VR; �R) = �(q2 logmR �m��R �R) + o(1) = �(q2s�1 logR�m��R �R) + o(1):Let log��1R = dplogR. Then�(VR; �R) = ��q2s�1 logR + dqs=2�m��R �R�+ o(1)Let �R ! 0; log��1R = o(logR). Then we have distinguishability conditions (3.30),(3.31) with the rates ��R;�R = ��R de�ned by (2.28) that do not depend on �R.(2) Let (logR)2 = o(log��1R ). Then�(VR; �R) = �(q2 log��1R � n��R �R) + o(1): (3.34)Let (logR)2 = o(log��1R ); log��1R = o(R2=(2s+1)). Then�(VR; �R) = �(q2 log��1R �m��R �R) + o(1):Let log��1R � d(logR)2. Then�(VR; �R) = � q2 log��1R + 1sp2d �m��R �R!+ o(1):(3) Let logR = o(log��1R ); �R = o(R). Then we have distinguishability condi-tions (3.30), (3.31) with the rates ��R;�R = m�Rq2 log��1R :(4) Let log��1R = d logR. Then�(VR; �R) = ��q2(d+ s�1) logR�m��R �R�+ o(1):20



Let log��1R � d logR. Then we have distinguishability conditions (3.30), (3.31)with the rates��R;�R = ��R = �R�=s (logR)(s��)=2s ; � = �2(d+ s�1)�(s��)=2s ;which do not depend on �R.Relation (3.34) corresponds to the equality in inequality (1.26).3.3 Distinguishability conditions for the functional modelLet us consider alternatives (1.16), (1.17) under model (1.2). We assume log��1" =o("�2) below.3.3.1 The case p = q = 2Set Æ" = Æ"(�) = "2=(2�+1) log��1" : (3.35)Introduce critical rates which depend on �":r�";�" = r�";�"(�) = ("4 log��1" )�=(4�+1): (3.36)Observe that if Æ" = O(1), then r�";�" ! 0, if Æ" = o(1), thenr�";�" = o("2�=(2�+1)); (3.37)and if Æ" � 1, then we can taker�";�" = "(log��1" )1=2: (3.38)Let us take an integer-valued family m = m" ! 1 and consider equispacedpartition of the interval (0; 1] into m" sub-intervalsÆj;m = (aj�1;m; aj;m]; aj;m = j=m; j = 1; :::; m:Let be Xj;m are normalized increments of the observing process in the sub-intervalsXj;m = "�1m1=2(X"(aj;")�X"(aj�1;")); j = 1; :::; m: (3.39)The random variables Xj;m are independent standard Gaussian under H0. Let usconsider �2m";�" based on statistics (3.39):�2m;� = 1f�2m>Tm;�g; �2m = mXj=1X2j;m: (3.40)Recall that Tm;� stands for (1� �)-quantile of the chi-square distribution with mdegree of freedom. 21



Theorem 3.5 Let Æ" = O(1) (this corresponds to not too small �"), and r�";�" bede�ned either by (3.36) or by (3.38) for Æ" � 1.(1) Lower bounds. There exists a constant C0 2 (0;1) such that iflim sup r"=r�";�" < C0, then �"(F"; �")! 1.(2) Upper bounds. There exists a constant C1 2 (0;1) such that iflim inf r"=r�";�" > C1, then �"(F"; �")! 0. Moreover, let us take m = m" � (r�")�1=�and the family of chi-square tests �2m";�" of form (3.40). This yields �"( ";�") = �".Then one has �"( ";�" ; F")! 0, as lim inf r"=r�";�" > C1.For any 0 < �0 < �1 <1 such that Æ"(�1) = O(1), these relations are uniformover � 2 [�0; �1].Proof of Theorem 3.5 is given in Sections 5.7, 5.8.Note that analogous statements with the rates (3.36) were established in [17],[3] for the case log��1" = O(log "�1).Let us consider the case Æ" !1 (this is analogous to the �rst relation (3.20)).Let �k(t); k � 0 be L2-normalized Legendre polynomials of degree k that providean orthonormal basis in L2(0; 1). Taking an integer-valued family m = m" ! 1and equispaced partition of the interval (0; 1] into m" sub-intervals Æj;m, we set�jk;m(t) = m1=2�k(mt� j + 1)1Æj;m :This is an orthonormal basis in L2(Æj;m). Take an integer l � 0. Consider or-thonormal system in L2(0; 1) of the form f�jk;m; 0 � k � l; 1 � j � mg andstatistics Xjk;m = "�1 ZÆj;m �jk;m(t)dX"(t); 0 � k � l; 1 � j � m: (3.41)Note that random variables Xjk;m are independent standard Gaussian under H0.Let us consider chi-square tests based on statistics (3.41):�2m(l+1);� = 1f�2m;l>Tm(l+1);�g; �2m;l = mXj=1 lXk=0X2jk;m; (3.42)where, as above, Tm(l+1);� is (1��)-quantile of chi-square distribution withm(l+1)degrees of freedom. Note that if l = 0, then we obtain tests (3.40).The following theorem is analogous to Theorem 3.3.Theorem 3.6(1) Let Æ" !1 and r�";�" be de�ned by (3.38). Then one can take C1 = p2 inTheorem 3.5, (2) (recall that under (3.38) one can take C0 = p2 in Theorem 3.5,(1) by (1.25)).Moreover, let � = l+ �; � 2 (0; 1]; l � 0 be an integer. Consider the chi-squaretests �2m"(l+1);�" of form (3.42) with m = m" !1 such thatm = o(log��1" ); m��"�1 = o((log��1" )1=2) (3.43)22



(this is possible for Æ" ! 1; compare with (3.23)). Then �"(�2m"(l+1);�" ; F") ! 0;as lim inf r"=r�";�" > p2:(2) Suppose � > 1=2; "4(log��1" )2�+1=(log log��1" )4� !1; (3.44)Let us take m = m" !1 such thatm log log��1" = o(log��1" )1=2); m�2�"�2 = o((log��1" )1=2)(this is possible under (3.44), compare with (3.25)). Then�"(�2m"(l+1);�" ; F") � �(q2 log��1" � r"=") + o(1):Combining with (1.25) under (3.44), this yields the sharp asymptotics�"(F"; �") = �(q2 log��1" � r"=") + o(1): (3.45)Proof of Theorem 3.6 is given in Section 5.10.Remark 3.4 Analogously to Remark 3.3 for any 0 < �0 < �1 < 1 such that(3.43) or (3.44) hold with � = �0, the relations of Theorem 3.6 are uniform over� 2 [�0; �1]. Therefore taking tests family for � = �0 that does not depend on r",we obtain distinguishability conditions of Theorem 3.6 (1) or sharp asymptotics(3.45) of Theorem 3.6 (2) uniformly over � 2 [�0; �1].So, if �" ! 0, then rates (3.36), (3.38) depend essentially on �". In the caseÆ" = o(1) one can consider the factor log��1" in rates (3.36) as the payment forsmall type I error with respect to rates (2.1).3.3.2 The case p =1Let us consider the case p =1; � = � � 1=q > 0. Introduce the ratesr�";�";1 = ("2 log("�")�1)�=(2�+1) � ("2 log(�̂")�1)�=(2�+1); �̂" = min("; �"): (3.46)Under (1.23) rates (3.46) correspond to rates (3.32), i.e., "�1r�";�";1 � ��R;�R .Theorem 3.7 There exist constants 0 < C0 < C1 <1 such that�"(F"; �")! 1 if lim sup r"=r�";�";1 < C0; (3.47)�"(F"; �")! 0 if lim inf r"=r�";�";1 > C1: (3.48)Moreover let us consider family of tests ";�" = 1X";�" ; X";�" = fsupl�1 max1�j�ml jXj;mlj=Tl > 1g; ml = 2l; (3.49)where Tl = (2(cl + log��1" + log l))1=2; c = log 2 and the statistics Xj;m are deter-mined by (3.39). Then �"( ";�") � �" for small enough " > 0, and if C1 is largeenough in the right-hand side of (3.48), then one has �"( ";�" ; F")! 0For any �0 > 0; 0 < �0 < �1 < 1, these relations are uniform over � 2[�0; �1]; q such that � = � � 1=q � �0.Proof of Theorem 3.7 is given in Section 5.11.23



3.4 Adaptive setting3.4.1 Sequence spaceLet us consider the sequence model (1.1). Let the parameter � be unknown and aninterval � = [�0; �1] be given. Taking a family of the functions �R(�); � 2 �, weconsider alternatives of form (1.28). Let a family �R ! 0; log��1R � R2, be given.Set �R = log log��1R = logR � 2and assume that there exists a limit� = limR!1 �R; 0 � � � 2:We set �(�) = 1 for � = 0 and �(�) = 1=� � 1=2 for � > 0. Also we set�1(�) = 2=� � 1=2.Let �0 > �(�). Then relation (3.20) is ful�lled uniformly over �. In viewof Remark 3.3 taking test family from Theorem 3.3 (1) for � = �0, we obtaindistinguishability conditions with �R = inf�2� �R(�):if lim inf �Rq2 log��1R < 1; then �(VR(�); �R)! 1;if lim sup �Rq2 log��1R > 1; then �(VR(�); �R)! 0:Moreover if �0 > �1(�), then the relation (3.24) ful�lled uniformly over �.Analogously, we have sharp asymptotics (3.26) that provided by tests family fromTheorem 3.3 (2) for � = �0.Let �1 < �(�). Then the relation (3.9) is ful�lled uniformly over �. It fol-lows from results of Section 3.1.1 that tests procedures depend essentially on �.Therefore we have adaptive problem in this case.Theorem 3.8 Let �1 < �(�). Let K2(�R; R; �) be de�ned by (3.4), (3.5). SetKR(�) = inf�2�K(�R(�); R; �); HR(�; �R) = p2�KR(�)�qlog logR + log��1R � :(3.50)(1) Upper bounds �(VR(�); �R) � �(�HR(�; �R)) + o(1): (3.51)(2) Lower bounds. For the case log��1R = O((log logR)2), assume that thein�mum in (3.50) is "essential", i.e., for any Æ > 0 there exists nontrivial sub-interval �0 � � such thatsup�2�0K(�R(�); R; �) � KR(�) + Æ:Then �(VR(�); �R) � �(VR(�0); �R) � �(�HR(�; �R)) + o(1): (3.52)24



