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Abstract

The aim of this paper is to study the stabilization of solutions to the

Navier-Stokes equations for isothermal 
uids with a nonlinear stress tensor.

We study stabilization from the point of view of the method used in [17],

where the authors studied the asymptotic behaviour of solutions to barotropic

compressible Navier-Stokes equations.

1 Introduction

First, we introduce the model for the isothermal 
uids with a nonlinear stress tensor.

This model includes two equations:

Continuity equation

�t + div (�u) = 0; (1.1)

Balance of momentum

(�u)t + div (�u
 u) +r�� divP (u) = �f ; x 2 
; t 2 (0;1); (1.2)

where the operator P represents the nonlinear dependence of the stress tensor on

the velocity �eld. The stabilization will be studied under the boundary condition of

Dirichlet's type,

u(x; t) = 0; x 2 @
; t 2 (0;1); (1.3)

and the initial state is prescribed by

�(x; 0) = �0(x) � 0; x 2 
; (1.4)

(�u)(x; 0) = q0(x); x 2 
; (1.5)

for a bounded domain 
. The proof of the global existence of a solution to this

problem was given by A. E. Mamontov in [14], [15]. Moreover, the existence theorem

was proved independently of the dimension. This requirement led to the special form

of the stress tensor, and this was the reason why the existence of the solution of the

problem (1.1){(1.5) was only proved in appropriate Orlicz spaces.

There are a lot of related results not only in one space variable (see e.g. [1], [2], [3],

[22]) but also in several space dimensions (see [16], [19]), when the data is a small

perturbation of a constant equilibrium. In [18], the unconditional stabilization of

solutions of barotropic compressible Navier-Stokes equations on the space periodic

problem with a certain symmetry was investigated. This paper was followed by

[8] and [17], where the Dirichlet boundary condition was considered and a di�erent

method was used.
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By the stabilization of solutions in this context we mean that, given a weak solution

to the problem (1.1){(1.5), for any sequence tn ! 1, and for a Young function �

such that its complementary function 	 satis�es

sup
w

Z


	(jw 1

� j) dx � c;

with � 2 (0; 1), where w 2 eL	1
(
) is such that

R

	1(w) dx � 1, there exists a

function �1 such that

lim
n!1

k�(tn)� �1k� = 0; (1.6)

where the equilibrium density �1 is a solution to the rest state equations

r�1 = �1f a.e. in 
; (1.7)Z


�1 dx =

Z


�0 dx; �1 � 0: (1.8)

Our technique of proof for the stabilization of solutions to the problem (1.1){(1.5) is

motivated by the method which was given in [17] for the �rst time. Let us mention

here some distinctions and diÆculties. The purpose of this method is to �nd a

function �(t) which is close to the density �(t) and at the same time �(tn) converges

to �1 strongly in appropriate spaces. The construction of the function � is based

on the solvability of the Neumann problemZ


rw�k(s) � r� dx =

Z


R�(�(x; �))(s)f � r� dx; 8� 2 W 1;p(
);

Z


w�k(x; s) dx = 0;

where R� means the regularization in time variable.

But we are not able to decide upon the solvability of the Neumann problem if we

only know that � 2 L
1(0;1;L�1(
)), with �1(z) = zln (1 + z). In this case the

method breaks down. We overcome this diÆculty by using a cut-o� function Tk(�).

The second problem is that we cannot improve the global estimate for the density

�, as was shown in [17]. The next open question is whether we can test the equation

(1.2) in the pressure term with the function v solving the problem

div v = f; f 2 L1(
);

vj@
 = 0;

Z


f dx = 0:

This question will be answered in Section 5. The main diÆculty in carrying out

this construction is that we must verify that the function �(t) is suÆciently close

to the function �k(t) generated by the Neumann problem with the right-hand side

containing the function Tk(�) instead of �.

In Section 2, we establish the basic notation used. In Section 3, we summarize all

assumptions on external force, initial state and stress tensor. In addition, we give an
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example for the stress tensors considered in this paper, there. In Section 4, we give

a brief outline of properties of appropriate Young functions, and we prove auxiliary

lemmas. Before beginning the proof of stabilization, we must complete the theory

about renormalized solutions of the equation (1.1). This is the aim of Section 6. In

Sections 7-9, we will be concerned with stabilization, and our main result will be

stated and proved.

2 Preliminaries

In this section, we adopt the notation. Let us denote by D the symmetric part of

the velocity gradient, i.e.,

Diju =
1

2

 
@ui

@xj
+
@uj

@xi

!
:

Further, M stands for a Young function with a growth given by the estimates

c
�1
e
c�1z � M(z) � ce

cz, for z � z0 � 0, with some constant c > 1. �� de-

notes the Young function having the form (1 + z)ln� (1 + z) in case � > 1, and

z ln (1 + z) in case � = 1. Let 	� and M denote the complementary functions to

the Young functions �� and M , respectively. There is no problem to verify that

the growth of the functions 	�(z) is of the type e
z1=� , and that the function M is

equivalent to the Young function �1. LM(
) and L��(
) denote the Orlicz spaces

generated by the Young functions M and ��. These spaces are endowed with the

norm kvk� = sup
R

 vw dx, where supremum is taken over all functions w such thatZ



	(jwj) dx � 1:

For simplicity of notation, we used � instead of �� or M . Sometimes it is conve-

nient to take into account the Luxemburg norm de�ned by the expression jjjvjjj	 :=

inff� > 0;
R

	(jv=�j) dx � 1g. This norm is equivalent to the Orlicz norm gen-

erated by the same Young function. It is suitable to de�ne the set eL�(
). This

set contains all the functions v satisfying
R

 �(jvj) dx <1. Next, we establish the

appropriate Orlicz spaces to which the velocity �eld belongs. Thus,

X := fu; Du 2 LM(
); uj@
 = 0g; kukX = kDukM;
;

and

Y := fv; Dv 2 LM(QT ); v(t)j@
 = 0g; kvkY = kDvkM;QT
;

where QT = 
 � (0; T ). E�(
) denotes the Orlicz space which is de�ned as the

closure of the space C1
0 (
) in the Orlicz norm k � k�. Let us remark that, unlike

Lebesgue spaces, the spaces E�(
) and L�(
) do not coincide. We will use the

following notation for dual spaces,

W
�1
L (
) = [W 1

0L�(
)]
0
;
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where W 1
0L�(
) is the closure of the space C

1
0 (
) in the norm

kvk1;� =
q
kvk2� + krvk2�:

The notation of Lebesgue spaces and Sobolev spaces is standard, i.e., Lp(
) and

W
1;p(
) for the spaces and k � kp and k � k1;p for their appropriate norms.

De�nition 2.1 The sequence fvng1n=1 � L�(
) is said to be E	-weak convergent

to the function v if Z


vn dx!

Z


v dx; 8 2 E	:

Let us remark that all the bounded sets in the space L�(
) are E	-weakly compact.

For more details about Orlicz spaces we refer the reader to [9] and [11].

There will be a short mentioning of Hardy spaces and BMO-spaces in Section 5.

