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Abstract

We prove new properties for the linear isotropic elasticity system and for

thickness minimization problems. We also present very recent results con-

cerning shape optimization problems for three-dimensional curved rods and

for shells. The questions discussed in this paper are related to the control

variational method and to control into coeÆcients problems.

1 Introduction

The analysis and the computation of various optimal mechanical structures has a

long history and many applications. We just quote the recent books by Bendsoe

[3], Cherkaev [6], Allaire [1], Zolesio and Delfour [19], where such topics are studied

from various points of view and where numerous references may be found.

In this paper, we shall consider structures like plates, curved rods and shells under

low regularity assumptions with respect to their geometry. In the �rst section we

analyze the application of the control variational method, introduced by the au-

thors in [11], [15], [16], to the general linear elasticity system and to linear elastic

plates. Variational inequalities are also considered. It turns out that the approach

is advantageous from the numerical point of view since the solution is reduced to

sequential applications of Laplace's equation. In section 2, thickness minimization

problems for plates are discussed. The last section contains a presentation of very

recent results in shape optimization problems for curved rods and shells, obtained

by the authors.

2 The linear elasticity system

We consider in 
 2 IR3 the weak formulation of the isotropic linear elasticity system,Z



[�epp(u)eqq(v) + 2�eij(u)eij(v)] dx =

Z



fivi dx ; (2.1)

u = (u1; u2; u3) 2 V (
) ; 8v = (v1; v2; v3) 2 V (
) =
�
v 2 H1(
)3 ; vj�0 = 0

	
:

Above, it is assumed that the smooth boundary of 
 , @
 = �0[�1 , consists of two

nonoverlapping open parts and (2.1) corresponds to homogeneous mixed boundary

conditions, imposed for simplicity. The constants � � 0 , � > 0 , are the Lam�e

coeÆcients, eij = 1
2

�
@ui

@xj
+

@uj

@xi

�
, i; j = 1; 3 , the summation convention is used,
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and f = (f1; f2; f3) gives the body forces. The existence of a unique solution

u = (u1; u2; u3) 2 V (
) for (2.1) is wellknown, Ciarlet [7], [8]. We prove here that

(2.1) admits an advantageous treatment via control theory. To this end, we consider

the following problem:

Min

(
1

2

Z



(
�jwj2

R9 + �[div (u)]2 + �

"�
@u1

@x1

�2

+

�
@u2

@x2

�2

+

�
@u3

@x3

�2
#
+ 2�

�
@u1

@x2

@u2

@x1
+
@u1

@x3

@u3

@x1
+
@u2

@x3

@u3

@x2

��
dx

�
;

(2.2)

subject to w 2 L2(
)q and toZ



ru : rv dx =

Z



w : rv dx+
1

�

Z



f � v dx ; 8v 2 V (
) ; (2.3)

where ru is the Jacobian of u and

ru : rv =

3X
i;j=1

@ui

@xj

@vi

@xj
:

Relation (2.3) is just the weak formulation of the system of the three decoupled

Poisson equations

��u = �divw +
1

�
f ; in 
 ; (2.4)

with homogeneous mixed boundary conditions. The divergence operator in (2.4) is

applied to the rows of the 3� 3 \matrix" w 2 L2(
)9 .

We study brie
y the problem (2.2){(2.3) and we show that it provides exactly the

solution of (2.1). The two problems are in fact equivalent.

Proposition 2.1 Assume that [u�; w�] 2 V (
)�L2(
)q is an optimal pair for the

problem (2.2), (2.3). Then it holdsZ



�
�w� : q + �div (u�)div (z) + �

�
@u�1

@x1

@z1

@x1
+
@u�2

@x2

@z2

@x2
+
@u�3

@x3

@z3

@x3
(2.5)

+
@u�1

@x2

@z2

@x1
+
@z1

@x2

@u�2

@x1
+
@u�1

@x3

@z3

@x1
+
@u�3

@x1

@z1

@x3
+
@u�2

@x3

@z3

@x2
+
@u�3

@x2

@z2

@x3

��
dx = 0 ;

for any z 2 V (
) and for q 2 L2(
)9 with q = rz .

Proof. This is the usual Euler equation associated to (2.2), (2.3). As the control

problem is unconstrained, we can take arbitrary variations of the form u� + sz ,

s 2 IR , around u� , which correspond to variations w� + sq around the optimal
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control w� , since z is the solution of the \equation in variations" corresponding to

q : Z



rz : rv dx =

Z



q : rv dx ; 8v 2 V (
) :

One then writes that the cost corresponding to w� is lower than the one correspond-

ing to w� + sq , then subtracts, divides by s (for s > 0 or s < 0) and takes the

limit s! 0 to obtain the result. 2

Remark. Relation (2.5) is a characterization of optimality. The optimal pair, if it

exists, is unique (by the strict convexity of (2.2)).

Next, we de�ne the adjoint system for p 2 V (
):Z



rp : rz =

Z



�
� div (u�) div (z) + �

�
@u�1

@x1

@z1

@x1
+
@u�2

@x2

@z2

@x2

+
@u�3

@x3

@z3

@x3
+
@u�1

@x2

@z2

@x1
+
@u�2

@x1

@z1

@x2
+
@u�1

@x3

@z3

@x1
+
@u�3

@x1

@z1

@x3
(2.6)

+
@u�2

@x3

@z3

@x2
+
@u�3

@x2

@z2

@x3

��
dx = 0 ; 8z 2 V (
) :

Relation (2.6) is the weak form of a system of decoupled Poisson equations with

homogeneous mixed boundary conditions. Existence and uniqueness of the solution

p 2 V (
) are obvious.

