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Abstract

The aim of this paper is to study the stabilization of solutions to the
Navier-Stokes equations for isothermal fluids with a nonlinear stress tensor.
We study stabilization from the point of view of the method used in [17],
where the authors studied the asymptotic behaviour of solutions to barotropic
compressible Navier-Stokes equations.

1 Introduction

First, we introduce the model for the isothermal fluids with a nonlinear stress tensor.
This model includes two equations:

Continuity equation
pt + div (pu) = 0, (1.1)
Balance of momentum

(pu); +div (pu® u) + Vp —div P(u) = pf, 2 € Q, t € (0,00), (1.2)

where the operator P represents the nonlinear dependence of the stress tensor on
the velocity field. The stabilization will be studied under the boundary condition of
Dirichlet’s type,

u(z,t) =0, z € 99, t € (0,00), (1.3)

and the initial state is prescribed by
p(z,0) = po(z) >0, z € Q, (1.4)

(pu)(z,0) = qo(z), z € Q, (1.5)

for a bounded domain €2. The proof of the global existence of a solution to this
problem was given by A. E. Mamontov in [14], [15]. Moreover, the existence theorem
was proved independently of the dimension. This requirement led to the special form
of the stress tensor, and this was the reason why the existence of the solution of the
problem (1.1)—(1.5) was only proved in appropriate Orlicz spaces.

There are a lot of related results not only in one space variable (see e.g. [1], [2], [3],
[22]) but also in several space dimensions (see [16], [19]), when the data is a small
perturbation of a constant equilibrium. In [18], the unconditional stabilization of
solutions of barotropic compressible Navier-Stokes equations on the space periodic
problem with a certain symmetry was investigated. This paper was followed by
[8] and [17], where the Dirichlet boundary condition was considered and a different
method was used.



By the stabilization of solutions in this context we mean that, given a weak solution
to the problem (1.1)—(1.5), for any sequence t, — 0o, and for a Young function ®
such that its complementary function W satisfies

sup/ \If(|wé|) dz <c,
w JQ

with o € (0,1), where w € Lg,(Q) is such that [, ¥;(w) dz < 1, there exists a
function p., such that
lim {[p(tn) = poolle = 0, (1.6)

n—o0

where the equilibrium density p,, is a solution to the rest state equations

Voo = poof a.e. in Q, (1.7)

/ Poo AT = / Po dx, pss > 0. (1.8)
Q Q

Our technique of proof for the stabilization of solutions to the problem (1.1)—(1.5) is
motivated by the method which was given in [17] for the first time. Let us mention
here some distinctions and difficulties. The purpose of this method is to find a
function p(t) which is close to the density p(t) and at the same time 5(t,) converges
to ps strongly in appropriate spaces. The construction of the function p is based
on the solvability of the Neumann problem

/QVwEk(s) -Vndz = /QRE(p(x, N ()f - Vn dz, Vn € WP(Q),

€ ) dr =0,
ka(x s) dzx

where R, means the regularization in time variable.

But we are not able to decide upon the solvability of the Neumann problem if we
only know that p € L*(0,00; Lg,(Q2)), with ®;(2) = zIn(1 + z). In this case the
method breaks down. We overcome this difficulty by using a cut-off function Tj(p).
The second problem is that we cannot improve the global estimate for the density
p, as was shown in [17]. The next open question is whether we can test the equation
(1.2) in the pressure term with the function v solving the problem

divv = f, f € L*(Q),

V|3920, /fdsz
Q

This question will be answered in Section 5. The main difficulty in carrying out
this construction is that we must verify that the function p(t) is sufficiently close
to the function p,(¢) generated by the Neumann problem with the right-hand side
containing the function Tj(p) instead of p.

In Section 2, we establish the basic notation used. In Section 3, we summarize all
assumptions on external force, initial state and stress tensor. In addition, we give an
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example for the stress tensors considered in this paper, there. In Section 4, we give
a brief outline of properties of appropriate Young functions, and we prove auxiliary
lemmas. Before beginning the proof of stabilization, we must complete the theory
about renormalized solutions of the equation (1.1). This is the aim of Section 6. In
Sections 7-9, we will be concerned with stabilization, and our main result will be
stated and proved.

2 Preliminaries

In this section, we adopt the notation. Let us denote by D the symmetric part of
the velocity gradient, i.e.,

1 (0u; Ou;
Diu=~ |2~ i),
i 2 <8x] + 8.’L‘Z>

Further, M stands for a Young function with a growth given by the estimates
cleclr < M(z) < ce®”, for z > 2y > 0, with some constant ¢ > 1. &g de-
notes the Young function having the form (1 + 2)In? (1 + 2) in case 8 > 1, and
zIn(1+2) in case 8 = 1. Let U and M denote the complementary functions to
the Young functions ®z and M, respectively. There is no problem to verify that
the growth of the functions Wg(2) is of the type e*"’”, and that the function M is
equivalent to the Young function ®;. Ly (2) and Lg,(€2) denote the Orlicz spaces
generated by the Young functions M and ®g. These spaces are endowed with the
norm ||v||¢ = sup [, vw dz, where supremum is taken over all functions w such that

/9\11(|w|) dz < 1.

For simplicity of notation, we used ® instead of ®3 or M. Sometimes it is conve-
nient to take into account the Luxemburg norm defined by the expression |||v]||¢ :=
inf{\A > 0; [o¥(|lv/A|) dz < 1}. This norm is equivalent to the Orlicz norm gen-
erated by the same Young function. It is suitable to define the set Lg(€2). This
set contains all the functions v satisfying [, ®(|v|) dz < co. Next, we establish the
appropriate Orlicz spaces to which the velocity field belongs. Thus,

X :={u, Du € Ly(R), ulsq =0}, [|ul|x = ||Dul|n,e,

and
Y i={v, Dv € Lu(Qr), v(t)loa = 0}, |[vlly = |IDV|lr,qr,

where Qr = Q x (0,T). Eg(Q2) denotes the Orlicz space which is defined as the
closure of the space C$°(€2) in the Orlicz norm || - ||¢. Let us remark that, unlike
Lebesgue spaces, the spaces Eg(Q2) and Lg(2) do not coincide. We will use the
following notation for dual spaces,

W™ Ly(Q) = Wy Ls ()]
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where W Lg(Q) is the closure of the space C$°(Q) in the norm

1o =/ lIoll2 + Vo] 3.