Therefore, we introduce here the Hardy space H1(RN ) as a space of distributions

such that f 2 H1(RN) if, for some � 2 S with
R
RN � dx = 1, the maximal function

(M�f)(x) := sup
t>0

j(f � �t)(x)j

is in L1(RN ), with �t(x) = t
�N
�(x=t). Here S is the usual space of in�nitely di�eren-

tiable functions which together with all their derivatives are rapidly decreasing, and

kfkH1 :=
R
RN j(M�f)(x)j dx. BMO(RN) is a space of locally integrable functions

such that there is an A <1 such that

1

jBj
Z
B
jf(x)� fBj dx � A

holds for all balls B and fB := jBj�1 RB f dx. The smallest such A will denote the

norm of f in BMO(RN ). We refer the reader to [21, pp. 87-228] for more details

about H1- and BMO-spaces.

We will use the usual molli�er with respect to the variable t given by

(R�v)(t) :=

Z 1

�1
��(t� s)v(s) ds :=

1

�

Z 1

�1
�0

�
t� s

�

�
v(s) ds;

where supp �0 � (�1; 1); R1�1 �0(s) ds = 1, �0 � 0, �0 2 C1(R1).

3 Fundamental assumptions

The de�nition of appropriate spaces enables us to establish the fundamental as-

sumptions, and these assumptions will be needed throughout the paper. We assume

that:

1. f = rg; g 2 W 2;1(
); @
 2 C2;
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2. �0 2 L��(
); � > 3;
p
�0u0 2 L2(
);

3. the operator P is coercive, i.e.,Z


P (v) : Dv dx �

Z


M(jDvj) dx (3.1)

for all v 2 X;

4. P (�) acts boundedly from X into LM(
), i.e.,Z


M(jP (v)j) dx � c

�
1 +

Z


M(jDvj) dx

�
; (3.2)

and the estimate

2mkP (v)kM � c

�
k
m

Z


M(jDvj) dx+ 1

�
(3.3)

holds for all m 2 N0 (N0 = f0; 1; 2; : : :g), v 2 X, and for some �xed k > 2.

Now, it is convenient to present an example for the operator P .

Example: The example of the operator P can be given by the expression

P (v) :=
M(jDvj)Dv

jDvj2 if Dv 6= 0; P (v) := 0 if Dv = 0:

Remark 3.1 From now on, M(z) denotes the Young function de�ned by the ex-

pression

M(z) := e
z � z � 1:

We can a�ord this de�nition of the function M without loss of generality, since the

function ez � z � 1 belongs to the class of equivalent Young functions generated by

the estimate above.

4 Basic lemmas

In this section, we formulate lemmas which give us basic information about the used

Young functions.

Lemma 4.1 Let the function M be established as in Remark 3.1 and 	2 be the

complementary function to �2. Then the inequality

2mkvk	2
� c

 
max

(
6 � 23m; 11

4

p
27m;

24m

4

)
e
2
m
+1

2

Z


M(jvj) dx+ 1

!
(4.1)

holds for m 2 N0.
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P r o o f: We begin by proving the existence of a constant K(c) > 0 such that

c
3
z
3
e

p
cz � K(c)(ez � z � 1); c � 1; z � 0;

with 	2(z) = z
3
e
p
z being a function in the class of Young functions having the

growth e
p
z. We can easily derive one of the possible values for this constant in

the form K(c) = 24max
n
6c3; 11

4
c
3
p
c;

c4

4

o
e
c+1

2 . The proof is based on studying the

derivatives of the functions on both sides of the above inequality. Then the assertion

follows from the estimate

2mkvk	2
�
Z


	2(j2mvj) dx+ 1: 2

Lemma 4.1 may be summarized by saying that the function v is small enough in

an appropriate Orlicz norm on the condition that this function is small in M -mean

sense.

Lemma 4.2 Let a sequence fvmg1m=1 � LM (
), m 2 N0, be given such that

kvmk1 � c; kvmk2 �
1q

M(maxf1; cg2m)
; m 2 N0:

Then the inequality

kvmkM � K

2m
(4.2)

is ful�lled for all m 2 N0.

P r o o f: It is a well known fact that the estimate

k2mvmkpp � kvmk22(2m)pkvmkp�21 � kvmk22(2mmaxf1; cg)p; p � 2;

holds.

By Taylor's formula, we obtain thatZ


M(j2mvmj) dx � kvmk22M(2mmaxf1; cg):

For the rest of the proof it is enough to realize that the Young inequality implies

the estimate

2mkvmkM �
Z


M(j2mvmj) dx+ 1;

and that equivalence of the norms, which are generated by the Young functions with

the growth ez, holds. 2

Proposition 4.3 [13] The inequality

kvk1;p �
cp

2

p� 1
kDvkp (4.3)

holds for all p > 1 and v 2 W 1;p
0 (
) with a constant c > 0 independent of p and v.
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Lemma 4.4 Let v 2 L	2
(
) and w 2 LM(
). Assume that the inequality

kvkp � cpkwkp (4.4)

is ful�lled for all p > 1 with c independent of p. Then, using the inequality (4.3),

we can deduce the estimate

kvk	2
� ckwkM : (4.5)

P r o o f: Let us examine the Young function 	 de�ned by the expression

	(z) :=

8><>:
e
z
1=2

0

z2
0

z
2 if z 2 [0; z0); z0 > 1;

e
z1=2 if z 2 [z0;1):

(4.6)

By virtue of Taylor's formula for e
p
z, we �nd that the estimate

	(z) =
1X
q=1

1

q!
z
q=2 � 2

1X
p=1

1

(2p)!
z
p (4.7)

holds, since

� either z1=2

q+1
� 1,

� or z1=2

2q
<

z1=2

q+1
< 1,

with q being an odd number. The remaining part of the proof is based on the

existence of an appropriate � (see [11, p. 149]) such that the following integrals exist.

The Taylor formula for the function 	, Fatou's lemma, and Lebesgue's dominated

convergence theorem now lead to the estimateZ


	

�����v
�

����� dx � K

Z



e	�����cw
�

����� dx; (4.8)

with e	(z) := (
ez1

z2
1

z
2 if z 2 [0; z1); z1 > 1;

e
z if z 2 [z1;1):

(4.9)

Using the Luxemburg de�nition of the norm and the imbedding theorem for Orlicz

spaces, we get (4.5). 2

Lemma 4.5 Let v 2 W 1
0L	


(
), 
 � 1. Then the estimate

sup
z2RNnf0g






v(� � z)� v(�)
jzj







	


� kvk1;	

(4.10)

holds.
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P r o o f: Our proof starts with derivation of the inequality

jv(x� z)� v(x)j =
�����
Z 1

0

d

dr
v(x� rz) dr

����� �
Z 1

0
jrv(x� rz)kzj dr; v 2 C1

0 (
):

Using the density of the space C1
0 (
) in W 1

0L	

(
), Jensen's inequality, and de�-

nition of the Luxemburg norm, we �nish our proof. 2

Lemma 4.6 Let v(x; s) 2 W
1;p
0 (
) for almost all s > 0, with p > N . Suppose that

kv(s)k1;p � K for almost all s > 0, where the constant K is independent of s. Then

there exists a set of functions  h(x; s) 2 C1
0 (
), with h > 0, such that

kv(s)�  h(s)k1 < � (4.11)

for a.a. s > 0 and for all � > 0 with h = h(�), where h = h(�) ! 0 for � ! 0.