Let us describe the structure of test procedure  R;�R that provides the upperbounds (3.51). Let ��R(�) be the quantities such thatKR(��R(�); R; �) = KR(�) + o(1):Let �zR(�; �) be extreme sequence in the problem (3.4), (3.5). Let tR;�z = tR;�z(X)be the statistics determined by (3.11). Let us divide the interval � into M = MRsub-intervals,ÆR;l = [�R;l�1; �R;l]; 1 � l �M; M � (logR)(KR(�))B; B > 1;of the length jÆR;lj � M�1 and consider collections of sequences�zR;l = �zR(��R(�R;l); �R;l�1); l = 1; :::;Mand collections of statistics tR;l = tR;�zR;l : Set adR;�R = 1XR;�R ; XR;�R = �X : max1�l�M tR;l > (log��1R + logM)� : (3.53)Then one has�( adR;�R) � �R; �( adR;�R ; VR(�)) � �(�HR(�; �R)) + o(1): (3.54)Proofs of Theorem 3.8 and relations (3.54) are given in Section 5.12.Taking into account Corollary 3.2, we getCorollary 3.4(1) Let (log��1R )2 = o(log logR). Then we can change in Theorem 3.8 thequantity HR(�; �R) by the quantity HR(�) de�ned by (2.30) that does not dependon �R.Let log��1R = o(log logR). Then we have distinguishability conditions that doesnot depend on �R:if lim inf uR(�)p2 log logR < 1; then �(VR(�); �R)! 1;if lim sup uR(�)p2 log logR > 1; then �(VR(�); �R)! 0;where the quantity uR(�) is de�ned by (2.30).(2) Let log��1R � (log logR)2. Then in Theorem 3.8, we can change the quan-tity HR(�; �R) by the quantity ~HR(�; ��1R ) = p2(KR(�)�qlog��1R ).Let log��1R � log logR. Then we have distinguishability conditions:if lim inf KR(�)qlog��1R < 1; then �(VR(�); �R)! 1;if lim sup KR(�)qlog��1R > 1; then �(VR(�); �R)! 0:25



3.4.2 Functional spaceLet us consider functional model (1.2). For given interval � = [�0; �1] and a familyof functions r"(�); � 2 �, we consider alternatives of form (1.29). For a family�" ! 0 analogously to above, we set�" = log log��1" = log "�1; �" � 2 + o(1):Assume there exists a limit � = lim"!0 �" 2 [0; 2];and set �(�) =1 for � = 0 and �(�) = 1=� � 1=2 for � > 0.Taking into account Remark 3.4, we consider the case �1 < �(�). Let thequantities Æ" = Æ"(�) be de�ned by (3.35). The assumption �1 < �(�) yieldsÆ"(�)! 0 uniformly over � 2 �.Let us de�ne adaptive rate function:rad";�"(�) = ("4(log log "�1 + log��1" ))�=(4�+1): (3.55)Note that (compare with (2.12) and (3.36))rad";�"(�) � ( ("4(log log "�1))�=(4�+1); as ��1" � log "�1,("4(log��1" ))�=(4�+1); as ��1" > log "�1: (3.56)Theorem 3.9 Let �1 < �(�). There exists constants 0 < C0 < C1 <1 such that:(1) Lower bounds. If there exists an interval � � � of positive length such thatlim sup sup�2� r"(�)=rad";�"(�) < C0;then �"(F"(�); �")! 1;(2) Upper bounds. If lim inf inf�2� r"(�)=rad";�"(�) > C1; (3.57)then �"(F"(�); �")! 0.The following test procedure provides upper bounds (3.57). Let us take familiesJ";0 < J";1 such that2��1(J";0+1) = rad";�"(�1); 2��0(J";1�1) = rad";�"(�0):For all integer l; J";0 < l < J";1, let us take the collection of statistics �2ml ; ml = 2lof form (3.40). Set ad";�̂" = 1X" ; X" = fX : maxJ";0<l<J";1 �2ml=Tml;�̂" > 1g (3.58)with �̂" = �"=M; M = J";1 � J";0; recall that Tm;� stands for (1 � �)-quantile ofthe chi-square distribution with m degree of freedom.Then for large enough C1 in (3.57), one has�"( ad";�") � �"; �"( ad";�" ; F"(�))! 0: (3.59)26



Proof of Theorem 3.9. By (3.56), for the case ��1" � log "�1 the lower boundsof Theorem follow directly from the statement (1) in Section 2.2 (see (2.13)). Forthe case ��1" > log "�1 the lower bounds of Theorem follow from the lower boundsof Theorems 3.5. The proof of the upper bounds (3.59) for family of tests (3.58) isgiven in Section 5.13.So, for the case ��1" � log "�1 one has no additional payments for small typeI errors in the rates of testing; more precisely, this payment is included into thepayment for adaptation. From the other hand, for the case ��1" > log "�1 one hasno additional payments for adaptation: this payment is included into the paymentfor small enough type I errors.4 Some properties of extreme problems4.1 Extreme problem (2.16), (2.17)The results of this section are contained in [13], Section 4.3.Using the Lagrange multipliers rule for a convex extreme problem (2.16), (2.17)in terms of variables ui = z2i � 0 and returning to variables zi � 0,, one caneasy describe nonnegative extreme sequence fzi;Rg and the extreme value u2R =u2(�R; R). We haveu2R = 12nz4S0;n; zi;R = z(1� x2�i )1=2+ ; xi = i=n;here t+ = t for t � 0 and t+ = 0 for t < 0. The quantities z = zR > 0; n = nR > 0are determined by the equationsnz2S1;n = �2R; n1+2�z2S2;n = R2:The quantities Sl;n; l = 0; 1; 2 are determined by the relationsS0;n = n�1 X1�i�n(1� x2�i )2 = S0(�) +O(n�1);S1;n = n�1 X1�i�n(1� x2�i ) = S1(�) +O(n�1);S2;n = n�1 X1�i�nx2�i (1� x2�i ) = S2(�) +O(n�1);whereS0(�) = Z 10 (1� x2�)2dx; S1(�) = Z 10 (1� x2�)dx; S2(�) = Z 10 x2�(1� x2�)dx:(4.1)Assume �R = o(R). Then nR !1 and we have the relationsn � D1(�)(R=�R)1=�; z � D2(�)�1+1=2�R R�1=2�; u(�R; r) � D0(�)�2+1=2�R R�1=2�;(4.2)27



where the functions Dl(�) > 0; l = 0; 1; 2 are continuous Lipshician and boundedaway from 0 over � 2 [�0; �1] for any 0 < �0 < �1. Therefore for any � 2 (0; 1), weget �(VR; �) = �(T� � ~u) + o(1); ~u = D0(�)�2+1=2�R R�1=2�: (4.3)For any 0 < �0 < �1 <1, the relations above are uniform over � 2 [�0; �1].4.2 Extreme problem (3.4), (3.5)We give the outline of the study of the extreme problem (3.4), (3.5) for �R < Rassuming R ! 1. Using the Lagrange multipliers rule for a convex extremeproblem (3.4), (3.5) in terms of variables ui = z2i � 0 and returning to variableszi � 0, one can write the equations for extreme sequence fzig in the problemz2i1 + z2i = �� �i2� + Ci; � � 0; � � 0; Ci � 0; Ciz2i = 0; (4.4)if either � = 0 or � = 0, then we have the strict inequality in the �rst or in thesecond inequalities (3.5), if zi > 0, then Ci = 0. It is easily seen that we can take� > 0; � > 0 and Ci = 0, when �� �i2� � 0. Setting� = z2; � = z2n�2�; (4.5)we can rewrite the equations (4.4) in terms of variablesz2 = z2R 2 (0; 1 + �n); �n = (n2� � 1)�1; n = nR > 1:We getzi = 0; i � n; z2i = z2(1� x2�i )1� z2(1� x2�i ) ; xi = i=n; 1 � i < n; (4.6)the variables z; n are determined by the relations1Xi=1 z2i = nz2S1(n; z) = �2R; (4.7)1Xi=1 z2i i2� = n1+2�z2S2(n; z) = R2; (4.8)and K2(�R; R) = 12nz4S0(n; z):Here, as n!1,S1(n; z) = n�1 X1�i�n 1� x2�i1� z2(1� x2�i ) = ~S1(z) +O(n�1); (4.9)S2(n; z) = n�1 X1�i�n x2�i (1� x2�i )1� z2(1� x2�i ) = ~S2(z) +O(n�1); (4.10)S0(n; z) = n�1z�4 X1�i�n z2(1� x2�i )1� z2(1� x2�i ) + log(1� z2(1� x2�i ))! (4.11)= ~S0(z) +O(n�1): 28



In (4.9){(4.11) we set~S1(z) = Z 10 1� x2�1� z2(1� x2�)dx; ~S2(z) = Z 10 x2�(1� x2�)1� z2(1� x2�)dx; (4.12)~S0(z) = z�4 Z 10  z2(1� x2�)1� z2(1� x2�) + log(1� z2(1� x2�))! dx: (4.13)The integrals in (4.12){(4.13) converge for any z 2 (0; 1� b); b > 0, and as z ! 0,~Sl(z) = Sl(�) +O(z2); l = 1; 2; ~S0(z) = 12S0(�) +O(z2);where the quantities Sl(�); l = 0; 1; 2 are de�ned by (4.1).Note that for any R > 0; �R 2 (0; R) there exist unique z = zR; n = nRdetermined by relations (4.7), (4.8).Let n!1 and z be bounded away from 1. These yield z2i are bounded and�2R � nz2; R2 � n2�+1z2; n � (R=�R)1=� !1; z2� � �2�+1R R�1; (4.14)K2(�R; R) � nz4 � �4+1=�R R�1=�: (4.15)Observe that if n is bounded and 1 + �n � z2 is bounded away from 0, thenusing (4.6), (4.8), (4.10) we get R = O(1), which is impossible for R ! 1. Alsoone easily seen thatR2 � �2R � 2K2(�R; R); if 1 + �n � z2 ! 0 and n = O(1): (4.16)Let us study the asymptotics for the case n!1; z ! 1; z2 < 1 + �n: Settingz2 = 1� Æ; � = n2�Æ=(1� Æ)); �1 < � = o(n2�); z2 = n2�� + n2� ; (4.17)we can rewrite (4.6) in the formz2i = � + n2�� + i2� � 1; 1 � i � n: (4.18)Assume � !1; � = o(n2�). Set m = � 1=2� � nÆ1=2�. Rewriting (4.7) we have�2R = X1�1�n z2i = (� + n2�)� 1=2��1Sn;m � n +O(1); Sn;m = 1m X1�i�n 11 + (i=m)2� :(4.19)We can replace the normalized sums Sn;m in (4.19) by the integralsSn;m = In;m +O(m�1); In;m = Z n=m0 dx1 + x2� � 8><>: Æ1�1=2�=(1� 2�); � < 1=2log Æ�1; � = 1=2c(�); � > 1=2 ;where c(�) = R10 (1 + t2�)�1dt; � > 1=2: This yields�2R � 8><>: 2n�=(1� 2�); � < 1=2n log(n=�); � = 1=2n2�� 1=2��1c(�); � > 1=2 : (4.20)29