The notation of Lebesgue spaces and Sobolev spaces is standard, i.e., LP(2) and
WP(Q) for the spaces and || - ||, and || - ||1,, for their appropriate norms.

Ig

Definition 2.1 The sequence {v,}>>,; C Lg(f) is said to be Eg-weak convergent
to the function v if

/vnw d:z:—>/mﬁ dz, Vi € Eq.
Q Q

Let us remark that all the bounded sets in the space L (2) are Eg-weakly compact.
For more details about Orlicz spaces we refer the reader to [9] and [11].

There will be a short mentioning of Hardy spaces and BMO-spaces in Section 5.
Therefore, we introduce here the Hardy space H!(R") as a space of distributions
such that f € H'(R") if, for some ¢ € S with [pv ¢ dz = 1, the maximal function

(Myf)(z) == sup |(f * @) ()]

isin L'(RY), with ¢y(z) =t Vé(x/t). Here S is the usual space of infinitely differen-
tiable functions which together with all their derivatives are rapidly decreasing, and
I fll3x := [pnv [(Myf)(z)| do. BMO(RY) is a space of locally integrable functions
such that there is an A < oo such that

1
5 [, f@) ~ fold < 4

holds for all balls B and fp := |B|™ [5 f dz. The smallest such A will denote the
norm of f in BMO(RY). We refer the reader to [21, pp. 87-228] for more details
about #!'- and BMO-spaces.

We will use the usual mollifier with respect to the variable ¢ given by

(R.)(t) := /oo bt — s)v(s) ds := l/o:o bo (t — S) v(s) ds,

—o00 € J— €

where supp ¢0 C (_la 1)) ffooo ¢0(3) ds = 1) ¢0 > 0) ¢0 € Coo(Rl)

3 Fundamental assumptions

The definition of appropriate spaces enables us to establish the fundamental as-
sumptions, and these assumptions will be needed throughout the paper. We assume
that:

1. f=Vyg, g e W*(Q), 00 € C?



2. pp € L@B(Q), 6 >3, \/p_ouo S LZ(Q),

3. the operator P is coercive, i.e.,
/ P(v): Dv dz > / M(|Dv|) dz (3.1)
Q Q

for all v € X;

4. P(-) acts boundedly from X into L37(Q), i.e.,

/QMQP(V)D dz < c(1+/ﬂM(|Dv|) d:c), (3.2)
and the estimate
2| P(v)|l+r < ¢ (km/QM(|Dv|) dz + 1) (3.3)
holds for all m € Ny (Ny = {0,1,2,...}), v € X, and for some fixed k > 2.

Now, it is convenient to present an example for the operator P.

Example: The example of the operator P can be given by the expression

__ M(|Dv|)Dv

P(v):= D2 if Dv #0, P(v):=0if Dv=0.
v

Remark 3.1 From now on, M(z) denotes the Young function defined by the ex-
pression
M(z) =€ —2z—1.

We can afford this definition of the function M without loss of generality, since the
function e* — z — 1 belongs to the class of equivalent Young functions generated by
the estimate above.

4 Basic lemmas

In this section, we formulate lemmas which give us basic information about the used
Young functions.

Lemma 4.1 Let the function M be established as in Remark 3.1 and Wy be the
complementary function to ®5. Then the inequality

om

11 24m
2ol < ¢ (max {6 20m, S ZELS el asvr) )
Q

holds for m € Nj.



P r o o f: We begin by proving the existence of a constant K(c) > 0 such that
SV < K(e)(ef —z—1), ¢>1, 2>0,

with Wy(z) = z%ev# being a function in the class of Young functions having the

growth evV?. We can easily derive one of the possible values for this constant in
4 c+1 . .

the form K(c) = 24 max {603, L3/, CZ} e“s. The proof is based on studying the

derivatives of the functions on both sides of the above inequality. Then the assertion

follows from the estimate

2" [v]le, < [ Wa(l270) do+ 1. .

Lemma 4.1 may be summarized by saying that the function v is small enough in
an appropriate Orlicz norm on the condition that this function is small in M-mean
sense.

Lemma 4.2 Let a sequence {v,,}5o_, C Ly (2), m € Ny, be given such that

||vm||00 S C, ||Um||2 S , m & N().
\/M(rnax{l, c}2m)
Then the inequality
K
[omllar < 522 (4.2)

is fulfilled for all m € Njy.

Proof: It is a well known fact that the estimate

1270 [5 < om 13 (27)Pllom 552 < llom[l3(27™ max{1,c})?, p > 2,
holds.
By Taylor’s formula, we obtain that

[ M(270l) do < Jjom|3M (2 max{1, c}).
Q

For the rest of the proof it is enough to realize that the Young inequality implies
the estimate
2 lomllar < [ M(12"vn) do + 1,

and that equivalence of the norms, which are generated by the Young functions with
the growth e*, holds. O

Proposition 4.3 [13] The inequality

sz

p—1

][ < 1Dl (4.3)

holds for allp > 1 and v € Wol’p(ﬂ) with a constant ¢ > 0 independent of p and v.
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Lemma 4.4 Let v € Ly,(Q2) and w € Ly (). Assume that the inequality
[v]lp < epllwl], (4.4)

is fulfilled for all p > 1 with ¢ independent of p. Then, using the inequality (4.3),
we can deduce the estimate
[vlle, < cllwlla- (4.5)

P r o o f: Let us examine the Young function ¥ defined by the expression

1/2

\II(Z) L ezog 22 ].f z € [O,ZO), 20 > 1, (46)

=’ if z € [z, 00).

By virtue of Taylor’s formula for eV?, we find that the estimate

U(z) = i%zqﬂ <2 i::l @z” (4.7)

holds, since

L1/2
q+1

e cither > 1,

21/2 21/2
2q < q+1

e or <1,

with ¢ being an odd number. The remaining part of the proof is based on the
existence of an appropriate A (see [11, p. 149]) such that the following integrals exist.
The Taylor formula for the function ¥, Fatou’s lemma, and Lebesgue’s dominated
convergence theorem now lead to the estimate

Jr (5]) ae =2 [ (

- { S22 ifze(0,z), 21 > 1,
1

v

A

%D dz, (4.8)

with

U(z) := (4.9)

z if z € [z, 00).

Using the Luxemburg definition of the norm and the imbedding theorem for Orlicz
spaces, we get (4.5). O
Lemma 4.5 Let v € WLy (), v > 1. Then the estimate

v(-—2) —v()

2]

sup

< ||lv[l1,e, (4.10)
2€RN\{0}

Uy

holds.