Moreover,

k h(s)k1;p � C for a.a. s > 0; (4.12)

where the constant C does not depend on s.

P r o o f: The proof consists in the construction of appropriate functions  h(x; s).

We de�ne a domain 
h such that 
h � 
 and dist(@
; @
h) = h, with h 2 (0; 1).

Now, we take a function �h 2 C
1
0 (
h) such that �h = 1 in 
2h and jr�hj < c=h.

Then the functions euh, which are de�ned by euh := u�h, are bounded in the space

L
1(0;1;W

1;p
0 (
)) independently of h, and for p1 such that N < p1 < p the estimate

ku� euhkL1(0;1;W
1;p1
0

(
))
� j
 n 
2hj

p�p1
p kuk

L1(0;1;W
1;p

0
(
))

holds. Using the imbedding theorem, we get

ku� euhkL1(0;1;C(
)) � c1(h);

where c1(h)! 0 for h! 0.

Finally, we de�ne the function  h := #h � euh, where # 2 C
1
0 (�1; 1), # � 0,R1

�1 #(z) dz = 1 and #h(jxj) = 1
hN
#

�
jxj
h

�
. It is obvious that  h 2 L1(0;1;W

1;p
0 (
)),

and these functions are bounded in this space, independently of h 2 (0; 1). Using

the Arzel�a-Ascoli theorem and theorem about compact imbedding, we obtain

j h(x; s)� euh(x; s)j =
�����
Z
B1(0)

#(z)(euh(x� hz; s)� euh(x; s)) dz
����� � c2(h)

for a.a. s 2 (0;1) and x 2 
, where c2(h)! 0 for h! 0. 2

De�nition 4.7 Let us de�ne the cut-o� function T 2 C1(R+
0 ) by

T (z) = z; z 2 [0; 1]; T (z) � z; z 2 [1; 3]; T (z) = 2; z � 3;

T
0(z) � C; z 2 [0;1);

Tk(z) = kT

�
z

k

�
; k = 1; 2; : : :
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The following lemma yields information about the behaviour of the cut-o� function

Tk(w) for k !1.

Lemma 4.8 Let a function w 2 L
1(0;1;L�1(
)) be such that w(x; t) � 0 on


� (0;1) and 0 < kwkL1(0;1;L�1(
))
� K. Then the estimate

kw � Tk(w)kL1(0;1;L1(
)) �
cK

2

ln (k)
k = 2; 3; : : : (4.13)

holds.

P r o o f: Our proof starts with the observation that the inequalityZ

k(t)

jw(t)� Tk(w(t))j dx �
cK

2

j
k(t)jln (3k)
k�
k(t)k	1

k�
k(t)k�1;

is ful�lled, with �
k(t) being the characteristic function of the set 
k(t), where

w(x; t) > 3k for x 2 
k(t). Substituting the representation (see [11, p. 149])

k�
k(t)k� = j
k(t)j��1
 

1

j
k(t)j

!

into the inequality above, we transform our proof to the veri�cation of the relation

lim
z!0+

z��11

�
1

z

�
	�1
1

�
1

z

�
� c; c > 1:

The rest of the proof is obvious. 2

Proposition 4.9 [17] Let 
 be of class C2. Then, for any suÆciently small � > 0,

there exists a domain 
� � 
 such that 
� � 
, j
 n 
�j � c�, and if x 2 @
 then

there is a unique y = y(x) 2 @
� such that �(x) = �(y(x)) and jx � y(x)j = � for

all x 2 @
. In addition, there is a function � 2 W
1;1(
) such that �(x) = 1 for

x 2 
�, �(x) = 0 for x 2 
 n 
 �

2
, jr�j � c

�
for x 2 
 �

2
n 
� and d�

d�
j@
� = 0, where

� is the tangential unit vector to the boundary.

5 On the problem div v = f with f 2 L1(
)

Since the main idea of the proof of our main result is based on testing (1.2) in the

pressure term with an appropriate function v satisfying the equation div v = f ,

with f 2 L
1(
), we must prove that this problem has a solution whose regularity

is suÆcient for using this function as a test function in the equation (1.2).

Lemma 5.1 Let fung1n=1 2 L	(
) be an E�-weakly convergent sequence. Assume

that the function � satis�es the �2-condition. Then

lim
n!1

inf kunk	 � kuk	:

9



P r o o f: Let us �rst mention that the Young function � satis�es the �2-condition if

its complementary function 	 has an exponential growth. This is the case which is

interesting for the proof of Theorem 5.2. As � satis�es the �2-condition, E�(
) =

L�(
) =
eL�(
) (see [11]). Then there exists for each � 2 (0; 1) a function v� 2 E�(
)

such that
R

�(jv�j) dx � 1, and the estimate

kuk	 �
Z


uv� dx+ � = lim

n!1
inf

Z


unv� dx+ � � lim

n!1
inf kunk	 + �

holds. 2

We now consider the following problem: Let f 2 L1(
) andZ


f dx = 0: (5.1)

Find a vector �eld v such that

div v = f; (5.2)

v 2 W 1
0LM (
); (5.3)

kvk1;M � ckfk1; (5.4)

with the Young function M de�ned in Remark 3.1.

Theorem 5.2 Let 
 be a bounded domain with Lipschitzian boundary. Then the

problem (5.1){(5.4) has a solution v 2 W 1
0LM(
).

P r o o f: A suitable solution of problem (5.1){(5.4) we are interested in is represented

by a weakly singular integral (see [5]),

v(x) =

Z

0

ef(y) " x� y

jx� yjN
Z 1

jx�yj
!

 
y + �

x� y

jx� yj

!
�
N�1

d�

#
dy (5.5)

after the change of variables

x! x
0 =

x� x0

R

and decomposition 
 on star-shaped domains with respect to an open ball. Here,

! 2 C1
0 (B1(0)) and

R
B1(0)

! dx = 1.

Then the expression of @

@xj
vi is formed by a singular integral. Now we study the

behaviour of the singular integrals on the space of bounded functions more pre-

cisely. We begin with the observation that the singular integral maps L1(RN) into

BMO(RN ) (see [21, p. 155, 178]), and a maximal operator maps eL�1(
) into L1(
)

(see [20]). It follows from above and from the inequalities

kwkH1 �
Z


�1(jwj) dx+ c

for w 2 eL�1(
), and ����Z
RN

vw dx

���� � kvkBMOkwkH1; (5.6)
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that BMO(RN) ,! L	1
(RN), where 	1 is the complementary function to �1. Thus

we conclude that for each f 2 C1
0 (
) there exists a solution v to problem (5.1){(5.4)

such that

kvk1;	1
� ckfk1:

Having disposed of these preliminary steps, we can now associate to each f 2 L1(
)
a sequence ffmg1m=1 such that fm 2 C1

0 (
) and fm ! f in Lp(
) for all p 2 [1;1).