Next, assume �1 < � < B, for some B > 0. Set�2R = z21 + ~�2R; ~�2R = X2�i�n z2i ; z21 = n2� � 1� + 1 : (4.21)Using (4.18) we have~�2R = (�+n2�)Sn;��n+O(1); Sn;� = X2�i�n 1� + i2� � (n1�2�=(1� 2�); � < 1=2logn; � = 1=2 :If � > 1=2, then Sn;� � n. Therefore if �1 < � � B, then�2R � z21 + � 2n�=(1� 2�); � < 1=2n logn; � = 1=2 ; �2R � z21 + n2�; � > 1=2: (4.22)It follows from (4.20), (4.22) that �2R=n!1, as z ! 1; n!1 for � � 1=2.Also using (4.18) and evaluations above one can verify that, for any b 2 (0; 1),min1�i�bn z2i � (b�2� � 1)(1 + o(1)); X1�i�bn z2i � �2R; as z ! 1; n!1:Since 8 c > 0 9 d > 0 such that x� log(1 + x) > dx for x > c, this yieldsK2(�R; R) = 12Xi (z2i � log(1 + z2i )) � �2R; as z ! 1; n!1: (4.23)On the other hand, using (4.17), (4.18) and rewriting (4.8), we haveR2 = X1�i�n i2�z2i = X1�i�n �n2� � �z2i � i2��= 2�2� + 1n2�+1 +O(n2�)� ��2R � 2�2� + 1n2�+1 � �z21 ; (4.24)since P1�i�n i2� = n2�+1=(2� + 1) +O(n2�) and � ~�2R = o(n2�+1) by (4.20), (4.22).It is easily seen from (4.20), (4.21), (4.24) that if � is bounded away from �1,then the item z21 is not essential for the rates of �2R; R2. This yields�RR�1=(2�+1) !1 for � � 1=2; lim inf �RR�1=(2�+1) � C(�) for � < 1=2;(4.25)where C(�) = (2�=(1� 2�))1=2(1 + 1=2�)1=2(2�+1): (4.26)Let � ! �1. Then the item z21 is essential for the rates of �2R and it may beessential for the rates of R2. Relations (4.25), (4.26) hold true, for z ! 1; n!1.Relations (4.14){(4.16), (4.23), (4.25) yield the following statements.Proposition 4.1(1) Let either K2(�R; R) = o(R2=(2�+1)) or �R = o(R1=(2�+1)). Then z ! 0,n!1 and relations (4.14){(4.15) hold true.(2) Let �R � R1=(2�+1) and either � � 1=2 or � < 1=2; lim sup �RR�1=(2�+1) <C(�): Then n ! 1, the quantities z are bounded away from 0 and from 1 andrelations (4.14){(4.15) hold true as well.30



Assume �R = o(R1=(2�+1)). By Proposition 4.1 (1), this yields z ! 0 andK2(�R; R) = u2(�R; R)(1=2+O(z2)); K2(�R; R) = 14 X1�i�n z4i (1+O(z2)): (4.27)Proof of Corollary 3.2. Relation (4.15) and the second relation (3.17) yieldz2K(�R; R) = o(1). Therefore relations (3.18) follow from (4.27) and (3.15). 25 Proofs of Theorems5.1 Proof of Theorem 3.1 (1)It suÆces to consider the caseK(�R; R) = qlog��1R +O(1): (5.1)and assumptions (3.9) and (3.8) are equivalent under (5.1) (see Remark 3.2).Let us consider Bayesian hypothesis testing problem on a probability measureP corresponding to random vector X:H0 : P = P0; H1 : P = P�R; (5.2)where P�R = R Pv�R(dv) is the mixture over the prior �R. Denote �(P�R; �R) theminimum of the type II error probability in the problem (5.2) for given type I errorprobability �R. It suÆces to verify that�(P�R; �R) = �(q2 log��1R �p2K(�R; R)) + o(1); (5.3)�R(VR)! 1; VR = V (�R; R; �): (5.4)In fact, let �̂R be conditional measure with respect to the condition v 2 VR, i.e.�̂R(A) = �R(A \ VR)=�R(VR) and P̂R = P�̂R. Since �̂R is supported on VR, for any� 2 (0; 1) we have �(VR; �R) � �(P̂R; �R). On the other hand, it follows from [13],Proposition 2.1, and inequalities (2.32), (2.49) that, for any � 2 (0; 1),j�(P�R; �R)� �(P̂R; �R)j � 12 jP�R � P̂Rj1 � 12 j�R � �̂Rj1 � 1� �R(VR);where j � j1 is the total variation distance.Let us consider extreme problem (3.4), (3.5) with slightly changed quantities~�2R = �2R(1 + Æ); ~R2 = R2(1� Æ): (5.5)We take Æ = ÆR such that z�4n�1 � Æ2 � n�1; (5.6)where n = nR; z = zR be the quantities determined by (4.7), (4.8). The �rstrelation in (5.6) and (3.7) yield K(~�R; ~R) = K(�R; R) + o(1), and we can changeK(�R; R) by K(~�R; ~R) in relation (5.3). 31



Let fzig be the extreme sequence in the changed problem (3.4), (3.5) and�R = N (0; fz2i g) =Yi N (0; z2i ) (5.7)be the Gaussian measure on (l2;B), where B is the Borel �-algebra of subsets inl2. This corresponds to independent Gaussian coordinates vi � N (0; z2i ) of randommean vector v 2 l2. Note thatP�R = Z Pv�R(dv) =Yi N (0; z2i + 1) (5.8)is the Gaussian measure that corresponds to independent Xi � N (0; z2i + 1). Thelog-likelihood ratio tR = log dP�R=dP0 is of form (3.11). According to Neyman{Pearson's Lemma the quantity �(�; P�R) is of the form�(�; P�R) = P�R(tR < TR;�); (5.9)where TR;� is (1� �)-quintile of the statistic tR in P0-probability, i.e.,P0(tR � TR;�) = �:Denote E�;R = EP�R tR = 12Xi (z2i � log(1 + z2i ));�2�;R = VarP�R tR = 12Xi z4i ; �R = (tR � E�;R)=��;R:Clearly, E�;R = K2(~�R; ~R); �2�;R � 2E�;R (5.10)(the latter relation follows from (4.27)).Let zi be determined by (4.6) with n = nR; z = zR determined by (4.7), (4.8)for the changed extreme problem (they are of the same rates as for the originalproblem and we use the same notation).Lemma 5.1 Let n ! 1 and supi z2i = O(1) (by (4.14), these hold under (3.8)).Then �R ! � � N (0; 1), in P�R-probability.Proof. In P�R-probability, the random variables tR are distributed asK2(~�R; ~R) + 12Xi Yi; Yi = z2i (�2i � 1); �i � N (0; 1) are i.i.d.Note that �4i = EY 4i = 60z8i . It follows from (4.6) thatXi z4i � nz4; Xi z8i � nz8;32



and the Lyapunov ratio �R is of the rate�R = Pi �4i(VarP�R tR)2 � n�1 ! 0:This yields the statement of the lemma. 2The next lemma is formulated in more general form that we need for the proofof Theorem 3.1 (1), because we'll use it for the proof of Theorem 3.4 below.Lemma 5.2 Let tR = log dP�R=dP0 be a log-likelihood ratio (not necessarily forthe priors of form (5.7)), and TR;� be (1� �)-quantile of tR under P0. Then(1) For any TR one has log(P0(tR > TR)) � �TR:This yields TR;� � log��1.(2) Let �R = (tR � E�;R)=��;R, where E�;R; ��;R ! 1 be a quantities (notnecessarily de�ned by above) such that �R ! � in P�R-probability. Let TR = E�;R+aR��;R; aR ! a 2 R and assume, for the random variable � and the quantity a,log(Eeh(a��)1f�>ag) = o(h); as h!1: (5.11)Then log(P0(tR > TR)) = �TR + o(��;R): (5.12)If log��1R = E�;R + aR��;R; aR ! a (by (5.10), this corresponds to assumption(5.1) for priors (5.7)), then this yieldsTR;�R = log��1R + o(��;R): (5.13)Note that Lemma 5.2 (1) yields relation (3.12).Proof. First, since the measure P�R is absolute continuous with respect to P0,we have EP0etR = EP0(dP�R=dP0) = 1. Using the Markov inequality we getP0(tR > TR) = P0(etR > eTR) � e�TREP0etR = e�TR:This implies Lemma 5.2 (1).Next, we can write tR = TR + ��;R �R, where �R = �R � aR ! � � a in P�R-probability. Moreover,P0(tR > TR) = EP�Re�tR1ftR>TRg = e�TREP�Re���;R�R1f�R>0g= e�TREP�RZ��;RR ; ZR = e��R1f�R>0g: (5.14)Note that the random variables ZR are bounded and ZR ! Z = e��+a1f�>ag inP�R-probability and EZ > 0. Therefore EP�RZhR=EZh ! 1 for any h > 0. Thisyields there exists a family hR ! 1 such that EP�RZhRR =EZhR ! 1. AssuminghR = o(��;R) and using the inequality EY b � (EY )b for Y � 0; b > 1 and (5.11),we havelog(EP�RZ��;RR ) � ��;RhR log(EP�RZhRR ) = ��;RhR (log(EZhR)+o(1)) = o(��;R): (5.15)Lemma 5.2 (1) and relations (5.14){(5.15) imply Lemma 5.2 (2). 233



Remark 5.1 Note that if �R is asymptotically standard Gaussian, i.e., � = � �N (0; 1), then relation (5.11) holds true. In fact, direct calculation and (1.8) giveEeh(a��)1f�>ag = eha+h2=2�(�a� h) � e�a2=2=(a+ h)p2�: (5.16)In view of Lemma 5.1, we can apply Lemma 5.2 to the problem under consideration.Moreover, relation (5.11) holds true for the case a � H and � = �H is lowerH-truncated standard Gaussian variable � � N (0; 1):�H = H + (� �H)1f�>Hg = � �; � > H,H; � � H, P (�H < t) = ��(t); t � H,0; t < H. (5.17)In fact, by a � H we have �H = � for �H > a and we repeat calculations (5.16).Remark 5.2 Let us take sequences m!1; z = zm > 0 and consider chi-squarestatistics �2m of form (3.22) and Gaussian measure � = N (0; fzg) corresponding tozi = z; i = 1; :::; m; zi = 0 for i > m. Then the statistics tR are of the formtR = z22(1 + z2)�2m � m2 log(1 + z2);the quantities E�;R; �2�;R are of the formE�;R = m2 (z2 � log(1 + z2)); �2�;R = m2 z4:Analogously to the proof of Lemma 5.1 we see that the random variable �R isasymptotically N (0; 1)-Gaussian in P�R-probability. Setting TR = E�;R and apply-ing Lemma 5.2, we obtain the large deviation inequality for chi-square statistics�2m logP0(�2m > m(1 + z2)) � �m2 (z2 � log(1 + z2)); (5.18)logP0(�2m > m(1 + z2)) = �m2 (z2 � log(1 + z2)) + o(z2pm): (5.19)Let us prove relation (5.3). Using (5.9), (5.10) (5.13) and Lemma 5.1 we have�(P�R; �R) = P�R(tR < TR;�) = P�R  �R < TR;� � E�;R��;R ! =� log��1R �K2(~�R; ~R) + o(K(~�R; ~R))p2K(~�R; ~R) !+ o(1):We can writelog��1R �K2(~�R; ~R) = �qlog��1R �K(~�R; ~R)��qlog��1R +K(~�R; ~R)� :Under the assumption (5.1) the second factor is 2K(~�R; ~R) + O(1): This yieldsrelation (5.3). 34