P r o o f: Our proof starts with derivation of the inequality

1 d
A gv(x —rz)dr

Using the density of the space C§°(Q) in Wy Ly (), Jensen’s inequality, and defi-
nition of the Luxemburg norm, we finish our proof. O

lv(z — 2) —v(z)| = < /01 |Vu(z — rz)||z| dr, v e C5° ().

Lemma 4.6 Let v(z,s) € Wy*(Q) for almost all s > 0, with p > N. Suppose that
lv(s)||1p < K for almost all s > 0, where the constant K is independent of s. Then
there ezists a set of functions ¥y(z,s) € C$°(Q), with h > 0, such that

[v(s) = Pn(s)lloo <€ (4.11)

for a.a. s > 0 and for all € > 0 with h = h(e), where h = h(e) — 0 for ¢ — 0.
Moreover,
|Yn(s)]1p < C  for a.a. s >0, (4.12)

where the constant C' does not depend on s.

P r o o f: The proof consists in the construction of appropriate functions 1y (z, s).
We define a domain €, such that Q, C Q and dist(0€, 08) = h, with h € (0,1).
Now, we take a function &, € C§°(€) such that & = 1 in Qo and |VE&,| < c¢/h.
Then the functions uy, which are defined by u; := u&;,, are bounded in the space
L>(0, 00; WyP(Q)) independently of &, and for p; such that N < p; < p the estimate

~ P—P1
Ju— Uh”Loo(o,oo;WOl’Pl(Q)) < |2\ Qan| > ||u’||L°°(0,oo;W01’p(Q))

holds. Using the imbedding theorem, we get

| = @[ oo (0,00;c@) < €1(R),
where ¢;(h) — 0 for h — 0.

Finally, we define the function v, := ¥ x 4y, where 4 € C§°(-1,1), 4 > 0,
% 9(2) dz = 1 and 9y (|a]) = 350 (). It is obvious that v, € L=(0, 00; Wy *(R)),
and these functions are bounded in this space, independently of h € (0,1). Using
the Arzela-Ascoli theorem and theorem about compact imbedding, we obtain

(Y (z, 5) — Un(z, s)| =

[, 0@z~ hz,5) ~ (2, ) dz| < ea(h)
Bi1(0
for a.a. s € (0,00) and z € Q, where c3(h) — 0 for b — 0. O
Definition 4.7 Let us define the cut-off function T € C®°(R) by
T(z)=12 2€]0,1], T(z) <z, z€[,3], T(z) =2, z >3,
T'(z) < C, z €[0,00),
Tu(2) = kT (%) k=12,



The following lemma yields information about the behaviour of the cut-off function
Ti(w) for k — oo.

Lemma 4.8 Let a function w € L*(0,00;Le, () be such that w(z,t) > 0 on
Q x (0,00) and 0 < [[w||zo=(0,00:La, () < K. Then the estimate

||lw — Ti(w)]| < £ : k=23 (4.13)
w W) || 100 (0.00: L1 =2,3,... .
k L=(0,00L1(®) = (&)

holds.

P r o o f: Our proof starts with the observation that the inequality

cK?
t) — 1T, Mde < ————
/Qk(t) |U)( ) k(w( ))| r > |Qk(t)|1n (3k)||Xﬂk(t)||\Ill||XQk(t)||q>1,

is fulfilled, with xq, () being the characteristic function of the set (), where
w(z,t) > 3k for z € Q(t). Substituting the representation (see [11, p. 149])

Ixaulle = 19%(8)| @71 (m:(m)

into the inequality above, we transform our proof to the verification of the relation

1 1
lim z®;* (—) vt (—) <ec c>1.
z—0+ z z
The rest of the proof is obvious. O

Proposition 4.9 [17] Let Q be of class C?. Then, for any sufficiently small n > 0,
there ezists a domain 2, C Q such that Q, C Q, |2\ Q,| < cn, and if x € OQ then
there is a unique y = y(z) € 09, such that v(z) = v(y(z)) and |z — y(z)| = n for
all z € OQ. In addition, there is a function K € WH>°(Q) such that k(z) = 1 for
z € Qy, k(x) =0 forz € Q\Qy, |Vk[ < 7 forz € Q3 \ Q, and 4| 5q, = 0, where
T 1§ the tangential unit vector to the boundary.

5 On the problem divv = f with f € L*(Q)

Since the main idea of the proof of our main result is based on testing (1.2) in the
pressure term with an appropriate function v satisfying the equation divv = f,
with f € L>°(Q), we must prove that this problem has a solution whose regularity
is sufficient for using this function as a test function in the equation (1.2).

Lemma 5.1 Let {u,}2, € Lg(Q) be an Eg-weakly convergent sequence. Assume
that the function ® satisfies the Ay-condition. Then

Tim inf [[un e > [[ulls.



P roof: Let us first mention that the Young function ® satisfies the As-condition if
its complementary function ¥ has an exponential growth. This is the case which is
interesting for the proof of Theorem 5.2. As & satisfies the Ag-condition, Es(Q2) =
Lg(Q) = Lg(9) (see [11]). Then there exists for each e € (0,1) a function v, € Eg(€)
such that [, ®(|v.|) dz < 1, and the estimate

lulle < / uve dzr + € = nh_>nolo inf [ upv. do+¢e< nh_>nolo inf ||un||e + €
Q Q

holds. O

We now consider the following problem: Let f € L*(Q2) and

/ fdz=0. (5.1)
Q
Find a vector field v such that
divv = f, (5.2)
v € WyLy(Q), (5.3)
[V]l1,0r < el floos (5.4)

with the Young function M defined in Remark 3.1.

Theorem 5.2 Let ) be a bounded domain with Lipschitzian boundary. Then the
problem (5.1)-(5.4) has a solution v € W Ly (Q).