Then the sequence fgmg1m=1 de�ned by gm := fm � �
R

 fm dx, where

R

 � dx = 1,

converges to f as well, and the inequality kgmk1 � ckfk1 holds. The last inequality

is a consequence of the fact that we construct the functions fm using the molli�er.

By the E�1-weak convergence of the sequence frvmg1m=1, we thus getZ


div v' dx =

Z


f' dx

for all ' 2 C1
0 (
), and hence

div v = f a.e in 
:

We conclude from Lemma 5.1 that estimate (5.4) holds. 2

Let us mention an important consequence of Theorem 5.2 .

Consequence 5.3 Let g 2 L
1(
), g � �j@
 = 0 and div g 2 L	1

(
). Let S be

the weakly singular operator (5.5) generated by the problem (5.1){(5.4). Then the

operator S(div g) is well-de�ned in LM(
), and the following estimate

kS(div g)kM � ckgk1 (5.7)

is ful�lled.

P r o o f: The operator S(div g) is well-de�ned in the space Lp(
), p 2 (1;1). As

a consequence of the theory in [5], we can construct a sequence fgng1n=1 � C
1
0 (
)

such that div gn ! div g in Lp(
). According to Theorem 5.2, we have

kS(div gn)kM � ckgk1; 8n 2 N:

Passing to an E�1-weakly convergent subsequence, S(div gnk) ! S, and using the

linearity of the operator S, we �nd S(div gn) ! S(div g) in Lp(
), which leads to

S(div g) = S a.e. in 
. Lemma 5.1 clearly forces estimate (5.7). 2

6 On renormalized solutions to (1.1)

This section deals with the existence of the renormalized solution to equation (1.1).
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Lemma 6.1 Let u 2 L1(0; T ;X) and � 2 L1(0; T ;L��(
)), � > 2, be a weak (dis-

tributional) solution to (1.1) in D0(QT ). Prolonging � and u by zero outside 
, we

have

�t + div (�u) = 0 in D0(RN � (0; T )): (6.1)

P r o o f: Let us follow the idea of the proof from [7]. Thus, we consider a regularizing

sequence

#�(x) :=
1

�N
#

 
jxj
�

!
; (6.2)

where

# 2 C1(R1); supp[#] � (�1; 1); # � 0; �
Z 1

0
#
0(z)z dz = 1;

#(�z) = #(z) and #0(z) � 0 for all z � 0;

and any positive parameter � > 0. In the same manner as in [7], we can construct

the functions �m with the properties

0 � �m � 1 on 
; �m = 1 if dist(x; @
) � 1

m
; �m 2 D(
);

and

jr�m(x)j � 3m for all x 2 
:

Now taking ' 2 D(RN � (0; T )) arbitrary, one has

0 =

Z T

0

Z


�'t�m + �m�u � r'+ '�u � r�m dxdt:

Consequently, it is enough to show that�����
Z T

0

Z


�u � r�m dxdt

�����! 0 for m!1:

But from Theorem 8.4 from [10, p. 69] for k = 1, � = 0 and � = �p, Proposition 4.3

and Lemma 4.4, it follows that�����
Z T

0

Z
dist(x;@
)� 1

m

�u � r�m dxdt

����� �
Z T

0

Z
dist(x;@
)� 1

m

�
juj

dist(x; @
)
dxdt

� c

�
1

m

� Z T

0
k�(t)k�� ;dist(x;@
)� 1

m






 u(t)

dist(x; @
)







	2;dist(x;@
)� 1

m

dt

� c

�
1

m

� Z T

0
kDu(t)kM;dist(x;@
)� 1

m

dt;

where c
�
1
m

�
! 0 for m!1. 2
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Lemma 6.2 Let � 2 L
1(0; T ;L��(
)), � > 3, and u 2 Y be a weak solution to

(1.1) in D0(
 � (0; T )). Then prolonging � and u by zero outside 
 and taking

�h = � � #h, where � means the convolution, with #h de�ned by (6.2), we have

(�h)t + div (�hu) = rh a.e. on RN � (0; T ) (6.3)

with rh ! 0 in L���2(QT ). Finally, the function � is a renormalized solution to

(1.1), i.e.,

(b(�))t + div (b(�)u) + (�b0(�)� b(�))divu = 0 in D0(
� (0; T )); (6.4)

for any continuously di�erentiable function b such that b and b0 are uniformly bounded.

P r o o f: We can verify by the same method as in [7] that after taking '(x; t) =

 (t)#h(x� y) as a test function of the equation (1.1), we derive

(�h)t + div (�hu) = rh a.e. on R
N � (0; T ); (6.5)

with

rh := div (�hu)�r#h � (�u)
or, equivalently,

rh = �hdivu+

Z
RN

(u(x)� u(y)) � r#h(x� y)�(y) dy:

So, ����Z


w(x)�h(x)divu(x) dx

���� � kDu(t)kMk�h(t)wk�1:

Let w1 2 eL	��2
(
) and

R

	��2(jw1j) dx � 1. Using Lemma 4.5 and the prolonga-

tion of the density � by zero, we get�����
Z


w1(x)

Z
RN

ju(x)� u(x� z)j
jzj jr#h(z)kzj�(x� z)dzdx

�����
� ckDu(t)kM jjj�jjjL1(0;T ;L�

�
(
)): (6.6)

Thus rh 2 L���2(QT ) if we replace the function w1(x) with w1(x; t).

The task is now to verify that

kdiv (�hu)� (�u) � r#hk�
 ! 0 for h! 0+

with 
 2 [1; � � 2]. But the proof of the above mentioned limit proceeds almost in

the same way as in [12, p. 43].

From (1.1) it may be concluded thatZ


�(x; t)�(x) dx
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is continuous for any � 2 C1
0 (
) which implies � 2 C(0; T ;Lweak��

(
)).

Multiplying the equation (6.3) by b0(�hi), and subtracting (6.3) with i = 1 from (6.3)

with i = 2, we can deriveZ


b(�h(x; t))�(x) dx!

Z


b(�(x; t))�(x) dx

uniformly in C(0; T ). 2

Consequence 6.3 Let � 2 W
1
LM (
). Then by the weak version of the renormal-

ized continuity equation we haveZ


(R�(�(�(s))))t� dx =

1

�

Z



Z 1

0
�
0
0

�
s� �

�

�
�(�(�))� d�dx

=

Z


(R�(�(�)u)) � r� dx�

Z


R�((��

0(�)� �(�))divu)� dx

+
1

�
�0

�
s

�

� Z


�0� dx; s > 0;

and hence, in the sense of distributions,

(R�(�(�)))t = �div (R�(�(�)u)) +R�((�(�)� ��
0(�))divu) +

1

�
�0

�
s

�

�
�0: (6.7)

7 On the long-time regularity of functions � and

Du

Lemma 7.1 Let � and u be a solution of the problem (1.1){(1.5). Then � 2
L
1(0;1; eL�1(
)) and Z 1

0

Z


M(jDu(x; s)j) dxds <1:

In particular,

lim
t!1

Z t+a

t�a

Z


M(jDu(x; s)j) dxds = 0 for any a > 0: (7.1)