In order to verify relation (5.4), note that1� �R(VR) � �R(S1 < �2R) + �R(S2 > R2); S1 =Xi v2i ; S2 =Xi i2�v2i :By construction of �R, we haveE�R(S1) =Xi z2i = (1 + Æ)�2R; �2R � nz2;E�R(S2) =Xi i2�z2i = (1� Æ)R2; R2 � n1+2�z2;Var�R(S1) = 2Xi z4i � nz4; Var�R(S2) = 2Xi i4�z4i � n1+4�z4:Therefore using the Chebyshev inequality we get�R(S1 < �2R) � �R(jS1 � E�R(S1)j > Æ�2R) � Var�R(S1)=Æ2�4R � (nÆ2)�1 ! 0;�R(S2 > R2) � �R(jS2 � E�R(S2)j > ÆR2) � Var�R(S2)=Æ2R4 � (nÆ2)�1 ! 0:These yield relation (5.4). 25.2 Proof of Theorem 3.2 (1)It suÆces to show that for any " > 0 there exist C > 0; R0 > 0 such that if R > R0and qlog��1R �K(�R; R) > C, then �(VR; �R) > 1� ".The proof follows to the scheme of Section 5.1 and we note the di�erences only.Note that n = nR ! 1 and z = zR are bounded away from 0 and from 1 in thecase (see Proposition 4.1 (2)). First, we take Æ = Bn�1=2 in (5.5) with B suchthat �R(VR) > 1� "=2 for large enough R (these correspond to evaluations in theend of Section 5.1). Under this choice we get K(~�R; ~R) � K(�R; R) +B1 for someB1 = B1(B). Note that E�;R = K2(~�R; ~R) � �2�;R in the case under consideration.Other evaluations are analogous to above. 25.3 Proof of Theorem 3.1 (2)Analogously to Section 5.1 it suÆces to assume (5.1) (see Remark 3.2). We studythe distributions of statistics tR determined by (3.11) under alternatives v 2 VR.Set ER(v) = EvtR; �2R(v) = VarvtR; �v;R = tR � ER(v)�R(v) :Since EvX2i = 1 + v2i ; VarvX2i = 2 + 4v2i ;we have ER(v) = 12Xi  z2i1 + z2i (1 + v2i )� log(1 + z2i )! ; (5.20)35



�ER(v) = EvtR �K2(�R; R) = 12Xi z2i1 + z2i (v2i � z2i ); (5.21)�2R(v) = 12Xi z4i(1 + z2i )2 (1 + 2v2i ): (5.22)Lemma 5.3 For the set VR = V (�R; R; �), one hasinfv2VR�ER(v) � 0:Proof. Taking into account (4.4), (4.5) one has, for all i,z2i1 + z2i = �� �i2� + Ci; � > 0; � > 0; Ci � 0; Ciz2i = 0:Therefore2�ER(v) =Xi z2i1 + z2i (v2i � z2i ) = �Xi (v2i � z2i )��Xi i2�(v2i � z2i )+Xi Ci(v2i � z2i ):Recalling de�nition (1.19) of the set VR = V (�R; R; �) and relations (4.7), (4.8),we haveXi (v2i � z2i ) � 0; Xi i2�(v2i � z2i ) � 0; Xi Ci(v2i � z2i ) =Xi Civ2i � 0:This yields the statement of Lemma. 2Recall that under assumption (3.8), relation (4.6) holds and z ! 0 . Theseyield gR = supi z2i ! 0; and we haveXi z4i(1 + z2i )2 � 2�2R(v) �Xi z4i(1 + z2i )2 + 2gRXi z2i v2i1 + z2i =Xi z4i(1 + z2i )2 + 2gRXi z2i1 + z2i (v2i � z2i ) + 2gRXi z4i1 + z2i :In view of (4.27), Xi z4i(1 + z2i )2 �Xi z4i1 + z2i � 4K2(�R; R):This yields that, uniformly over v 2 l2,(2 + o(1))K2(�R; R) � �2R(v) � 2K2(�R; R)(1 + o(1)) + o(�ER(v)): (5.23)Assume �ER(v)=K(�R; R)!1. It follows from the Chebyshev inequality and(5.23) that�( �R ; v) = Pv(tR < log��1) = Pv(ER(v)� tR � ER(v)� log��1R )� �2R(v)(ER(v)� log��1)2 ! 0;36



because of ER(v)� log��1 = �ER(v) +O(K(�R; R)):Assume �ER(v) = O(K(�R; R)): (5.24)By (5.23) this yields �2R(v) � 2K2(�R; R) (5.25)In Pv-probability, the random variable �v;R is distributed as�R �Xi (aR;iUi + bR;iVi); Ui = (�2i � 1); Vi = �i; �i � N (0; 1) i.i.d; (5.26)aR;i = z2i2�R(v)(1 + z2i ) � 0; bR;i = z2i vi�R(v)(1 + z2i ) ;AR =Xi a2R;i; BR =Xi b2R;i; 2AR +BR = 1; (5.27)and by (4.15), a2R = maxi a2R;i = O(z4=K2(�R; R)) = O(n�1)! 0:Lemma 5.4 Let random variables variables �R be of form (5.26), (5.27) and a2R =supi a2R;i = o(1). Then �R are asymptotically standard Gaussian.Proof. Let AR = o(1). Clearly,E  Xi aR;iUi!2 = 2AR ! 0; BR = 1 + o(1); Xi bR;iVi � N (0; BR):This yields Lemma (5.4) for the case AR = o(1). Let AR � 1. SetIR = fi : b2R;i > aRg; jIRj = #IR;and consider the representation �R = ~�(1)R + ~�(2)R + ÆR; where~�(1)R = Xi=2IR(aR;iUi + bR;iVi) = Xi=2IRWi; ~�(2)R = Xi2IR bR;iVi; ÆR = Xi2IR aR;iUi:Note that Var(ÆR) = 2 Xi2IR a2R;i � 2a2RjIRj; 1 � Xi2IR b2R;i > aRjIRj:This yields Var(ÆR) = o(1); ÆR ! 0. Clearly, ~�(1)R and ~�(2)R are independent and~�(2)R � N (0; ~BR); where ~BR = Pi2IR b2R;i: Observe that, for some B > 0,Xi=2IREvW 4i � B Xi=2IR(a4R;i + b4R;i) � B  a2RXi a2R;i + aRXi b2R;i! = o(1);Var(~�(1)R ) = Xi=2IR(2a2R;i + b2R;i) � 1;37



because of AR =Xi a2R;i � 1; Xi2IR a2R;i = o(1):This yields the Lyapunov condition and asymptotic normality of ~�(1)v;R. 2In view of Lemma 5.4 and (5.25), under (5.24) we have, uniformly over v 2 l2,�( �R ; v) = Pv(tR < log��1) = �((log��1 � ER(v))=�R(v)) + o(1) =�((log��1 �K2(�R; R)��ER(v))=p2K(�R; R)) + o(1): (5.28)Using Lemma 5.3 and (5.28), we have�( �R ; VR) � �((log��1 �K2(�R; R))=p2K(�R; R)) + o(1):At last, note that under assumption (5.1)log��1 �K2(�R; R) = (plog��1 �K(�R; R))(plog��1 +K(�R; R)) �2(plog��1 �K(�R; R))K(�R; R):This yields the statement of Theorem. 2Remark 5.3 Let us describe deeper sense of Lemma 5.3 that corresponds to ex-treme properties of the Gaussian priors (5.7) in the mixture (5.8).The statement of Lemma 5.3 corresponds to the inequalityinfv2VRXi Evi log(dP�i=dP0) �Xi EP�i log(dP�i=dP0):Clearly this follows from the inequalityinf��2�RXi EP�i log(dP�i=dP0) �Xi EP�i log(P�i=dP0); (5.29)where �R is a set that consists of sequences of priors �� = f�i(du)g such thatXi E�iu2 � �2R; Xi i2�E�iu2 � R2: (5.30)Let P be the set of probability measures on the real line that are absolutelycontinuous with respect to the standard Gaussian measure P0. Let us consider thefunctions�(P;Q) = EP log(dQ=dP0); P; Q 2 P; '(P ) = �(P; P ); P 2 P(possibly, �(P ) = 1 or �(P;Q) = 1). It is easily seen that �(P;Q) is convex(linear) in P and concave in Q. Also since the function log(x) is concave and usingJensen's inequality, we have�(P;Q)� �(P; P ) = EP log(dQ=dP ) � logEP (dQ=dP ) = 0:38



Therefore '(P ) = supQ2P �(P;Q);and '(P ) is convex in P .Let P = P�; Q = P� be a mixture over priors �; � on (R1;B). Then we set�(�; �) = �(P�; P�); '(�) = '(P�):It follows from above that �(�; �) is convex (linear) in � and concave in �,sup� �(�; �) = '(�); (5.31)and '(�) is convex in � as well.Let us rewrite the inequality (5.29) in the forminf��2�RXi �(�i; �i) �Xi '(�i); (5.32)where �i = N(0; z2i ) are Gaussian measures that correspond to the extreme se-quence in (3.4), (3.5) (clearly �� 2 �R).In order to verify (5.32), let us try to maximize the left-hand side of (5.32) over��, i.e., consider maximin extreme problemH(�R; R) = sup�� inf��2�RXi �(�i; �i): (5.33)Using convex properties of this problem and applying minimax theorem we canreplace the supremum and in�mum in (5.33). Using (5.31) we haveH(�R; R) = inf��2�R sup�� Xi �(�i; �i) = inf��2�RXi sup�i �(�i; �i)= inf��2�RXi '(�i) = inf�z2VRXi h(zi); (5.34)where h(z) = inf� f'(�) : E�u2 = z2g (5.35)Let us show that the extreme measure �� in (5.35) is the Gaussian measure�� = N(0; z2): (5.36)In view of relations above, this yields the inequality (5.32). Since'(��) = h(z) = (z2 � log(1 + z2))=2;the extreme problem (5.34) is the same as the extreme problem (3.4), (3.5); alsoH(�R; R) = K(�R; R) in (5.33) and this equals to the right-hand side of (5.32).In order to verify (5.36) note that the function '(�) is of the form'(�) = EP0(g(x; �) log g(x; �)); g(x; �) = Z exp(�u2=2 + xu)�(du):39