Proof: A suitable solution of problem (5.1)—(5.4) we are interested in is represented
by a weakly singular integral (see [5]),

v@) = [ fw) [ﬁ /:yw<y+£|§:z|)§fv—l dé] dy  (55)

after the change of variables

T — T
R

and decomposition €2 on star-shaped domains with respect to an open ball. Here,
w € C5°(B1(0)) and [p, o w dz = 1.

z—z =

Then the expression of %vi is formed by a singular integral. Now we study the
behaviour of the singular ]integrals on the space of bounded functions more pre-
cisely. We begin with the observation that the singular integral maps L>®(RY) into
BMO(RY) (see [21, p. 155, 178]), and a maximal operator maps Lg, () into Ly (€2)
(see [20]). Tt follows from above and from the inequalities

lwlpe < [ @1(jwl) do+e

‘/ vw dz
RN

for w € Lg, (Q), and
< lvllzmollwllas, (5.6)
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that BMO(RY) < Ly, (R"), where ¥, is the complementary function to ®;. Thus
we conclude that for each f € C§°(2) there exists a solution v to problem (5.1)—(5.4)
such that

vlLe, < | fllo-

Having disposed of these preliminary steps, we can now associate to each f € L*°(Q)
a sequence {fm}>°_; such that f,, € C§°(Q) and f,, — f in LP(Q) for all p € [1, 00).
Then the sequence {g,,}5°_, defined by g, := fin — & [ fm dz, where [ ¢ dz =1,
converges to f as well, and the inequality ||gm||co < ¢||f||cc holds. The last inequality

is a consequence of the fact that we construct the functions f,, using the mollifier.
By the Eg,-weak convergence of the sequence {Vv,,}2>_;, we thus get

/divvgp dx:/ fo dx
Q Q
for all p € C§°(Q2), and hence

divv = f a.e in (.

We conclude from Lemma 5.1 that estimate (5.4) holds. 0

Let us mention an important consequence of Theorem 5.2 .

Consequence 5.3 Let g € L>®(Q), g v|pg = 0 and divg € Ly, (). Let S be
the weakly singular operator (5.5) generated by the problem (5.1)—(5.4). Then the
operator S(divg) is well-defined in Ly (Y), and the following estimate

1S(divg)|lar < cllglloo (5.7)
is fulfilled.
P r o o f: The operator S(divg) is well-defined in the space LP(f2), p € (1,00). As
[

a consequence of the theory in [5], we can construct a sequence {g,}>, C C$°(Q)
such that divg, — divg in LP(Q). According to Theorem 5.2, we have

15(div gn)llar < cllglloo, Y € N.

Passing to an Fg,-weakly convergent subsequence, S(divg,,) — S, and using the
linearity of the operator S, we find S(divg,) — S(divg) in LP(2), which leads to
S(divg) = S a.e. in Q. Lemma 5.1 clearly forces estimate (5.7). O

6 On renormalized solutions to (1.1)

This section deals with the existence of the renormalized solution to equation (1.1).
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Lemma 6.1 Let u € L'(0,T;X) and p € L>(0,T; Ls,()), B > 2, be a weak (dis-
tributional) solution to (1.1) in D'(Qr). Prolonging p and u by zero outside 2, we

have
p; +div (pu) = 0 in D'(RY x (0,7)). (6.1)

Proof: Let us follow the idea of the proof from [7]. Thus, we consider a regularizing
sequence

9. (z) == 6N«9 ('“") , (6.2)

€
where )
9 € C=(RY), supp[d] C (—1,1), 9 >0, —/ 9(2)z dz = 1,
0
¥(—z) = ¥(z) and ¥ (2) <0 for all z > 0,

and any positive parameter € > 0. In the same manner as in [7], we can construct
the functions ¢,, with the properties

1
0< ¢ <1lonQ, ¢n=1Iif dist(z,00) > —, ¢ € D(Q),

m

and
|V (z)| < 3m for all z € Q.

Now taking ¢ € D(RY x (0,T)) arbitrary, one has

T
= /0 prtaﬁm + ¢mpu - Vo + ppu - Vo, drdt.

Consequently, it is enough to show that

T
/pu-V¢m dxdt‘—>0form—>oo.
0o Ja

But from Theorem 8.4 from [10, p. 69] for k = 1, ¢ = 0 and n = —p, Proposition 4.3
and Lemma 4.4, it follows that

LE Vo, dedt| <
ist(z,00)<

|u|
————— dzdt
/ -/dzst z,00)< dZSt(.’L' 8Q) v

d <m
1y (T u(t)
< c(—)/ 1606) by \7 i

m) o B, dist(z,00)< dist(z, 00) Wy dist(z,00)< L

<e() [ 1put) at
cl|— u : 1
= m 0 M,dist(z,002)< ;- )
Wherec( )—>0form—>oo O
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Lemma 6.2 Let p € L®(0,T;Ls,(2)), 8 > 3, and u € Y be a weak solution to
(1.1) in D'(Q x (0,T)). Then prolonging p and u by zero outside Q and taking
pn = p x Oy, where x means the convolution, with ¥y, defined by (6.2), we have

(pn)¢ + div (ppu) = r3, a.e. on RN x (0,T) (6.3)

with v, — 0 in L%fz(QT). Finally, the function p is a renormalized solution to
(1.1), i.e.,

(b(p)): + div (b(p)u) + (pb'(p) — b(p))divu = 0 in D'(Q2 x (0, 7)), (6.4)

for any continuously differentiable function b such that b and b’ are uniformly bounded.

P ro o f: We can verify by the same method as in [7] that after taking ¢(z,t) =
Y(t)9(z — y) as a test function of the equation (1.1), we derive

(pn)e + div (ppu) = 7, a.e. on RY x (0,7, (6.5)

with
rp = div (ppu) — VI, * (pu)

or, equivalently,

Ty, = ppdivu + /I;SN (u(z) —u(y)) - Vou(z — y)p(y) dy.

So,

Lw(l‘)f)h(x)div u(z) de| < ||Du(t)||ullpn(t)wlla, -

Let wy € E\pﬂfz(ﬂ) and [, Ws_ o(|wy|) de < 1. Using Lemma 4.5 and the prolonga-
tion of the density p by zero, we get

[t [, M= =00, ) elpte — oz

< cl|[Du(®)|mlllpll|z=01:L4, ) (6.6)

Thus 7, € La, ,(Qr) if we replace the function wy(x) with w;(z, ).
The task is now to verify that

|div (pru) — (pu) * VI ||e, — 0 for b — 0+

with v € [1, 8 — 2]. But the proof of the above mentioned limit proceeds almost in
the same way as in [12, p. 43].

From (1.1) it may be concluded that
| pe,6() do
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is continuous for any ¢ € C§°(Q2) which implies p € C(0, T'; Lge*™*(2)).