P r o o f: Taking the function g (rg = f from the assumption 1) as a test function

in (1.1), we can rewrite the energy identity as

Z



 
�
juj2
2

+ � ln �� �g

!
dx

�����
t

0

+

Z t

0

Z


P (u) : Du dxds = 0: (7.2)

Using (3.1) �nishes the proof. 2

14



Lemma 7.2 Let (7.1) hold. Then

lim
t!1

Z t+a

t�a
kP (u)(s)kM ds = 0; (7.3)

lim
t!1

Z t+a

t�a
kDu(s)k	2

ds = 0; (7.4)

and

lim
t!1

Z t+a

t�a
kDu(s)k2	2

ds = 0: (7.5)

P r o o f: We start with the observation that the estimate

2m
Z t+a

t�a
kP (u)(s)kM ds � c

�
k
m

Z t+a

t�a

Z


M(jDu(s)j) dxds+ 1

�
� c

holds (see (3.3)) on the condition thatZ t+a

t�a

Z


M(jDu(s)j) dxds � 1

km
; m 2 N0:

To prove (7.4) and (7.5), we use Lemma 4.1 and the same idea as in case (7.3).

2

Roughly speaking, the above-mentioned lemmas provide information about the be-

haviour and global properties of the solution of the problem (1.1){(1.5).

8 Global uniform estimates

Let us start with the important proposition which ensures the existence of a bounded

function � with appropriate properties.

Proposition 8.1 [17] There exist a positive constant c0 and a bounded increasing

continuously di�erentiable function � on R with limr!1 r�
0(r) = 0 and �0(r) > 0

such that

(r1 � r2)(�(r1)� �(r2)) � c0(�(r1)� �(r2))
2
: (8.1)

For the reader's convenience, we mention here the modi�cation of the construction

of the function ��k from [17], but we omit the detailed derivation. For each s > 0

we can de�ne w�k(s) as a unique generalized solution to the Neumann problemZ


rw�k(s) � r� dx =

Z


R�(Tk(�)(x; �))(s)f � r� dx; 8� 2 W 1;p(
);

Z


w�k(x; s) dx = 0; (8.2)
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where s � 0. The cut-o� function Tk was de�ned by De�nition 4.7, and the solution

to this problem satis�es the estimate

kw�k(s)k1;p0 � ckR�(Tk(�))kL1(0;1;Lp
0

(
)) � ck < +1; p
0
> 1; (8.3)

for k = 1; 2; : : : arbitrary but �xed.

Now, let us introduce

G�k(s;m) :=

Z


�(w�k(s) +m) dx; s > 0; m 2 R; � > 0; k = 1; 2; : : : : (8.4)

There is no problem to verify that the integral
R

R�(�(�(x; �)))(s) dx lies in the

range of G�k(s; �), and for any �xed s � 0, � > 0 and k = 1; 2; : : : the equation

G�(s;m) =

Z


R�(�(�(x; �)))(s) dx (8.5)

has a unique solution m = m�k(s). Now, let us de�ne

��k(x; s) := w�k(x; s) +m�k(s): (8.6)

Then, from (8.5), (8.6), we haveZ


�(��k(x; s)) dx =

Z


R�(�(�(x; �)))(s) dx (8.7)

for s > 0, � > 0, k = 1; 2; : : :. Finally, we de�ne another auxiliary function  �k(s) as

a solution to

div �k(s) = R�(�(�))(s)� �(��k(s)) in 
;

 �k(x; s) = 0; x 2 @
; s > 0; � > 0; k = 1; 2; : : : : (8.8)

This problem is not uniquely solvable, but it is known that one possible solution is

given by

 �k(x; s) = S(R�(�(�))(s)� �(��k(s)))

=

Z


K(x; y)(R�(�(�))(s)� �(��k(s))) dy; (8.9)

where K is explicitly de�ned by a weakly singular kernel. It is known that the

operator S maps from L
1(
) into W 1

LM (
)), according to Theorem 5.2. With our

particular choice of � we have

k �kkL1(0;1;W 1LM (
)) � C <1; (8.10)

with C independent of �; s; k and x. For the proof of uniform boundedness of m�k,

i.e.,

jm�k(s)j � C <1; � > 0; k = 1; 2; : : : ; s > 0; (8.11)

we refer the reader to [17].
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Lemma 8.2 Under the assumptions above, there exists the limit

lim
�!0+

w�k = wk in L
r
loc([0;1);W 1;p0(
)) : (8.12)

The set fm�k(s)g�2(0;1) is bounded in W
1;2
loc (0; T ), and passing to a subsequence there

exists a limit

lim
n!1

m�nk = mk in L1loc(0;1) (8.13)

with some �n ! 0+ and r 2 [1;1); p0 2 [1;1); k = 1; 2; : : :. In particular,

��nk ! wk +mk =: �k (8.14)

in the above sense for k = 1; 2; : : :.

P r o o f: The �rst part of the proof concerning the convergence of w�k is obvious.

In the same way as in [17], we can verify that

c0 := inf
�;s

Z


�
0(w�k(s) +m�(s)) dx > 0:

Consequently, by the Implicit Function Theorem there exists the derivative m0
�k(s),

and we have

m
0
�k(s) =

�Z


�
0(w�k(s) +m�k(s)) dx

��1
��Z



(R��(�)(s))t dx�

Z


�
0(w�k(x; s) +m�k(s))(w�k)t(x; s) dx

�
;

which yields the estimate

jm0
�k(s)j � c

�
k(w�k)t(s)k1 + kDu(s)k	2

+
1

�
�0

�
s

�

��
: (8.15)

Since functions � 2 C
1
0 (
) such that � � 1

j
j
R

 � dy = 4�, with � 2 C

2(
), where
@�

@�
= 0, are dense in Lr(
), r 2 (1;1), we obtain

Z


(w�k)t� dx =

Z


(w�k)t

 
� � 1

j
j
Z


� dy

!
dx = �

Z


(R�(Tk(�)))tf � r� dx

� kfk1;1kr�k1;p0k(R�(Tk(�)))tk�1;p
� c (kR�(Tk(�)u)kp + kR�((�T

0
k(�)� Tk(�))divu)kp) k�kp0; (8.16)

where the last part of the above estimate is a consequence of Consequence 6.3 and

allows us to see that the solution of Neumann problem (8.2) is di�erentiable and

@tw�k 2 L
p(
) for all p > 1, � > 0 and t > 0. Now, we are ready to prove

boundedness of the set fm�k(s)g�2(0;1) in W 1;2(�; T ), with � > 0 arbitrary but �xed.

Combining (8.15) with (8.16), we conclude

Z T

�
jm0

�k(s)j2 ds � c

 Z T

�
kDu(s)k2	2

ds+

Z T

�

1

�2
�
2
0

�
s

�

�
ds
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+

Z T

�
k(w�k)t(s)k21 ds

!
� kc4(T ) + c2(�); � > 0: 2

Put now

Qk(t) :=

Z t

t�1

Z


(�(s)� �k(s))(�(�(s))� �(�k(s))) dxds; t � 1: (8.17)

By the monotonicity of �(�) and �, we have Qk(t) � 0. Our intention is to prove the

following global property of Qk(t).