The function '(�) is strictly convex and the constraint set in (5.35) is convex aswell. It follows from the method of subdi�erentials (this corresponds to a formalderivative @'=@�, compare with [13], Section A.6) and the Kuhn{Tucker Theoremthat it suÆces to verify the following relation: there exist constants A;B such that@'@� (��; u) = EP0 �exp(�u2=2 + xu) log g(x; ��)�+ 1 = Au2 +B (5.37)(the constant B corresponds to the constraints E�1 = 1). However for �� =N(0; z2), we haveg(x; ��) = 1p1 + z2 exp z2x22(1 + z2)! ;EP0 �exp(�u2=2 + xu) log g(x; ��)� = �12 log(1 + z2) + z22(1 + z2)(1 + u2):This yields (5.37).5.4 Proof of Theorem 3.2 (2)It suÆces to show that for any " > 0 there exist C > 0; R0 > 0 such that if R > R0and qlog��1R � K(�R; R) < �C, then �( �R ; VR) < ". The proof follows to thescheme of Section 5.3. Recall that n ! 1 and z are bounded away from 0 andfrom 1 in the case (see Proposition 4.1 (2)). For this reason the relation (5.23) ischanged by b1K2(�R; R) � �2R(v) � b2K2(�R; R) + b3�ER(v);for large enough R and some positive constants bl; l = 1; 2; 3. Lemma 5.3 holdstrue as well and other evaluations are analogous. 25.5 Proof of Theorem 3.3De�ne the quantities TR = m(1 + z2R); zR by the relationL(TR; m) = m(z2R � log(1 + z2R))=2 = log��1R ; (5.38)i.e., TR = m + 2 log��1R +m log(1 + z2R); TR � Tm;�; (5.39)the latter inequality follows (5.18). It suÆces to consider the case log��1R � �2R.Since m = o(log��1R ), we havez2R � log(1 + z2R) = 2m�1 log��1R !1; z2R � 2m�1 log��1R ; zR !1;log(1 + z2R) � log zR; m log(1 + z2R)= log��1R � z�2R log zR ! 0: (5.40)It suÆces to show that under assumption of Theorem 3.3 (1),supv2VR Pv(�2m < TR)! 0; (5.41)40



and under assumption of Theorem 3.3 (2),supv2VR Pv(�2m < TR) � �(q2 log��1R � �R) + o(1): (5.42)It is easily seen that the function f(h) = Phv(�2m < T ) decreases in h > 0 andit suÆces to consider the case when�2(v) = 1Xi=1 v2i = �2R: (5.43)Set �2m(v) = mXi=1 v2i ; �m;v = �2m �m� �2m(v)�m(v) ; �2m(v) = 2m + 4�2m(v):Applying Lemma 5.4 we see that the random variables �m;v are asymptoticallystandard Gaussian in Pv-probability, uniformly over v 2 l2. ThereforePv(�2m < TR) = Pv  �m;v < TR �m� �2m(v)�m(v) ! = � TR �m� �2m(v)�m(v) !+ o(1)= � 2 log��1R � �2m(v) +m log(1 + z2R)�m(v) !+ o(1): (5.44)Let us estimate �2m(v) for v 2 VR. By (5.43) we have�2m(v) = �2R � 1Xi=m+1 v2i ; 1Xi=m+1 v2i � m�2� 1Xi=m+1 i2�v2i � m�2�R2:This yield �2R � �2m(v) � �2R �m�2�R2: (5.45)Under assumptions of Theorem 3.3 using (5.40) we havem�2�R2 = o(log��1R ); m log(1+z2R) = o(log��1R ); �m(v) � 2�m(v) � 2�R: (5.46)For any Æ > 0, if lim inf 2(log��1R )=�2R < 1� Æ, then (5.44), (5.46) yield (5.41).Under assumptions of Theorem 3.3 (2) it suÆces to assume q2 log��1R � �R =O(1). In this case using relations (3.25), (5.40), (5.45), (5.46) we have2 log��1R � �2m(v) = (q2 log��1R � �R)(q2 log��1R + �R) + o(�R)= (2q2 log��1R +O(1))(q2 log��1R � �R);m log(1 + z2) � m log((log��1R )=m) = o(qlog��1R ):since log��1R =m ! 1. In view of the �rst relation (3.25), (5.44) and the thirdrelation (5.46), these yield relations (5.42). 241



5.6 Proof of Theorem 3.45.6.1 Lower boundsSet ~�R = n��R �R. It suÆces to consider the caseq2(lognR + log��1R )� ~�R = O(1): (5.47)This yieldslog��1R = ~�2R=2� lognR +O(~�R)!1; ~�R � q2 lognR +O(1)!1: (5.48)Since �(VR; �) decreases in � > 0, it follows from (2.25) that, for any �R ! 0,�(VR; �R) � �(q2 logmR �m��R �R) + o(1):If log��1R = o(plogmR), thenmR !1; lognR = logmR + o(1); ~�R = m��R �R + o(1): (5.49)This yields the required lower bounds.Let fej; j = 1; 2; :::g be the standard basis in l2, i.e.,ej = feijg; eij = � 1; i = j0; i 6= j ; 1 � i <1:Observe that v� = ~�RenR 2 VR; jv�j = ~�R: (5.50)It follows from (1.10), (5.50) that�(VR; �R) � �(q2 log��1R � ~�R) + o(1):If (logmR)2 = o(log��1R ), then this yields the required lower bounds.Therefore it suÆces to assume, for any B > b > 0 and R large enough,bqlogmR < log��1R < B(logmR)2; (5.51)which yields (5.49). Denote n1 = [nR(1 � 1= log(nR��1R ))]; where [t] is an integerpart of t. Let us take the collectionsVnR = fvj = �Rj��ej; n1+1 � j � nRg; ~VnR = f~vj = �Rn��1 ej; n1+1 � j � nRg:Clearly, VnR � VR for any q > 0 and, since ~vij � vij 8i, it is easily seen that�(VnR; �R) � �( ~VnR; �R) (compare with Proposition 2 and Lemma 3.1 in [14]).Therefore it suÆces to verify that�( ~VnR; �R) � �(q2(logmR + log��1R )� ~�R) + o(1):42



Setk = nR � n1 = nRlog(nR��1R ) + o(1); uR = �Rn��1 ; nR > k > cnR(lognR)2 ; (5.52)for some c > 0 under (5.51). Take the priors�R = k�1 kXi=1 Æ~vi+n1 ;where Æv is Dirac mass at the point v 2 l2. This yields �R( ~VnR) = 1. Under (5.47),(5.51), (5.52) we haveuR = ~�R + o(1); qlog k + log��1R = qlogmR + log��1R + o(1); (5.53)and it suÆces to verify that, for the Bayesian hypothesis testing problem (5.2),�(�R; P�R) � �(q2(log k + log��1R )� uR) + o(1); P�R = 1k kXi=1 P~vi+n1 (5.54)(compare with Section 5.1). The likelihood ratio is of the formL�R = dP�RdP0 (X) = 1k kXi=1 exp(�u2R=2 + uRXi+n1): (5.55)Lemma 5.5 Let � � N (0; 1); q2 logk + log��1R � uR = O(1); k !1. ThenL�R = k�1 exp(u2R=2 + uR�R) + �R + o(1); �R ! � � N (0; 1); (5.56)in P�R-probability, where �R = �(p2 log k � uR).Proof. It is easily seen that for any t 2 R one hasP�R(L�R < t) = k�1 kXi=1 P~vi+n1 (L�R < t) = Pw�(L�R < t); w� = ~vn1+1and it suÆces to verify that (5.56) holds in Pw�-probability. On the other hand, inPw�-probability, the random variables L�R are distributed as1k exp(u2R=2 + uR�1) + k � 1k �R;k�1; �R;k�1 = 1k � 1 kXi=2 exp(�u2R=2 + uR�i);where �i are i.i.d. standard Gaussian. It follows from [13], Proposition 4.10 andCorollary 4.5 that, in probability,�R;k�1 = �(q2 log(k � 1)� uR) + o(1)(to apply Corollary 4.5 one can take u" = uR; w";i = u"�D" = q2 log(k � 1); p";i =(k � 1)�1 for 2 � i � k and w";i =1 in other cases). This yields the lemma. 2SetHR = uR�q2 log k; E�;R = � log k+u2R=2; �R = (logL�R�E�;R)=uR: (5.57)Under (5.47) one has H � O(1), and HR = O(1) for log��1R � (logmR)1=2.43



Lemma 5.6 Assume (5.56) with �R � �(p2 log k � uR); �R = O(1) in P�R-probability. Then one has under (5.47), in P�R-probability,(1) if HR !1, then �R ! � � N (0; 1);(2) if HR ! H 2 R1, then �R ! ��H , where ��H is determined by (5.17).Proof. Let HR !1. ThenE�;R = HRq2 log k +H2R=2� uR; E�;R + tuR !1 8 t 2 R:Using (5.56), for any t 2 R we haveP�R(�R < t) = P�R (L�R < exp(E�;R + tuR)) =P (exp(E�;R + uR�R) < exp(E�;R + tuR)� �R + o(1)) =P (euR�R < etuR(1 + �R)) = P (�R < t+ �R) = �(t) + o(1); (5.58)where, in P�R-probability,�R = ��R + o(1))exp(E�;R + tuR) = o(1); �R = log(1 + �R)uR = o(1): (5.59)Let HR ! H 2 R1. ThenE�;R + tuR = uR(HR + t) +O(1)! �1; t > �H,�1; t < �H.For any t > �H, using (5.56) analogously to above we have (5.58), (5.59). Ift < �H, then P�R(�R < t) = P�R (L�R < exp(E�;R + tuR))! 0: 2Let us return to the proof of (5.54). By (5.48) it suÆces to consider the caselog��1R = E�;R + aRuR; aR ! a 2 R1;and either HR !1 or HR ! H 2 R1. Observe that if HR ! H, then we havelog��1R = (HR + aR)uR �H2R=2 = (H + a)uR + o(uR)!1:This yields a + H � 0, and if a + H = 0, then we go to the case log��1R =o(plogmR) that was considered above. Therefore it suÆces to assume a+H > 0,if HR = O(1). Taking into account Lemmas 5.5, 5.6 and Remark 5.1 we can applyLemma 5.2 with ��;R = uR and E�;R de�ned by (5.57). This yields the relationTR;�R = log��1R +o(uR) for (1��R)-quantile of the log-likelihood ratio tR = logL�R .Furthermore, using Lemma 5.6 we have�(�R; P�R) = P�R(tR � TR;�R) = P�R �E�;R + �R��;R � log��1R + o(uR)� =P�R  �R � log��1R � E�;RuR + o(1)! = P�R(�R � aR + o(1))! �(a):On the other hand, under (5.47), (5.53) we haveaR = log��1R + log k � u2R=2uR = �q2(log��1R + log k)� uR��0@q2(log��1R + log k) + uR2uR 1A � q2(log��1R + log k)� uR:This yields (5.54). 2 44