Multiplying the equation (6.3) by b'(pp,), and subtracting (6.3) with ¢ = 1 from (6.3)
with ¢ = 2, we can derive

| blon(@,0)é(@) do — [ blo(e,6)o(x) da
uniformly in C(0,T). O

Consequence 6.3 Let ¢ € WLy (Q). Then by the weak version of the renormal-
1zed continuity equation we have

L(RE<9<p(s>>>>tc do = [ [0, (F77) elotr))¢ drds

_/ )- V¢ d:v—/R ((08'(p) — 0(p))div u)¢ dz

+E¢0 (E) /Q,OOC dr, s>0,

and hence, in the sense of distributions,

(R(0(p))): = —div (R(0(p)u)) + Be((0(p) — p¥'(p))divu) + 1¢ (5)m 67

7 On the long-time regularity of functions p and
Du

Lemma 7.1 Let p and u be a solution of the problem (1.1)-(1.5). Then p €
L>(0, 00; Ly, (R2)) and

/:0 /;2 M(|Du(z, s)|) dzds < oo.

In particular,

t+a
lim / M (|Du(z, s)|) deds =0 for any a > 0. (7.1)

t—o00

P r o o f: Taking the function g (Vg = f from the assumption 1) as a test function
n (1.1), we can rewrite the energy identity as
uf?

/ (pu— +plnp—pg) dz
Q 2

Using (3.1) finishes the proof. O

/ / : Du dzds = 0. (7.2)

14



Lemma 7.2 Let (7.1) hold. Then

fim [ 1Pl ds =0, (7.3

t+
fim [ |Du(s)]a, ds =, (7.0

and ",
fim [ |Du(s)[, ds = o. (7.5

P r o o f: We start with the observation that the estimate
t+a t+a
2 [ | P(w)(s) 57 ds < c(km/ [ M(Dus)) d:vds+1) <e
t—a t—a JQ
holds (see (3.3)) on the condition that
t+a 1
/ /M [Du(s))) dods < -, m € No.
t

To prove (7.4) and (7.5), we use Lemma 4.1 and the same idea as in case (7.3).
(|

Roughly speaking, the above-mentioned lemmas provide information about the be-
haviour and global properties of the solution of the problem (1.1)—(1.5).

8 Global uniform estimates

Let us start with the important proposition which ensures the existence of a bounded
function 6 with appropriate properties.

Proposition 8.1 [17] There exist a positive constant ¢y and a bounded increasing
continuously differentiable function 6 on R with lim, . r0'(r) = 0 and 0'(r) > 0
such that

(r1 = 72)(0(r1) — 0(r2)) > co(B(r1) — O(r2))?. (8.1)
For the reader’s convenience, we mention here the modification of the construction
of the function p,; from [17], but we omit the detailed derivation. For each s > 0

we can define we(s) as a unique generalized solution to the Neumann problem

/Vwek -V d:z:—/R (Te(p)(z, ) (s)E - Vi dz, Vi € WHP(S),

/Qwek(x, s) dz =0, (8.2)
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where s > 0. The cut-off function 7} was defined by Definition 4.7, and the solution
to this problem satisfies the estimate

[wer($) |10 < el| Re(Ti ()| oo 0,005 (@) < €k < +00, p' > 1, (8.3)
for Kk =1,2,... arbitrary but fixed.
Now, let us introduce

Ger(s,m) := /;29(10516(5) +m)de, s>0,meR, e>0,k=1,2,.... (8.4)

There is no problem to verify that the integral [, R.(0(p(z,-)))(s) dz lies in the
range of G(s,-), and for any fixed s > 0, ¢ > 0 and k = 1,2, ... the equation

Gols,m) = [ R(0(p(,))(s) da (8.5)

has a unique solution m = me(s). Now, let us define
D (2, 8) := wer(z, 8) + Mer(s). (8.6)

Then, from (8.5), (8.6), we have

| 0pa(z,s) do = [ R(0(p(@,))(s) do (8.7)

for s >0,e>0,k=1,2,.... Finally, we define another auxiliary function ¢(s) as
a solution to

div e(s) = Re(0(p))(s) — 0(Pek(s)) in Q,
VYer(2,8) =0, 2 €00, s>0,¢>0,k=1,2,.... (8.8)

This problem is not uniquely solvable, but it is known that one possible solution is
given by
Ve (z, s) = S(Re(0(p))(s) — 0(Per(5)))

= /QK(%Z/)(ReW(p))(S) — 0(pa(s))) dy, (8.9)

where K is explicitly defined by a weakly singular kernel. It is known that the
operator S maps from L>(f2) into W'Ly,(f2)), according to Theorem 5.2. With our
particular choice of # we have

| Ver|| Lo (0,001 L0 () < C < 00, (8.10)

with C independent of €, s, k and z. For the proof of uniform boundedness of m.,
ie.,
Imex(s)| < C <00, €>0,k=1,2,...,5>0, (8.11)

we refer the reader to [17].
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Lemma 8.2 Under the assumptions above, there exists the limit

3 _ y T . 171”
El_l)%l_l_ Wep = wy, in Ly, ([0, 00); WHP(2)) . (8.12)

The set {m(s)}ec(o1) is bounded in W2(0,T), and passing to a subsequence there
exists a limit

lim me,, = my in L7 (0, 00) (8.13)
with some €, — 0+ and r € [1,00), p’ € [1,00), k=1,2,.... In particular,
Pe.r — Wk + My =: Dy, (8.14)

in the above sense for k =1,2,....

P r o o f: The first part of the proof concerning the convergence of wg is obvious.
In the same way as in [17], we can verify that

co :=1inf | 0" (wek(s) + m.(s)) dz > 0.
€5 Jo

Consequently, by the Implicit Function Theorem there exists the derivative m/,(s),
and we have

me,(s) = (/Q 0" (wer(s) + mex(s)) dx> B X
(L(Rﬁe(P)(S))t dxr — Lel(wgk(x, s) + me(8))(we )iz, 8) dl-) :

which yields the estimate

mip()] < e (1| wale(s) s + 1 Du(s) . + 0 (2) ) (8.15)

Since functions n € C§°(Q2) such that n — ﬁ Jon dy = A, with € € C?(Q), where

% =0, are dense in L"(Q2), r € (1, 00), we obtain

/Q(wek)m dz = /Q(wek)t (77 - ﬁ/ﬁn dy) dz = — /Q(RE(Tk(p)))tf - V¢ da

< 1,00 I VE 1o | (Re(Th (0)))ell -1,
< c([[Re(Te(p)u)lp + |1 Re((pTk(p) — Te(p))div w)l[p) [Inll,r, (8.16)

where the last part of the above estimate is a consequence of Consequence 6.3 and
allows us to see that the solution of Neumann problem (8.2) is differentiable and
Owg, € LP(Q) for all p > 1, ¢ > 0 and t > 0. Now, we are ready to prove
boundedness of the set {mex(s)}ee(,1) in WH3(r, T), with 7 > 0 arbitrary but fixed.