Lemma 8.3 Let �k be a function established in (8.14). Then the limit state of the

function Qk(t) de�ned by (8.17) ful�ls the estimate

0 � lim
t!1

Qk(t) � Æ1(k); (8.18)

with a function Æ1(k) satisfying Æ1(k)! 0 for k !1.

P r o o f: Let a > 1; ' 2 C1
0 (�a; a); ' � 0; '(�) = 1 for � 2 (�1; 0). Put

Q
�
k;a(t) :=

Z t+a

t�a
'(s� t)

Z


(�(s)� ��k(s))(R�(�(�(s)))� �(��k(s))) dxds: (8.19)

Then clearly

Q
�
k;a(t) =

Z t+a

t�a
'(s� t)

Z


(�(s)� ��k(s))(�(�(s))� �(��k(s))) dxds

+

Z t+a

t�a
'(s� t)

Z


(�(s)� ��k(s))(R�(�(�(s)))� �(�(s))) dxds; (8.20)

where the last term on the right-hand side of (8.20) tends to zero as � ! 0+. By

Lemma 8.2,

lim
n!1

Z t

t�1
'(s� t)

Z


(�(s)� ��nk(s))(�(�(s))� �(��nk(s))) dxds = Qk(t) (8.21)

for t > 1 and for some �n # 0. Now we wish to estimate Q�
k;a(t). Let us denote

Va(t) := f(x; s); x 2 
; t� a < s < t+ ag. Using (8.8) and (1.2), we can writeZ
Va(t)

'(s� t)�(s)(R�(�(�(s)))� �(��k(s))) dxds

=

Z
Va(t)

'(s� t)

 
(��u( �k(s))t � �u � (u � r) �k(s) + P (u) : D �k(s)

��f �  �k(s)
!
dxds�

Z
Va(t)

'
0(s� t)�u �k(s) dxds: (8.22)

Now, take the Helmholtz-Weyl decomposition of  �k(s), that is,

 �k(s) = rz�k(s) + v�k(s); div v�k(s) = 0 in 
; v�k(s) � � = 0 in @
:
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By the usual construction of the decomposition, and by (8.10), we haveR

 z�k dx = 0, v�k 2 W

1;r(
), z�k 2 W
2;r(
), @z�k

@�
j@
 = 0, r 2 (1;1). Taking into

account the generalized formulation (8.2), we �nd thatZ
Va(t)

'(s� t)��k(s)(R�(�(�(s)))� �(��k(s))) dxds

= �
Z
Va(t)

'(s� t)rw�k(s) � (rz�k(s) + v�k(s)) dxds

= �
Z
Va(t)

'(s� t)rw�k(s) � rz�k(s) dxds

= �
Z
Va(t)

'(s� t)R�(Tk(�(s)))f � rz�k(s) dxds: (8.23)

Subtracting (8.23) from (8.22), we obtain thatZ
Va(t)

'(s� t)(�(s)� ��k(s))(R�(�(�(s)))� �(��k(s))) dxds

=

Z
Va(t)

'(s� t)(P (u) : D �k(s)� �u � (u � r) �k(s) dxds

�
Z
Va(t)

'
0(s� t)�u �k(s) dxds

�
Z
Va(t)

'(s� t)(�u( �k)t(s)� (�� R�(Tk(�(s))))f � rz�k(s)) dxds

�
Z
Va(t)

'(s� t)�f � v�k(s) dxds =:
6X
j=1

I
�
jk(t):

De�ne

�a(t) := max

( Z t+a

t�a
kDu(s)k	2

ds;

Z t+a

t�a
kDu(s)k2	2

ds;

Z t+a

t�a
kP (u)(s)kM ds

)
: (8.24)

We estimate the integrals I�jk(t) individually. Thus,

jI�1k(t)j � k'k1
Z t+a

t�a
kP (u)(s)kMkD �k(s)kM ds � c�a(t): (8.25)

jI�2k(t)j � k'k1
Z
Va(t)

�(s)ju(s)j2jr �k(s)j dxds

� c

Z t+a

t�a
k�(s)k�1kr �k(s)kMkDu(s)k2	2

ds

� ck�kL1(0;1;L�1(
))
kr �kkL1(0;1;LM (
))�a(t): (8.26)

jI�3k(t)j � k'0k1
Z t+a

t�a
ku(s)k1

Z


�(s)j �k(s)j dxds � c�a(t): (8.27)
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Using the properties of the kernel K from (8.9), we can show in the same manner

as in [17] that @t �k(x; t) exists in the sense of W 1;p(
), with p 2 [1;1) arbitrary.

We proceed to show an appropriate estimate of the function ( �k)t. Consequence 6.3

and (8.9) enable us to represent the function ( �k)t in the form

( �k)t = S div z+ Sq � S�(��k)t; (8.28)

where

z = �R�(�(�)u); q = R�((�(�)� ��
0(�))divu) +

1

�
�

�
s

�

�
�0: (8.29)

It can be easily checked that z belongs to fw 2 C
1(0;1;C(
)); w � �j@
 = 0,

divw 2 C1(0;1;L	1
(
))g. Thus, we have

kS div zkM + kSqkM � c(kzk1 + kqkp);

with p > N , and the problem with regularity of �0 can be overcome by regularization

of �0, since it disappears for � suÆciently small, and so

kS div zkM + kSqkM � c

�
kDu(s)k	2

+
1

�
�0

�
s

�

��
: (8.30)

Let us remind the fact that the operator S is well-de�ned according to Consequence

5.3. Now, the Young theorem for convolutions yields the estimate

kS(�(��k)t(s))k1 � ck�(��k)t(s)kp

for p > N . The inequality

k�(��k)t(s)kp � c(k(w�k)t(s)kp + jm0
�k(s)j)

is easy to verify using the de�nition of ��k. Hence, we get

jI�4k(t)j � ck�kL1(0;1;L�1(
))

Z t+a

t�a
ku(s)k1k( �k(s))tkM ds � ck�a(t): (8.31)

On account of Lemma 4.8, we have

jI�5k(t)j � ck'k1kfk1 sup
s;�;k

k �k(s)k1
Z t+a

t�a
kR�(Tk(�))(s)� �(s)k1 ds

=: Æ1� (k); (8.32)

where Æ1� (k) ! 0 for k ! 1. Moreover lim�!0+ jI�5k(t)j � Æ
1(k), where Æ1(k) ! 0

for k !1.

It remains to estimate the integral

jI�6k(t)j =
�����
Z
Va(t)

'(s� t)�(s)f � v�k dxds
����� : (8.33)
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But we do not know whether Dv�k(s) 2 LM(
) for a.a. s � 0 and � 2 (0; 1), which

is necessary for using the weak formulation of the equation (1.2). This is the reason

why we must approximate the function  �k with the help of Lemma 4.6. De�ne the

integral

I
�
6kh(t) :=

Z
Va(t)

'(s� t)�(s)f � v�kh dxds;

where v�kh 2 C1(
) is the function from the Helmholtz-Weyl decomposition of  �kh.