5.6.2 Upper boundsIt suÆces to consider the case q =1 that corresponds to the "widest" alternative.For tests (3.28) and �R small enough, using (1.8) we get the �rst relation (3.29):�( R;�R) = P0(XR;�R) � 1Xi=1 P0(jXij > T�R;i) � 2 1Xi=1�(�T�R;i)� 2p2� 1Xi=1 exp(�T 2�R;i=2)T�R;i � �Rp� 1Xi=1 1i log(i+ 1)qlog i+ log��1R < �R:Next, by construction of the tests (3.28) and since Ti = T�R;i increases in i, onehas, for any v = fvig 2 l2 and any m > 0,�( R;�R ; v) � infi Pv(jXij � Ti) � �(mini�m(Ti � jvij)) � �(T[m] �maxi�m jvij): (5.60)Lemma 5.7 Set m = mR = (R=�R)1=(s��); nR = [mR]; nR;1 = nR+1 = mR(1+Æ)for some Æ > 0: Then one has the inequalityinfv2VR maxi�mR jvij � �Rn��R : (5.61)Proof of the lemma (compare with Lemma 4.2 in [13]). Fix v = (v1; :::; vn; :::) 2VR and let i � nR;1. Sincesupi i� jvij � �R; supi isjvij � R; s > � � 0;we have i� jvij�R = isjvij�R i��s � R�R i��s = �mi �s�� � � 11 + Æ�s�� :Therefore the supremum supi i� jvij is attained in some i0 � nR, and we havemaxi�mR jvij � jvi0j = (jvi0 ji�0)i��0 � �Rn��R : 2Since T�R;n = q2(log��1R + logn) + o(1), using (5.60) and (5.61) we have thesecond relation (3.29):�( R;�R ; VR) � �(T�R;nR�n��R �R) = �(q2(lognR + log��1R )�n��R �R)+ o(1): 2Remark 5.4 It follows from (5.50) and Lemma 5.7 thatn��R �R � infv2VR jvj � infv2VR supi jvij � infv2VR maxi�mR jvij � �Rn��R :By (1.10), this yields relation (1.26). 45



5.7 Proof of Theorem 3.5 (1)For rates (3.38), taking C0 = p2 we get Theorem 3.5 (1) directly from inequality(1.25). Therefore we need to consider the case Æ" = o(1). It suÆces to assumer" � r�";�".Let us take integer-valued family m = m", an integer d > � and d-di�erentiablefunction �(t); t 2 R1 supported on [0; 1], k�k2 = 1. Set�";i(t) = m1=2�(mt� i+ 1); i = 1; :::; m; f"(t; �) = mXi=1 �i�";i(t); ; � 2 Rm:Clearly, the functions �";i(t) have disjoint supports, the functions f"(t; �) are sup-ported on [0; 1]. One can verify thatkf"(�; �)k2 = j�j; kf"(�; �)k�;2 � cm�j�j (5.62)where c = c(�; d) is a positive constant and j � j is the Euclidean norm in Rm (see[13], inequality (2.80) and Lemma 3.8, for the inequality in (5.62)). Let us takem = m" � (2cr"=H)�1=� !1; (5.63)by (3.37), where c is the constant from (5.62). Under the assumption Æ" = o(1)this yields log��1" = o(m"): (5.64)Introduce the set F";m = ff"(�; �) : � 2 Rm; j�j = r"g;corresponding to the sphere of radius r" in Rm. It follows from (5.62) that F";m �F". This yields �"(F";m; �") � �"(F"; �"). On the other hand, passing to randomvariables Xi = "�1 R 10 �";i(t)dX"(t) and to parameters vi = "�1(f; �";i); i = 1; :::; mwe see that �"(F";m; �") = �(Sm�1(r"="); �");the last quantity corresponds to testing of the hypothesis v = 0 against alternativev 2 Sm�1(r"=") under n-dimensional Gaussian model X = v + �; v 2 Rm; hereSm�1(�) is the sphere of radius � in Rm. It is well known (see [13], Example 2.2 inSection 2.3) that �(Sm�1(�); �) = G(Tm;�; �2);where G(t; �2) = Pv(�2m < t); v 2 Rm; jvj = � is the distribution function ofnon-central chi-square distribution with m degrees of freedom and parameter ofnon-centrality �2, and Tm;� is (1��)-quantile of the central chi-square distributionwith m degrees of freedom, i.e., P0(�2m > Tm;�) = �. Therefore it suÆces to verifythat there exists C0 > 0 such that iflimsup r"=r�";�" < C0; (5.65)then �(Sm�1(�); �") = Pv(�2m < Tm;�")! 1 uniformly over v 2 Rm; jvj = r"=".46



For all v 2 Rm; jvj = � one hasEv(�2m) = m+ �2; Varv(�2m) = 2m+ 4�2:Using the Chebyshev inequality we see that (5.65) follows from the relation(Tm";�" �m" � �2")=q2m" + 4�2" !1; �" = r"=": (5.66)Since Æ" = o(1), under (5.63) we have �2" = o(m"): Recalling (5.19), let us takez = z" such that log��1" = m"(z2 � log(1 + z2))=2 + o(z2m1=2" ):Using (5.64) we see thatz = o(1); Tm";�" = m"(1 + z2); log��1" � m"z4=4 (5.67)and the left-hand side of (5.66) is of the rate (m"z2 � �2")=p2m": Thereforeit suÆces to verify that limsup �2"=m"z2 < 1. By (5.67) this is equivalentlimsup r4"="4m" log��1" < 4. By (5.63) the last relation follows from (5.65) withC0 = (4(H=2c)1=�)�=(4�+1). 25.8 Proof of Theorem 3.5 (2)The proof follows to the scheme of Section 5.5. We consider chi-square tests of form(3.40). Take z = z"; T" = m"(1 + z2) such that L(T"; m") = log��1" ; the functionL(T;m) is de�ned by (5.38). Analogously to (5.39) using (5.18), (5.19) we haveT" = m" + 2 log��1" +m" log(1 + z2"); T" � Tm";�" :The letter relation yields P";0(�2m" � T") � �": It suÆces to verify that, uniformlyover f 2 F", P";f(�2m" < T")! 0; as "! 0: (5.68)It suÆces to consider the case kfk2 = r" � r�";�: (5.69)Let us consider the orthonormal projection to the subspace that consists of thestep functions Prmf = mXj=1 fj;m1Æj;m ; fj;m = m ZÆj;m f(t)dt:Set�"(f) = kPrm"fk2="; �2"(f) = 2m + 4�2"(f); �";f = (�2m" �m" � �2"(f))=�"(f):47



Applying Lemma 5.4 we see that the random variables �";f are asymptoticallystandard Gaussian in P";f -probability, uniformly over f 2 L2(0; 1). ThereforeP";f(�2m" < T") = � 2 log��1" � �2"(f) +m" log(1 + z2")�"(f) !+ o(1): (5.70)Note the following statement: for any �0 > 0 there exist constants B1 > 0; B2 > 0such that for any p 2 [1;1]; � 2 (0; �0); f 2 Lp(0; 1); kfk�;p <1 and any integerm � 1 one has kPrmfkp � B1kfkp �B2m��kfk�;p: (5.71)(this corresponds to Proposition 2.16 in [13]). For any B > 0 we can take C1 > 0such that B1C1 �HB2 > B: (5.72)Set ��" = r�";�"=". Recall that we take the quantities m" � (r�";�")�1=�. Using (5.71)for p = 2 and by de�nitions (1.16) of the set F" for small enough " > 0 anduniformly over f 2 F",kPrm"fk2 � B1r" �HB2r�"(1 + o(1)) > Br�" ; �"(f) > B��": (5.73)First, suppose Æ" = o(1), (3.36) and take B2 > 2 in (5.72). Note that (��")4 �m" log��1" , and under (5.69),z2" � log(1 + z2" ) = 2m�1" log��1" � Æ(4�+2)=(4�+1)" ! 0; z" ! 0;(��")�2 log��1" � (��")2=m" � Æ(2�+1)=(4�+1)" ! 0; �"(f) � p2m";m" log(1 + z2")=�"(f) � z2"qm"=2 � qm"(z2" � log(1 + z2")) = q2 log��1e ;(��")2=�"(f) � (��")2=p2m" � q(log��1e )=2; 2 log��1e =�"(f) = o(qlog��1" ):Therefore the argument in the braces (5.70) is q(log��1" )=2(2�B2+o(1))! �1:This yields (5.68).Next, suppose Æ" ! Æ > 0 and let the rates be de�ned by (3.38). We have(��")2 = log��1" ; z2" � log(1 + z2" ) = 2m�1" log��1" � 2Æ(4�+2)=(4�+1)" ; �(f) � ��":This yields lim inf z > z0(Æ; �) > 0 and there exists a constant M = M(Æ; �) > 0such that, for small enough " > 0,m" log(1 + z2") < Mm"(z2" � log(1 + z2")) = 2M log(��1" ):We get 2 log��1" � �2"(f) +m" log(1 + z2") � (��")2(2�B2 + 2M):Therefore taking B2 > 2+2M we see that the argument in the braces (5.70) tendsto �1. This yields (5.68). 2 48



5.9 Proof of Theorem 2.1First, using relation (1.8) we have�"( �") � J";1Xl=J";0 mlXj=1P";0(jXj;mlj � Tl) = 2 J";1Xl=J";0ml�(�Tl) � J";1Xl=J";0 l�3=2 ! 0:Next, note that if�; f 2 L2(0; 1); k�k = 1; X = "�1 Z 10 �(t)dX"(t); v = "�1(f; �); T > 0;then we haveP";f(jXj < T ) = �(T � jvj)� �(�T � jvj) � �(T � jvj):Setting �j;ml = m1=2l Æj;ml; vjl(f) = "�1m1=2l ZÆj;ml f(t)dt;observe that max1�j�ml jvjl(f)j = "�1m�1=2l kPrmlfk1;and for any f 2 L2(0; 1) we have�"( �" ; f) � minJ";0�l�J";1 min1�j�ml P";f(jXj;mlj � Tl) �minJ";0�l�J";1 min1�j�ml�(Tl � jvjl(f)j) = minJ";0�l�J";1�(Tl � "�1m�1=2l kPrmlfk1): (5.74)Inequality (1.15) yields the embeddingF"(r"; H; �; q) � F"(r"; H1; �;1); H1 = cH; � = � � 1=q > 0: (5.75)By (5.75) it suÆces to consider the case q =1 with the change (�;H) by (�;H1).Let f 2 F" = F"(r"; H1; �;1). Let us take l = l"(�) such that ml = 2l �(r�";1)�1=�, where r�";1 are determined by (2.10). Clearly,J";0 � l � h1(�) log "�1 � J";1; Tl � h2(�)qlog "�1:where h1(�) = 2=(2� + 1) log 2; h2(�) = 2(2� + 1)�1=2: (5.76)Using inequality (5.71) for p =1 and taking C1 such thatB1C1 � B2H1 = B; B > Ch2(�); C > 1; (5.77)we see that, for " small enough uniformly over f 2 F","�1m�1=2l kPrmlfk1 � "�1(r�";1)1+1=2�(B + o(1)) = (B + o(1))qlog "�1 > CTl:Thus the argument of the function � in (5.74) is no larger then (1�C)Tl ! �1.This yields �"( �" ; F")! 0. 2 49