Combining (8.15) with (8.16), we conclude

T ! 2 T 2 T 1 2 S
/T Ime(s)|” ds < ¢ /T | Du(s)||g, ds+L 2% (E) ds
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+ﬁWw@M@MM)sm¢m+@uxT>a .
Put now
Q)= [ [[(6s) ~ Bls)0(p(s)) ~ 07(s)) dads, 121 (817)

By the monotonicity of p(-) and @, we have Q(t) > 0. Our intention is to prove the
following global property of Q(t).

Lemma 8.3 Let p;, be a function established in (8.14). Then the limit state of the
function Qx(t) defined by (8.17) fulfils the estimate

0< tli)m Qr(t) < 61(k), (8.18)
with a function §;(k) satisfying 61(k) — 0 for k — oo.

Proof Leta>1, ¢ € C{°(—a,a), ¢ >0, p(0) =1 for o € (—1,0). Put
t+a

Qeal®) = [0l =) [ (05) — Buls)) (R0(p(5)) — 0(ps(s))) duds.  (3.19)

Then clearly
Qal®= [ ols ~ ) [ (65) ~ 25 (0(6(5)) — 0(pus(s)) dods

+/  els—t) /Q(p(S) — Pei(8))(Re(0(0(5))) — 0(p(5))) duds, (8.20)

t—a
where the last term on the right-hand side of (8.20) tends to zero as ¢ — 0+. By
Lemma 8.2,

t

lim | (s —1) /Q(p(s) — Pear(8))(0(p(s)) — 0(p,i(s))) dzds = Qx(t)  (8:21)

n—o0 t—1

for t > 1 and for some ¢, | 0. Now we wish to estimate Qf ,(¢). Let us denote
Va(t) ={(z,s); £ €Q, t—a <s<t+a}. Using (8.8) and (1.2), we can write

/va(t) (s —t)p(s)(Re(0(p(s))) — 0(pek(s))) dzds
:Am““%%“WWM@”ﬂm%wva@+mm:m@@)

—pf - ¢Ek(3)> dzds — / » ¢'(s — t)purpe(s) dzds. (8.22)
Val(t
Now, take the Helmholtz-Weyl decomposition of 1¢(s), that is,
Yer(8) = Vzep(s) + ver(s), divve(s) =0in 2, vg(s)-v=0in 0.
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By the usual construction of the decomposition, and by (8.10), we have
Jozex dx = 0, vg, € W (Q), 2 € W2"(Q), 8z <k |oq = 0, 7 € (1,00). Taking into
account the generalized formulation (8.2), we ﬁnd that

o #(5 = DP(5) (Re(0p(5)) — 0(Pux(5))) dds

-/ - 8= OVa(s) - (Vaa(s) + va(s)) dods

= — o(s — ) Vwer(s) - Vze(s) dzds
Va(t)

=7 i P8 T Do) - Vza(s) dads. (8.23)

Subtracting (8.23) from (8.22), we obtain that

/a(t) (s — 1) (p(s) — Pk (5)) (Re(0(p(5))) — 0(pe(5))) dwds

- 0 87 OP() : Dib(s) = pu- (- V)ur(s) dads
_/ (s — t)putpe(s) dzds

_ /Va(t) o(s —t)(pu(Ver)i(s) — (p — Re(Tk(p(8))))f - Vze(s)) dzds

6
= o(s — t)pf - vap(s) deds =: Y I5(t)
Va(t) j=1

Define

t+a t+a 9
04(t) = max L 1Du(s) |, ds,l |Du(s)|[2, ds,

[ 1P ds) (8.24)

We estimate the integrals I5,(t) individually. Thus,

101 < ol [ 1P@)E) | Diic()r ds < eout). (325)

I3 (8)] < ||s0||oo/v(t) p(s)lu(s)*[Viber(s)| dads

a

t+a
< C/tfa ||p(s)||q>1vafk(s)”MHDU(s)H?pz s

< ¢l pl| Lo (0,005L0, () [ VPek ]| L0 (0,005L 01 (2)) Ta (£)- (8.26)

101 < 101l [ 10(5)le [ pl)als)] dards < eou(t). (327
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Using the properties of the kernel K from (8.9), we can show in the same manner
as in [17] that O, (z,t) exists in the sense of W'P(Q), with p € [1, 00) arbitrary.

We proceed to show an appropriate estimate of the function (¢ );. Consequence 6.3
and (8.9) enable us to represent the function (te); in the form

(wek)t = Sdivz + Sq - Se(ﬁek)t’ (828)

where

2= —R(0(p)u), ¢ = Re((0(p) — pt(p))divu) + ¢( CED

€
It can be easily checked that z belongs to {w € C*(0,00;C(Q)), W - v|sq = 0,
divw € C*°(0, 00; Ly, (2))}. Thus, we have

15 divzlar + [Sqllar < e[|zl + llgllp),

with p > N, and the problem with regularity of py can be overcome by regularization
of pg, since it disappears for e sufficiently small, and so

1
I divallas + [1Sallu < ¢ (1Du(s) s + 60 (2)) (8.30)

Let us remind the fact that the operator S is well-defined according to Consequence
5.3. Now, the Young theorem for convolutions yields the estimate

1S (0(Per)i(5))lloo < cllO0(Per)e(5)lp

for p > N. The inequality

10(P)e(s)llp < e(l[(we)e(s)llp + [mei(s)])

is easy to verify using the definition of p,,. Hence, we get

t+a
I3 ()] < C||p||Lw(o,m;L¢1(a>>[ [a(s)|oo | (vek(5))ell a1 ds < ckoa(t).  (8.31)

On account of Lemma 4.8, we have

15,01 < ellgllcliflloosup [9ee(s) oo [ IRTi(o))(5) = (5)]s ds

S7E7 —a

=: 61 (k), (8.32)

where 6!(k) — 0 for k — oo. Moreover lim,_,o, |I5,(¢)| < §'(k), where §*(k) — 0
for k — oo.