The functions  �kh belong to C
1
0 (
) and k �kh� �kkL1(0;1;L1(
)) ! 0 for h! 0+.

Moreover, k �khkL1(0;1;W
1;p

0
(
)) � C, where p 2 [1;1) is arbitrary, and the constant

C is independent of k, � and h (see Lemma 4.6 for details).

The estimates

krz�kh(s)�rz�k(s)k1 � kr �kh(s)�r �k(s)kp � C

for p > N and

krz�kh(s)�rz�k(s)k2 � Ck �kh(s)�  �k(s)kM

follow from the Helmholtz-Weyl decomposition of  �kh(s).

By the boundedness of the gradient of  �k(s) and Lemma 4.2, we get that the se-

quences jv�k(s)�v�kh(s)j and jrz�k(s)�rz�kh(s)j converge to zero in L1(0;1;LM(
))

for h! 0+, and the above yields the estimate

jI�6k(t)� I
�
6kh(t)j � Æ2(h);

with Æ2(h)! 0 for h! 0+ and Æ2 independent of t and �.

We can estimate v�kh in this way,

kv�khkL1(0;1;W 1;1(
)) � �(h); (8.34)

where �(h)!1 for h! 0.

Let � > 0 and � 2 C1
0 (
�) be such that jsupp(1� �)j � �. The existence of such a

function � was shown in Proposition 4.9. Then,Z
Va(t)

'(s� t)�(s)f � v�kh dxds =
Z
Va(t)

'(s� t)�(s)f � v�kh� dxds

+

Z
Va(t)

'(s� t)�(s)f � v�kh(1� �) dxds =: Jh1 + J
h
2 ; (8.35)

and clearly

jJh2 j � cak�kL1(0;1;L�1 (
))
kfk1kv�khkL1(0;1;LM (
))jsupp(1� �)j � c�: (8.36)

Since (�; u) is a solution of (1.1){(1.5), we can rewrite Jh1 in the form

J
h
1 =

Z t+a

t�a
'(s� t)

Z



 
�P (u) : Dv�kh � ��u � ((u � r)v�kh)
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��u�(v�kh)t
!
dxds�

Z t+a

t�a
'
0(s� t)

Z


��u � v�kh dxds

+

Z t+a

t�a
'(s� t)

Z



 
P (u) : Sym(r�
 v�kh)

��(u � r�)(u � v�kh)� �r� � v�kh)
!
dxds =:

7X
i=1

J
h

i : (8.37)

Here, Sym means the symmetric part of the tensor.

The integrals J
h

1 ; : : : ; J
h

4 are estimated by the term c�(h)�a(t), and the integrals J
h

5

and J
h

6 by c

�
�a(t) in the same manner as above.

Given x 2 
�=2 n 
�, issue from x the ray which is a normal to @
� at x1 and to

@
 at x2. Then jx� x2j � �. Further, since v�kh(x2) � �(x2) = 0, �(x2) = �(x1) and

r�(x1) ? v�kh(x2), by Proposition 4.9, we have r�(x) � v�kh(x2) = 0. Indeed, we

might construct 
� with � = jx�x2j and use the same argument as in Proposition 4.9

for 
� to showr�(x)��(x) = 0 for any vector � tangential to @
� at x. Consequently,

we �nd that

jr�(x) � v�kh(x)j = jr�(x) � (v�kh(x)� v�kh(x2))j

� c

�
�kv�khkL1(0;1;W 1;1(
)) � c�(h): (8.38)

Having disposed the preliminary steps, we can return to the estimate of the integral

J
h
1 and Jh2 , namely,

jJh1 + J
h
2 j � c� + c�(h)�a(t) + c�(h)w(�) +

c

�
�a(t); (8.39)

where w(�)! 0 for � ! 0+, using the estimate�����
Z
Va(t)

�r� � v�kh dxds
����� � c�(h)k�kL1(0;1;L�1 (
))

k�
�=2n
�kM : (8.40)

We are now in a position to verify the estimate

lim
t!1

lim
�!0

jI�6kh(t)j � Æ2(h) + w(�)�(h);

with Æ2(h)! 0 for h! 0 and w(�)! 0 for � ! 0.

We have proved that

0 � Qk(t) � lim
n!1

Q
�n
ak(t)

� c�a(t)

 
1 + �(h) +

1

�

!
+ w(�)�(h) + Æ1(k) + Æ2(h);

and thus (8.18) holds. 2
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9 Convergence of density

In this section, we examine the relation between the density � and the function �k
more closely.

Proposition 9.1 [17] Let q 2 W
1;1
loc (a;1), a 2 R, be such that q(s) � 0 for s � a

and limt!1
R t
t�1(q(s) + jq0(s)j) ds � Æ1(k). Then

lim
t!1

q(t) � Æ1(k): (9.1)

Put

qk(t) := k�(�(t))� �(�k(t))k22; t > 1: (9.2)

Then, by Proposition 8.1, Z t

t�1
qk(s) ds � Qk(t); (9.3)

and hence

lim
t!1

Z t

t�1
qk(s) ds � Æ1(k): (9.4)

It remains to verify that

lim
t!1

Z t

t�1
jq0k(s)j ds = 0;

which is a consequence of the following lemma.

Lemma 9.2 The inequalityvuutZ t

t�1

����� ddsk�(�(s))� �(�k(s))k22
����� ds � c

q
�(t); (9.5)

is satis�ed for the function �(t) de�ned by

�(t) := max

(Z t

t�1
kDu(s)k	2

ds;

Z t

t�1
kDu(s)k2	2

ds;

Z t

t�1
kP (u)(s)kM ds

)
:

P r o o f: Since we can prove this lemma in much the same way as in [17], we refer

the reader to this article. 2

Lemma 9.3 Under the assumptions and de�nitions above, the limit

lim
t!1

k�(�(t))� �(�(t))kr = 0 (9.6)

exists for each r 2 [1;1), where � = w +m.
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P r o o f: Arguments similar to those used in (8.16) lead to the estimate

kwk1(s)� wk2(s)kp0 � ckTk1(�(s))� Tk2(�(s))k1; p0 2
�
1;

N

N � 1

�
; (9.7)

for a.a. s > 0, where wki are the solutions of the problem (8.2). Thus inequal-

ity (9.7) implies that the sequence fwkg1k=1 is a Cauchy sequence in the space

L
1(0;1;Lp

0

(
)), with p
0 2

�
1; N

N�1

�
, and hence convergent in the same space.

Let us denote its limit by w. The identitiesZ


�(w�k(s) +m�k(s))� �(w�k+q(s) +m�k+q(s)) dx = 0 (9.8)

and Z


�(wk(s) +mk(s))� �(wk+q(s) +mk+q(s)) dx = 0; (9.9)

which hold for a.a. s > 0, and for each q 2 N0, yield

lim
k!1

sup

Z


�(wk(s) +mk(s)) dx = lim

k!1
inf

Z


�(wk(s) +mk(s)) dx (9.10)

for a.a. s > 0, and hence limk!1mk(s) = m(s) almost everywhere in [0;1).