5.10 Proof of Theorem 3.6Set ~m" = (l + 1)m". Analogously to Section 5.8, we take z = z"; T" = ~m"(1 + z2)such that L(T"; ~m") = log��1" . We haveT" = ~m" + 2 log��1" + ~m" log(1 + z2"); T" � T ~m";�" :The letter relation yields P";0(�2m";l � T") � �": Let us consider the orthonormalprojection of the space L2(0; 1) to the subspace that consists of the piecewise poly-nomial of degree � l (no necessary continuous) functions that correspond to thepartition of [0; 1) to sub-intervals Æj;m = [(j � 1)=m; j=m]; j = 1; :::; mPrm;lf = mXj=1 lXk=0 fjk;m�jk;m; fjk;m = (f; �jk;m):Set�"(f) = kPrm";lfk2="; �2"(f) = 2 ~m"+4�2"(f); �";f = (�2m";l� ~m"��2"(f))=�"(f):Applying Lemma 5.4 we see that the random variables �";f are asymptoticallystandard Gaussian in P";f -probability, uniformly over f 2 L2(0; 1). Analogously to(5.70) we haveP";f(�2~m";l < T") = � 2 log��1" � �2"(f) + ~m" log(1 + z2")�"(f) !+ o(1): (5.78)Lemma 5.8 There exists B = B(�) > 0 such that for any f 2 L2(0; 1); kfk�;2 <1, and any integers m > 0; l � 0, one haskPrm;lfk22 � kfk22 � B2m�2�kfk2�;2: (5.79)Proof of the lemma. Observe the following approximation property.Proposition 5.1 Let � = l + �; � 2 (0; 1]. There exists B = B(�) > 0 suchthat for any f 2 L2(0; 1); kfk�;2 <1, one can �nd a piecewise polynomial pm;l ofdegree � l satisfying kf � pm;lk2 � Bm��kfk0�;2: (5.80)Proof of the proposition. Let � 2 (0; 1) and kfk0�;q be de�ned by (1.14). Letl � 1. For each j = 1; :::; m let us take polynomials in t 2 Æm;j of degree � l:pj;l(t; x) = lXs=0 f (s)(x)(t� x)ss! ; pj(t) = m ZÆm;j pj;l(t; x)dx:Applying the integral Taylor formula,f(t)� pj;l(t; x) = C Z tx (f (l)(u)� f (l)(x))(t� u)l�1du; C = ((l � 1)!)�1;50



we have, for x; t 2 Æm;j,f(t)� pj(t) = Cm ZÆm;j Z tx (f (l)(u)� f (l)(x))(t� u)l�1du dx;jf(t)� pj(t)j � Cml�2 ZÆm;j ZÆm;j jf (l)(u)� f (l)(x)jju� xj� ju� xj�du dx:Applying the Cauchy inequality for t 2 Æm;j, we get(f(t)� pj(t))2 � C2m2(l�2) ZÆm;j ZÆm;j (f (l)(u)� f (l)(x))2ju� xj2� du dx� ZÆm;j ZÆm;j ju� xj2�du dx � C2m2��2 ZÆm;j ZÆm;j (f (l)(u)� f (l)(x))2ju� xj2� du dx:Set pm;l(t) = pj(t) for t 2 Æm;j. We have, for u = x + h; jhj � m�1,kf � pm;lk22 = mXj=1 ZÆm;j (f(t)� pj(t))2dt� C2m2��1 mXj=1 ZÆm;j ZÆm;j (f (l)(u)� f (l)(x))2ju� xj2� du dx� 2C2m2��1 Z m�10  Z 1�h0 (f (l)(x+ h)� f (l)(x))2h2� dx! dh � 2C2m2� (kfk0�;2)2:If l = 0; � 2 (0; 1), then we set pj(t) = m RÆm;j f(x)dx and repeat the estima-tions.Let � = l + 1 > 0 be an integer and kfk0�;2 be de�ned by (1.12). Then we setpj(t) = pj;l(t; xj); xj = (j � 1)=m. Applying the Taylor formulaf(t)� pj;l(t; xj) = C Z txj f (�)(u)(t� u)ldu; C = 1=l!;and the Cauchy inequality once again we have, for t 2 Æm;j,(f(t)� pj(t))2 = C2  Z txj f (�)(u)(t� u)��1du!2 � C2m�2�+1 ZÆm;j (f (�)(u))2du;kf � pm;lk22 = mXj=1 ZÆm;j (f(t)� pj(t))2dt � C2m�2�(kfk0�;2)2: 2Clearly, the orthonormal projection provides better approximation property inL2(0; 1). This yields (5.80) with the change pm;l by the orthonormal projection off to the space of piecewise polynomial functions:kf � Prm;lfk2 � Bm��kfk�;2: (5.81)Then we use the equalitykfk22 = kPrm;lfk22 + kf � Prm;lfk22:51



Jointed with (5.81), this yields (5.79). 2Next considerations repeat the proof of Theorem 3.3 with the change �R byr"="; m = by ~m", �m(v) by �"(f) and R by H"�1. We consider the case kfk2 = r"and apply inequality (5.79) instead of (5.45). 25.11 Proof of Theorem 3.75.11.1 Lower boundsAnalogously to Section 5.7 let us take integer-valued family n = n", an integers > � and s-di�erentiable function �(t); t 2 R1 supported on [0; 1],k�k2 = 1; k�k1 = d; k�kq;� = a;for some d > 0; a = a(�) > 0. Setting f";i(t) = r"�(nt� i + 1)=d; i = 1; :::; n, wesee that the functions f";i have disjoin supports on [0; 1] andkf";ik2 = r"n�1=2=d; kf";ik1 = r"; kf";ikq;� � ar"n��1=q=d = ar"n�=d:Take n � (ar"=dH)�1=� such that ar"n�=d � H. We have f";i 2 F" 8 i = 1; :::; n.Let us take a prior �" on L2(0; 1) and consider corresponding mixture�" = n�1 nXi=1 Æf";i ; P�" = Z P";f�"(df) = n�1 nXi=1 P";f";i:Since �"(F") = 1, it suÆces to obtain the lower bounds for the quantities �"(�"; P�")in the Bayesian hypothesis testing problem on a measure P , which generates ob-servations X" of form (1.2),H0 : P = P";0 against H1 : P = P�": (5.82)Hypothesis testing problem (5.82) is equivalent toH0 : P = P0 against H1 : P = P�";n = n�1 nXi=1 P�"ei; (5.83)where feigni=1 is the standard basis in Rn,�";n = n�1 nXi=1 Æ�"ei ; �" = r"n�1=2=d":Let us verify the inequality�"(�"; P�") � �(q2 logn+ log��1" � �") + o(1): (5.84)To prove (5.84) it suÆces assume q2 logn+ log��1" � �" = O(1). However hy-pothesis testing problem analogous to (5.83) has been studied in Section 5.6.1 and52



inequality (5.84) corresponds to (5.54) with the change uR; k; �R by �"; n; �" thatwas established in Section 5.6.1 under the same constraints.Using (5.84) we see that suÆces to verify thatlim sup �"=q2(logn + log��1" ) < 1: (5.85)To prove (5.85) we can assume r" � r�";�"1. In this case one can see thatlog��1" + logn � log��1" + log "�1: (5.86)If limsup r"=r�";�"1 < C0 for C0 small enough, then (5.85) follows from (5.86). 25.11.2 Upper boundsFor test family (3.49) using relation (1.8) we have, for a" small enough,�"( ";�") � 1Xl=1 mlXj=1P";0(jXj;mlj � Tl) = 2 1Xl=1ml�(�Tl) �2p2� 1Xl=1 2l exp(�T 2l =2)=Tl � �"p� 1Xl=1(cl + log��1" )�1=2l�1 < �":Next considerations are analogous to Section 5.9. In view of (5.75) it suÆcesto consider the case q =1 with the change � by � = � � 1=q and H by H1 = cH.Let f 2 F" = F"(r"; H1; �;1). We have relation (5.74) and take l = l"(�) such that2l � (r�";�";1)�1=�, where r�";�";1 are de�ned by (3.46). We getTl = h(�)qlog "�1 + (� + 1=2) log��1" ) + o(1); h(�) = 2(2� + 1)�1=2:Using inequality (5.71) for p =1 and taking C1 such thatB = B1C1 � B2H1 > max(h(�);p2);we see that, uniformly over f 2 F","�1m�1=2l kPrmlfk1 � "�1(r�";�";1)1+1=2�(B + o(1)) � Bqlog(�"")�1:Therefore the argument of the function � tends to �1 in (5.74). This yields�"( ";�"; F")! 0. 25.12 Proof of Theorem 3.85.12.1 Lower boundsOur considerations follow to [13], Section 7.2. It suÆces to consider � = �0 andsup�2�K2(�R(�); R; �) = K2R(�) + o(1); KR(�) = qlog logR + log��1R +O(1):(5.87)53



Moreover it suÆces to assumelog��1R = O((log logR)2); � = 0; �(�) =1; (5.88)since the required lower bounds follows from Theorem 3.2, (1) for the caselog��1R =(log logR)2)!1. Under (5.87), (5.88) we haveKR(�) > qlog logR +O(1)!1; KR(�) = O(log logR); (5.89)relations (3.9), (4.14){(4.27) hold uniformly over � 2 �. Moreover relation (3.17) isvalid uniformly over �R = � 2 � and using Corollary 3.2, (3.18) we can change thequantities p2K(�R(�); R) by the quantities u(�R(�); R de�ned by (2.16), (2.17).Note also that it suÆces assume log��1R > bplog logR; b > 0. In fact, iflog��1R = o(plog logR), then the lower bounds easy follow from (2.32), because ofHR(�) = HR(�R;�) + o(1) in this case.Take an integer-valued familyM =MR !1; MR � (logR)=(log logR)B; B > 1: (5.90)This yields qlogM + log��1R = qlog logR + log��1R + o(1):Take collections�R;l = �0 + lhR; 1 � l �M; hR = (�1 � �0)=M ! 0:For each l, let us consider extreme problem (3.4), (3.5) with � = �R;l; �R = �R(�R;l)and with the change (5.5), (5.6), where the quantities z = zR;l; n = nR;l aredetermined by relations analogous to (4.7){(4.13). We omit the index R below tosimplify the notation. Let �zl = fzl;ig be the extreme sequence in the problem.Recall that by (5.87), (5.89), one has, uniformly over (l; i),zl;i = 0; i � nl; z2l;i � z2l (1� (i=nl)2�l); 1 � i < nl; (5.91)u2l = 12Xi z4l;i = 2K2R(�) + o(1); (5.92)nlz2l � �2l ; n1+2�ll z2l � R2; nlz4l � K2R(�): (5.93)Relations (5.91){(5.93) yield (see (4.14), (4.15))z2�l � �2�l+1l R�1 = o(R�b); nl � (R=�l)1=�l � (R=K1=2R (�))�(�l) � Rb (5.94)for some b > 0, where �(�) = (� + 1=4)�1. For j 6= l; j; l = 1; :::;M , we setn+ = max(nj; nl); n� = min(nj; nl):It follows from (5.90), (5.94) that there exists c > 0 such that for any H > 0,log(n+=n�) � c(log logR)B � 2H log logR; (5.95)Xi z2j;iz2l;i � z2j z2l n� � K2R(�)(n�=n+)1=2 = o((logR)�H): (5.96)54