It remains to estimate the integral
1I5.(8)] = ‘ /V o 205 = Dp(s)E Ve dods|. (8.33)
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But we do not know whether Dv(s) € Ly(Q2) for a.a. s >0 and € € (0,1), which
is necessary for using the weak formulation of the equation (1.2). This is the reason
why we must approximate the function 1, with the help of Lemma 4.6. Define the
integral

Igin(t) == /V " o(s —t)p(s)f - Vg dzds,

where v, € C1(Q) is the function from the Helmholtz-Weyl decomposition of 9.
The functions e belong to C§° () and ||%exn — Yek || Lo (0,002 (0)) — 0 for b — 0+
Moreover, ||¢ekh||Loo(0,oo;W01’P(Q)) < C, where p € [1,00) is arbitrary, and the constant

C is independent of k, ¢ and h (see Lemma 4.6 for details).

The estimates

||Vz6kh(s) - vzek(s)“oo < ||V¢ekh(3) - Vwek(s)“;v <C

for p > N and

1V2ern(s) — Vzer(s)|l2 < Clltbern(s) — er(s)ar

follow from the Helmholtz-Weyl decomposition of tegn(s).

By the boundedness of the gradient of 1) (s) and Lemma 4.2, we get that the se-
quences |Veg($)—Vern(s)| and |V zex($)—V zexn ()| converge to zero in L>(0, 0o; Ly (£2))
for h — 0+, and the above yields the estimate

[Tk (8) — Tern(8)] < d2(h),

with d2(h) — 0 for A — 0+ and d, independent of ¢ and e.

We can estimate vy in this way,
| Vern|| Lo (0,00 100 (0)) < A(h), (8.34)

where A(h) — oo for h — 0.

Let n > 0 and k € C§°(,) be such that |supp(l — k)| < 1. The existence of such a
function x was shown in Proposition 4.9. Then,

/ o(s —t)p(s)f - vegn dzds = / o(s —t)p(s)f - Vegnk dzds
Va(?) Va(t)

+ " o(s — t)p(s)f - van (1 — k) dxds =: JP + Jo, (8.35)
Val(t
and clearly

| T3 | < cal|pll oo (0,050, (2)) IElloo [ Vernl oo 0,005 () [SUPP(1 — K)| < em. (8.36)

Since (p, u) is a solution of (1.1)—(1.5), we can rewrite J in the form

—a

Jh = /tt+a o(s —t) L (H;P(u) : DV — kpu - (0 V) vegn)
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t+a
o'(s—t) / Kpu - Ve, dzds
Q

—a

—pun(vekh)t> dzds —/
¢

t+a
+ [ (s —t) /Q (P(u) : Sym(Ve ® Vern)
t—a
L
—p(u-VE)(u- ven) — pVk - vﬁkh)) dzds =) J;. (8.37)
i=1

Here, Sym means the symmetric part of the tensor.

The integrals 7?, . ,7Z are estimated by the term cA(h)o,(t), and the integrals 7;
—h :
and Jg by ;o4(t) in the same manner as above.

Given z € Q5 \ €y, issue from z the ray which is a normal to 99, at z; and to
O at z5. Then |z — zo| < 1. Further, since vegs(z2) - v(z2) = 0, v(z2) = v(z1) and
Vk(z1) L vegn(z2), by Proposition 4.9, we have V&(z) - ven(z2) = 0. Indeed, we
might construct 0, with @ = |z—z,| and use the same argument as in Proposition 4.9
for 2, to show Vk(z)-7(z) = 0 for any vector 7 tangential to 92, at z. Consequently,
we find that

V(@) Vern(z)| = [VE(@) - (Vekn () — Vern(2))]
C
< 577||Vekh||L°°(0,oo;W1,oo(sz)) < cA(h). (8.38)

Having disposed the preliminary steps, we can return to the estimate of the integral
JI and J#, namely,

Tt + TP < e+ eA(R)ou(t) + eA(h)w(n) + %aa(t), (8.39)

where w(n) — 0 for n — 0+, using the estimate

‘/V o PV K - Vern dzds| < cA(h)||pl| (0,005, @) 1X02,0\20 |24 (8.40)

We are now in a position to verify the estimate

lim lim | Igy (¢)| < 82(h) +w(n)A(h),

t—00 €—0

with d2(h) — 0 for A — 0 and w(n) — 0 for n — 0.

We have proved that
0 < Qi(t) < lim QGi(t)

< co,(t) (1 + A(h) + %) +w(n)A(h) + 61(k) + 62(h),

and thus (8.18) holds. O
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9 Convergence of density

In this section, we examine the relation between the density p and the function p,
more closely.

Proposition 9.1 [17] Let ¢ € W) (a,00), a € R, be such that g(s) > 0 for s > a
and lim; o [{ 1(q(s) + |q'(s)]) ds < 6,(k). Then

Jim q(t) < 61(k). (9.1)
Put
ar(t) = [10(p(t)) — 0(Pc(®))l3, ¢ > 1. (9.2)
Then, by Proposition 8.1,
t
| ax(s) ds < Qo) (93
and hence .
lim [ qi(s) ds < d1(k). (9.4)
—00 Jt—1

It remains to verify that
t
lim lg.(s)| ds = 0,

t—oo J_1

which is a consequence of the following lemma.

Lemma 9.2 The inequality

.

is satisfied for the function o(t) defined by

a
ds

10Go(s)) = 0(B()) 3] ds < e\/a(2), (9-5)

t t
o(t) = max{/t_l 1Du(s)||w, ds, /t_1 |Du(s)|[2, ds,

[ 1P ds).

P r oo f: Since we can prove this lemma in much the same way as in [17], we refer
the reader to this article. O

Lemma 9.3 Under the assumptions and definitions above, the limit

Jim [10(o(8)) = 0G5 (®)) - = 0 (0.6

3

exists for each r € [1,00), where p =W +
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P r o o f: Arguments similar to those used in (8.16) lead to the estimate

i (5) = s ()l < elTia(o(6)) = T (oD, # € (L), (07)

for a.a. s > 0, where wy, are the solutions of the problem (8.2). Thus inequal-
ity (9.7) implies that the sequence {wg}; is a Cauchy sequence in the space
L>(0, 00; LP' (Q)), with p' € (1,%), and hence convergent in the same space.
Let us denote its limit by w. The identities

| 0war(s) +maa(s) = 0(wessos) + Meio(5)) do = 0 (9.8)

and
[ 0(ws(s) + ma(5)) = 0y (5) + s (5)) d =0, (9.9)

which hold for a.a. s > 0, and for each g € Ny, yield

lim sup | O(wk(s) +mi(s)) dz = lim inf | O(we(s) + mi(s)) dz (9.10)
k—oo Q k—o0 Q
for a.a. s > 0, and hence limg_,o, mi(s) = M(s) almost everywhere in [0, 00).