The proof will be complete if we show that mk(s) ! m(s) in L
1(0;1). Let us

suppose for the moment that for each k0 2 N there exists a k, k � k0, such that

kmk�mkL1(0;1) � Æ > 0. Since
R

 �(wk+mk) dx is independent of k, and mk ! m

a.e., we get

0 =





Z


�(wk(�) +mk(�))� �(w(�) +m(�)) dx






L1(0;1)

=







Z



�Z 1

0
�
0(�(wk(�) +mk(�)) + (1� �)(w(�) +m(�))) d�

�
�

(wk(�) +mk(�)� w(�)�m(�)) dx






L1(0;1)

=







Z



�Z 1

0
�
0(�(wk +mk) + (1� �)(w +m)) d�

�
(wk � w) dx

+

Z

��

�Z 1

0
�
0(�(wk +mk) + (1� �)(w +m)) d�

�
(mk �m) dx

+

Z

n
��

�Z 1

0
�
0(�(wk +mk) + (1� �)(w +m)) d�

�
(mk �m) dx







L1(0;1)

= kIk1 (�) + I
k
2 (�) + I

k
3 (�)kL1(0;1)

� kIk2 (�)kL1(0;1) � kIk1 (�)kL1(0;1) � kIk3 (�)kL1(0;1);

where 
�s := fx 2 
; jwk(x; s)� w(x; s)j � �g. The inequality (9.7) implies that

ess inf
s2(0;1)

j
�sj � Æ1(�) and ess sup
s2(0;1)

j
 n 
�sj � Æ2(�);
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where the functions Æi are such that Æi > 0, Æi do not depend on s for � suÆciently

small. Moreover, Æ1(�) ! j
j and Æ2(�) ! 0 for � ! 0. We conclude the �rst case

from the contradiction based on the fact that the sequence fwkg1k=1 is convergent in
L
1(0;1;Lp

0

(
)), with p0 2
�
1; N

N�1

�
. Similar arguments applied to the second case

enable us to �nish this part of the proof. Boundedness of �0(r) gives kIk1 (�)kL1(0;1) !
0, and it is easy to check that

jIk3 (s)j � cj
 n 
�sj � cÆ2(�); for a.e. s 2 (0;1):

This means that kIk3 (�)kL1(0;1) is arbitrary small. But



Z

��

Z 1

0
�
0(�(wk +mk) + (1� �)(w +m)) d� dx






L1(0;1)

> Æ3 > 0

for k ! 1 because �0(s) > 0, and for all k there exists a small set with a nonzero

measure such that jmk(s)�m(s)j � Æ on this set. Hence we get that

lim
k!1

kIk2 (�)kL1(0;1) > Æ3 > 0;

which is a contradiction.

This means nothing but

lim
t!1

k�(�(t))� �(�(t))kr = 0 (9.11)

for each r 2 [1;1), where � = w +m. 2

We conclude this contribution with our main result.

Theorem 9.4 Under the assumptions stated in section 3., there exists a unique

function �1 2 L�1(
), with
R

 �1 =

R

 �0, such that

lim
t!1

k�(t)� �1k� = 0; (9.12)

where � is such a Young function that its complementary function 	 satis�es the

inequality

sup
w

Z


	(jw 1

� j) dx � c (9.13)

for � 2 (0; 1), where
R

	1(jwj) dx � 1, and �1 satis�es the equations (1.7) and

(1.8).

P r o o f: Let ftng1n=1, tn ! 1, be an arbitrary sequence. Then we can select

fsng1n=1 � ftng1n=1 such that �(sn) ! �1 E	1
-weakly, m(sn) ! m1 and w(sn) !

w1 in Lp
0

(
), p0 2
�
1; N

N�1

�
, as a result of the estimate

Z


(w(sn)� w(sm))�� dx =

Z


(�(sn)� �(sm))f � r� dx
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� k�(sn)� �(sm)k�1;p0kr� � fk1;p; p > N:

For more details we refer the reader to the estimate (8.16). We would like to point

out, here, the fact that an E	1
-weak convergence implies the strong convergence in

W
�1;p0(
). From (9.6) it may be concluded that �(�(sn)) � �(�(sn)) ! 0 a.e in 
.

Hence, �(�(sn)) ! �(w1 +m1) and �(�(sn)) ! �(w1 +m1) a.e. in 
, and thus

�(sn)! w1 +m1 a.e. in 
. By boundedness of k�(sn)k�1, and by the estimateZ


uw dx =

Z


u
1��

u
�
w dx � kuk1��1

�Z


�1(juj) dx +

Z


	1(jw

1

� j) dx
��

for � 2 (0; 1), it follows that the sequence f�(sn)g1n=1 converges in L�(
), where 	

satis�es (9.13).

It remains to prove that the equilibrium density �1 satis�es the identity (1.7). Since

�(sn)! �1, we �nd thatZ


�1�� dx =

Z


(w1 +m1)�� dx =

Z


�1f � r� dx;

with the function � from the Helmholtz-Weyl decomposition of � 2 C
1
0 (
). In

particular, � = r� + z. As a consequence of the fact thatZ


�1div z dx = 0

it remains to verify that
R

 �1f �z dx = 0. It is clear that the proof will be complete

if we show that

lim
n!1

Z


�(sn)f � z dx = 0 (9.14)

for z 2 C1(
), div z = 0 and z � �j@
 = 0, since then

0 = lim
n!1

Z


�(sn)f � z dx =

Z


�1f � z dx;

by the convergence of �(sn) to �1. To prove (9.14), it suÆces to show thatZ t

t�1

����Z


�(s)f � z dx

���� ds! 0 for t!1 (9.15)

and ����Z t

t�1
'
0(s)

Z


�(s)f � z dxds

����! 0 for t!1; (9.16)

with ' 2 C1
0 (t� 1; t). The following estimate is almost a repetition of the estimate

of the integral I�6kh(t). Thus,Z t+a

t�a
j�(s)j

����Z


�(s)f � z dx

���� ds � ck�k1kPukL1(t�a;t+a;L
M
(
))krzk1

+ckrzk1k�k1k�kL1(0;1;L�1 (
))

Z t+a

t�a
kDu(s)k2	2

ds
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+kzk1
Z t+a

t�a
j�0(s)j k�u(s)k1 ds! 0

for t ! 1 and � 2 C
1
0 (t � a; t + a) such that �(s) � 1 for s 2 [t � 1; t]. Further,

from the weak equation of continuity we obtain that����Z t

t�1
'
0(s)

Z


�(s)f � z dxds

���� = ����Z t

t�1
'(s)

Z


�(s)(u(s) � r)(f � z) dxds

����
� ckfk1;1kzk1;1k'kL2(t�1;t)

sZ t

t�1
kDu(s)k2	2

ds:

By Proposition 9.1 for Æ(k) � 0, we can �nish the proof of (9.14). We have shown

that Z


�1div � dx =

Z


�1f � � dx; 8� 2 C1

0 (
); (9.17)

which implies that �1 satis�es the equations (1.7), (1.8). But since, according to

[6], this problem has a unique solution, the convergence of �(t) is not only restricted

to subsequences but it is complete, i.e. (9.12) holds true. 2
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