Let �l = N (0; fz2l g) be the Gaussian measure on l2 of form (5.7) that corre-sponds to independent vi � N (0; z2l;i). Take measures P�l and mixtures � = �R; P�of the form � = 1M MXl=1 �l; P� = 1M MXl=1 P�l; P�l = Z Pv�l(dv):It follows from consideration in Section 5.1 that�l(V (�(�l); R; �R;l) = 1 + o(1) 8l; 1 � l �M;see (5.4). This yields�(V (�)) = 1M MXl=1 �l(V (�)) � 1M MXl=1 �l(V (�(�l); R; �l) = 1 + o(1):Therefore it suÆces to prove the lower bounds for the Bayesian hypothesis testingproblem on a probability measure P that generates random observationsX = fXig:H0 : P = P0; H1 : P = P�:Recall that, by (5.8), P�l is the Gaussian measure corresponding to independentXi � N (0; z2l;i + 1) and the likelihood ratio L = L� = dP�=dP0 is of the formL = 1M MXl=1 Ll; Ll = dP�l=dP0 = exp(tl); tl = 12Xi  z2l;iX2i1 + z2l;i � log(1 + z2l;i)! :Next considerations follow to the scheme of Section 5.6.1. The following lemmais analogous to Lemma 5.5.Lemma 5.9 Assume (5.87){(5.89), (5.90). Let � � N (0; 1); u = p2KR(�). Onehas, in P�-probability,L� =M�1eu2=2+u�R+�R; �R ! �; �R � �(q2 logM�u)+o(1); �R = O(1): (5.97)Proof. For any t 2 R one hasP�(L� < t) =M�1 MXl=1 P�l(L� < t)and it suÆces to verify that (5.97) holds in P�l-probability for all l; 1 � l � M .Fix l (next consideration are uniform over l; 1 � l � M). In P�l-probability,the random variables X2i are distributed as �2i (z2l;i+1), where �i � N (0; 1) are i.i.d.Therefore the random variables tl are P�l-distributed astl �Xi wi + El; wi = 12z2l;i(�2i � 1); El = K2(�zl);55



where K2(�z) = K2R(�) + o(1) are de�ned by (3.3). By (5.92),E(tl) = El; Var(tl) = 12 X1�i�nl z4l;i = 2El + o(1);here and later expectations and variances correspond to the measure P�l. TheLyapunov ratio is of the form� = PiE(w4i )(PiE(w2i ))2 = O(n�1l ) = o(R�b); b > 0:Therefore using (5.89), (5.91){(5.93) we easily get, in P�l-probability,�R = (logLl � u2=2)=u! � � N (0; 1):Set �R = 1M Xj 6=l Lj = 1M Xj 6=l exp(tj):It remain to verify that, in P�l-probability,�R � �(q2 logM � u) + o(1); �R = O(1): (5.98)Simple calculation and (5.96) give, for j 6= l,E(Lj) =Yi (1� z2j;iz2l;i)�1=2 ! 1; as Xi z2j;iz2l;i ! 0:This yields E(�R) = 1 + o(1), and by �R � 0, we get the second relation (5.98).To verify the �rst relation (5.98) note that random variables tj; j 6= l are P�l-distributed astj �Xi wij + Elj +�Elj; wij = 12z2j;i(�2i � 1)z2l;i + 1z2j;i + 1; E(wij) = 0;whereElj = 12Xi  z2j;iz2j;i + 1 � log(z2j;i + 1)! ; �Elj = 12Xi z2j;iz2l;iz2j;i + 1 ; �i � N (0; 1) i.i.d:By (5.92), (5.96), it is easily seen that�Elj �Xi z2j;iz2l;i ! 0; Elj = �14Xi z4j;i + o(1) = �u2j=2 + o(1); (5.99)Var(tj) = 12Xi z4j;i + o(1) = u2j + o(1) � njz4j ; �ij = Ew4ij � z8ji; (5.100)rjk = Cov(tj; tk) = O Xi z2j z2k! = o(1); j 6= k; j 6= l; k 6= l: (5.101)56



The �rst relation (5.98) is contained in the proof of Lemma 7.2, relation (7.24)in [13] with the change P0 by P�l and " by R. Note that the proof of relation(7.24) in [13] does not use the structure of the statistics Ll = dP�l=dP0 but itsP0-distributions only. Let us verify the assumptions of the lemma. Our case corre-sponds to!";j = q2 logM; u";j = uj; D" = u�q2 logM; l";j = tj; �";jk = rjk=ujuk:These yield relations (7.19) and (7.20) with p";l = M�1 in [13]. Relation (7.21)in [13] follows from (5.101). Relations (7.22) follow from (5.99){(5.100) and fromtwo-dimensional version of the Bahr-Essen inequality (compare with the proof ofLemma 7.3 in [13]). The evaluation of the Lyapunov ratio is analogous to one inthe proof of Lemma 5.1 above. 2Next considerations repeat ones from Section 5.6.1 with the change k byM anduR by u = p2KR(�). This yields the required lower bounds. 25.12.2 Upper boundsWe study test family  adR;�R determined by (3.53). Set��R = �R=M; TR = log((��R)�1):The �rst relation (3.54) easily follows from Lemma 5.2 (1):�( adR;�R) � MXl=1 P0 (tR;l > TR) �M exp (�TR) = �R:To verify the second relation (3.54) it suÆces to assumeK(�R(�); R; �) = K(�) 8 � 2 �; HR(�; �R) = O(1): (5.102)This yields ��R(�) = �R(�). Note that, under (5.102), one hasV (�; R; �0) � V (�; R; �00); K(�; R; �0) � K(�; R; �00); �R(�0) � �R(�00) for �0 > �00 :(5.103)Take v = vR 2 VR(�) and let v 2 VR(ÆR;l), i.e.,vR 2 V (�R(�R); R; �R); �R 2 ÆR;l; l 2 f1; :::;MRg:It follows from (5.103) thatV (�R(�R); R; �R) � V (�R(�R;l); R; �R;l�1):It suÆces to verify thatsupv2V (�R(�R;l);R;�R;l�1)Pv(tR;l � TR) � �(q2 log((��R)�1)�p2KR(�))+ o(1): (5.104)57



By the construction of statistics tR;l, the left-hand side of (5.104) is the left-handside of (3.14) for the set VR = V (�R(�R;l); R; �R;l�1) and with the change �R by��R. Under (5.102) it is easily seen that assumptions (3.8), (3.9) are ful�lled for�R;l � �1 < �(�) (see Remark 3.2). Applying Theorem 3.1 (2) we get the upperbounds of the type (5.104) with the change KR(�) by KR = K(�R(�R;l); R; �R;l�1).By (5.102), it remains to verify thatKR(�) = K(�R(�R;l); R; �R;l) � K(�R(�R;l); R; �R;l�1) + o(1): (5.105)Lemma 5.10 Assume (3.2) with � = �0 2 � and let n = nR(�0) be the quantitydetermined by (4.7), (4.8). Let �00 = �0 + ÆR; ÆR > 0; ÆR logn = o(1). Then thereexists C > 0 such that, for R large enough uniformly over �0 2 �,K(�R; R; �0) � K(�R; RnÆR ; �00) � K(�R; R; �00)(1� C(nÆR � 1)): (5.106)Proof. Let �z = �zR(�R; �0) be the extreme sequence in the problem (3.4), (3.5) with� = �0, i.e., K(�z) = K(�R; R; �0). Since zi = 0 for i > n, the sequence �z satis�esthe constraint (3.5) with the change �0 by �00 and R by RnÆ. Therefore K(�z) �K(�R; RnÆ; �00). This yields the �rst inequality (5.106). The second inequality(5.106) follows from Remark 3.1, (3.7). 2We apply Lemma 5.10 to the case �0 = �R;l�1; �00 = �R;l: By (4.14) we havelogn = O(logR). By the choice of M � (logR)(KR(�))B; B > 1, we haveÆR � 1=M; nÆR � 1 � ÆR logn � logn=M = O((KR(�))�B):This yields inequality (5.105). 25.13 Proof of upper bounds of Theorem 3.9Since P0(�2m > Tm;�) = �, we have the �rst relation (3.59):�( ";�̂") � XJ";0<l<J";0 P0(�2ml > Tml;�̂") < M�̂" = �":Let us verify the second relation (3.59). It suÆces to assume r"(�) = C1rad";�"(�);where C1 is large enough. For an integer l,l0 � l � l1 l0 2 (J";0; J";0 + 1]; l1 2 [J";1 � 1; J";1);let �(l) be determined by relation2��(l)l = rad";�"(�(l)); �(l0) � �1; �(l1) � �0:Let � 2 [�(l); �(l�1)] (next consideration are uniform over l0 � l � l1 and over� 2 [�(l); �(l�1)]). It suÆces to verify thatsupf2F (r"(�);H;�) P";f(�2ml � Tml;�̂")! 0: (5.107)58



Since log log��1" � (2 + o(1)) log "�1, we have M = J";1 � J";0 � J";1 � log "�1:Note thatb(l) = l�(l) � (l � 1)�(l�1) = �1=4; rad";�"(�(l�1))=rad";�"(�(l)) = 2b(l) = 2�1=4:This yields r"(�(l�1)) � r"(�(l)) and there exist D > 0 such that F (r"(�); H; �) �F (Dr"(�(l)); H; �(l)). Relation (5.107) follows fromsupf2F (Dr"(�(l));H;�(l))P";f(�2ml � Tml;�̂")! 0: (5.108)However for C1 large enough, relation (5.108) follows directly from Theorem3.5 (2) that is applied to the case � = �(l); �" = �̂". In fact, since �(l) � �1 + o(1)and �1 < �(�), we have Æ" = o(1):log �̂�1" = log��1" + logM = o("�2=(2�(l)+1)):Taking into account (3.36), (3.55), we haver�";�̂"(�(l)) = �"4(log��1" + logM)��(l)=(4�(l)+1)� �"4(log��1" + log log "�1)��(l)=(4�(l)+1) = rad";�"(�(l)): 2References[1] Ermakov, M.S. Minimax detection of a signal in a Gaussian white noise. The-ory Probab. Appl., v. 35 (1990), 667{679.[2] Ermakov, M.S. Minimax nonparametric testing of a hypotheses on a distribu-tion density. Theory Probab. Appl., v. 39 (1994), 3, 396{416.[3] Ho�mann M, Lepski O.V. Random rates in anisotropic regression (with dis-cussion). Ann. Statist., 30 (2002), v. 2, 325{396.[4] Inglot, T. and Ledwina, T. Asymptotic optimality of data-driven Neyman'stests for uniformity. Ann. Statist., v. 24 (1996), 5, 1996{2019.[5] Inglot, T., Kallenberg, W.C.M. and Ledwina, T. Vanishing shortcoming andasymptotic relative eÆciency. Ann. Statist., v. 28 (2000), 1, 215{238.[6] Ingster, Yu.I. Minimax nonparametric detection of signals in the white Gaus-sian noise. Problems Inform. Transmission, v. 18 (1982), 130{140.[7] Ingster, Yu.I. Asymptotic minimax testing of nonparametric hypotheses onthe distribution density of an independent sample. Zapiski Nauchn. Seminar.LOMI, v. 136 (1984), 74{96. (In Russian.)59
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