The proof will be complete if we show that my(s) — m(s) in L*(0,00). Let us
suppose for the moment that for each ky € N there exists a k, & > kg, such that
|lmi — || (0,00) > 6 > 0. Since [, §(wi +my) dz is independent of k, and my, — ™
a.e., we get

+ ~ (/01 0'(a(wy, + my) + (1 — a)(w + m)) da) (my — ) dx

0= | [ 0w+ mi()) — 0@ () + () de

L>(0,00)

/Q (/: 0'(c(w(-) +mi () + (1 — @)(@(-) +m(-))) da) x

(wi(-) + mi () —@(:) —m()) de

L>(0,00)

[, ([ 0@ me) + (1 = @)@+ ) do) s~ w) do

o (/01 0'(a(wy +ma) + (1 — a)(w + m)) da) (ms — ) do

Lo (0,00)
= [[IF () + I3 () + ()l (0,00)
> 115 () |z (0,00) — T ()l 2o 0,00) — I3 ()] 220 (0,00);
where Q¢ := {z € Q; |wi(z,s) — W(z, s)| < €}. The inequality (9.7) implies that

ess inf |Q| > 01(€) and ess sup |\ Q| < d2(e),
56(0700) SE(0,00)
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where the functions ¢; are such that ; > 0, §; do not depend on s for € sufficiently
small. Moreover, 6;(¢) — || and d2(¢) — 0 for ¢ — 0. We conclude the first case

from the contradiction based on the fact that the sequence {wy}5, is convergent in

L>(0, 00; LP (Q)), with p' € (1, %) Similar arguments applied to the second case
enable us to finish this part of the proof. Boundedness of ¢'(r) gives ||If(-)|| 2 (0,00) =

0, and it is easy to check that
115(5)] < ¢|Q\ Qes| < ca(€), for ae. s € (0,00).

This means that ||I§(-)||ze(0,00) is arbitrary small. But

> (53 >0
L22(0,00)

/Qf. /51 0 (a(we +mi) + (1 — a)(@ +m)) do dz

for k — oo because §'(s) > 0, and for all k there exists a small set with a nonzero
measure such that |my(s) — m(s)| > 0 on this set. Hence we get that

Jim (|75 0.0 > 8 > 0,

which is a contradiction.

This means nothing but
Jim [16(o(0)) ~ 02 (®)) - = 0 (0.11)

for each r € [1,00), where p =w + . O

We conclude this contribution with our main result.

Theorem 9.4 Under the assumptions stated in section 3., there exists a unique
function po € Lg, (), with [q poo = [q po, Such that

Jim |p(t) — puclla = 0, (0.12)

where ® is such a Young function that its complementary function ¥ satisfies the
inequality

Sup/ U(|lwt)) de < ¢ (9.13)
w Q

for a € (0,1), where [oV;(Jw|) dz < 1, and p satisfies the equations (1.7) and

(1.8).

Proof: Let {t,}32,, t, — o0, be an arbitrary sequence. Then we can select
{sn}2 C {tn}:2, such that p(s,) — poo Ew,-weakly, m(s,) — my and wW(s,) —

weo in LP'(Q), p' € (1, %), as a result of the estimate

J (@(s) = w(sm))A do = [ (p(s0) = p(sm))E - VE do
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< llp(sn) = p(sm)[ -1 IVE - fll1p, P> N.

For more details we refer the reader to the estimate (8.16). We would like to point
out, here, the fact that an Fg,-weak convergence implies the strong convergence in
W= (Q). From (9.6) it may be concluded that 8(p(s,)) — 0(p(sn)) — 0 a.e in Q.
Hence, 0(p(s,)) — 0(wo + myo) and 0(p(s,)) — O(we + Mmo) a.e. in Q, and thus
p(8n) = Weo + Moo a.e. in Q. By boundedness of ||p(s,)||s,, and by the estimate

/Quw dr = /Qul_auaw dzr < [julj{™ (/Q @4 (|ul) dz —I—/Q\Ill(|wé|) da:)

for a € (0,1), it follows that the sequence {p(s,)}>, converges in Lg(Q2), where ¥
satisfies (9.13).

It remains to prove that the equilibrium density p., satisfies the identity (1.7). Since
p(8n) = Poo, we find that

meAg dz = L(wm 4 o )AE do = mef V¢ da,

with the function £ from the Helmholtz-Weyl decomposition of n € C§°(2). In
particular, n = V& 4+ z. As a consequence of the fact that

/ Pocdivz dz =0
Q

it remains to verify that [, poof -z dz = 0. It is clear that the proof will be complete
if we show that
lim Qp(sn)f zdx=0 (9.14)
for z € C*(Q), divz =0 and z - v|gq = 0, since then
0= lim [ p(s,)f-zdz= / poof - 2 dz,
Q

n—oo JO

by the convergence of p(s,) to ps. To prove (9.14), it suffices to show that
t
.

/tt ©'(s) /Q p(s)f -z dzds

-1

/Qp(s)f -z dz

ds — 0 for t — o0 (9.15)

and

— 0 for t — oo, (9.16)

with ¢ € C§°(t — 1,t). The following estimate is almost a repetition of the estimate
of the integral I, (¢). Thus,

t+a

[ )| [ ootz da

ds < cl[v]locl| Pull =ttty V2l
t+a 9
+2l| Vo[Vl cllpllim oty @y [ IDu(s)3, ds
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t+a
Hzl [ (5)] llou(s)] ds — 0

for t — oo and v € C§°(t — a,t + a) such that v(s) = 1 for s € [t — 1,¢]. Further,
from the weak equation of continuity we obtain that

/tt w(s)[lp(s)(u(s).v)(f.z) drds

-1

/: ©'(s) /Qp(s)f -z dzds

-1

t
< C||f||1,oo||Z||1,<>o||90||L2(t—1,t)\//t1 [Du(s)[[§, ds.

By Proposition 9.1 for §(k) = 0, we can finish the proof of (9.14). We have shown
that

/ Poodivn dz = / pof - m dz, Y € C3°(0), (9.17)
Q Q

which implies that p., satisfies the equations (1.7), (1.8). But since, according to
[6], this problem has a unique solution, the convergence of p(t) is not only restricted
to subsequences but it is complete, i.e. (9.12) holds true. O
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