Proposition 2.2 The optimality conditions for the problem (2:2), (2:3) are given

by (2:3), (2:6) and the Pontryagin maximum principle:Z



(�w� +rp) : rz dx = 0 ; 8z 2 V (
) : (2.7)

Moreover, p = �h� �u� in 
 with h de�ned in (2.8) below.

Proof. By (2.6) and (2.5), we get

0 =

Z



[�w� : q +rp : rz] dx =

Z



[�w� : q +rp : q] dx ;

which is exactly the relation (2.7), as q = rz . Notice that, by virtue of (2.3) and

(2.7), we have Z



ru� : rz dx =

Z



w� : rz dx+
1

�

Z



f � z dx

= �
1

�

�Z



rp : rz dx�

Z



f � z dx

�
:

That is, if we denote by h 2 V (
) the (weak) solution to the problem:Z



rh : rz dx = +
1

�

Z



f � z dx ; 8z 2 V (
) ; (2.8)
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then we obtainZ



ru� : rz dx = �
1

�

Z



rp : rz dx +

Z



rh : rz dx ; 8z 2 V (
) :

As u�; p ; h satisfy the same boundary conditions, the unique solvability of Laplace's

problem concludes the proof. 2

Again by (2.3), and by the de�nition of q in Proposition 2.1, we can writeZ



�w� : q dx = �

Z



w� : rz dx = �

Z



ru� : rz dx�

Z



f � z dx ; 8z 2 V (
) :

By replacing this in (2.5), we haveZ



�
�ru� : rz dx + � div (u�) div (z) + �

�
@u�1

@x1

@z1

@x1
+
@u�2

@x2

@z2

@x2

+
@u�3

@x3

@z3

@x3
+
@u�1

@x2

@z2

@x1
+
@u�2

@x1

@z1

@x2
+
@u�1

@x3

@z3

@x1
+
@u�3

@x1

@z1

@x3
(2.9)

+
@u�2

@x3

@z3

@x2
+
@u�3

@x2

@z2

@x3

��
dx =

Z



f � z dx ; 8z 2 V (
) :

Regrouping the terms in (2.9) conveniently, we have thus proved:

Corollary 2.1 u� 2 V (
) is the unique solution to (2.1).

Remark. Relations (2.3), (2.6) and (2.7) provide a nonstandard decomposition of

(2.1).

Remark. Corollary 2.1 provides a simple convenient method to solve (2.1) via (2.2),

(2.3). In the setting of this control problem, we have to solve the state system (2.3)

and the adjoint system (2.6) (both associated to the Laplace operator). Then, the

gradient of the cost functional may be computed by Proposition 2.2 and gradient

methods may be used. Notice also that the existence in (2.2), (2.3) follows from the

result for (2.1), by Proposition 2.1 and Corollary 2.1.

Let us now consider the example of a linear elastic plate (
 � IR2!) submitted to

unilateral restrictions:

a(y; v) =

Z



e3[y;11v;11 + �y;11v;22

+ �y;22v;11 + y;22v;22 + 2(1� �)y;12v;12] dx ;

8y 2 H2
0 (
) ; 8v 2 H2

0 (
) :

(2.10)

a(y; y � v) �

Z



f(y � v) dx ; y 2 K ; 8v 2 K ; (2.11)

where, for y 2 H2(
) , y;ij =
@2y

@xi@xj
, i; j = 1; 2 .
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Here K � H2
0 (
) is a nonempty closed and convex set. The scalar functions y 2

H2
0 (
) , e 2 L

1(
)+ , f 2 L
2(
) , represent respectively the de
ection, the positive

thickness and the load of the plate, while 0 < � < 1
2
is the Poisson coeÆcient,

Duvaut and Lions [9, Ch. 4].

We replace (2.10), (2.11) by the following optimal control problem:

Min

�
1

2

Z



e3
�
w2 + 2(1� �)y2

;12 + 2(� � 1)y;11y;22
�
dx

�
(2.12)

subject to the state equation

�y = w + e�3g in 
 ; (2.13)

y = 0 on @
 ; (2.14)

and to the state constraints

y 2 K : (2.15)

Above, g 2 H2(
) \ H1
0 (
) is the solution to the Poisson problem with �g = f

in 
 . We shall prove that the solution of (2.11) may be obtained via the control

variational method given by (2.12){(2.15). Notice the di�erences between (2.13)

and (2.3) that show the 
exibility of our approach. It is also clear that a numerical

solution of (2.12){(2.15) may be obtained by using �rst order �nite elements which

provides a simple way for the solution of (2.11).

Any pair [y; w] ; y 2 K � H2
0 (
) , w = �y � e�3g is admissible for the problem

(2.12){(2.15).

In this special situation, one can prove directly the existence of optimal pairs:

Proposition 2.3 The problem (2:12){(2:15) has a unique optimal pair [y�; w�] .

Proof. Let [yn; wn] be a minimizing sequence for (2.12). Then yn
;11 + yn

;22 =

wn + e�3g and the cost functional is bounded from above:

c �

Z



e3
�
w2
n
+ 2(1� �)(yn

;12)
2

+2(� � 1)
�
yn
;11wn + e�3gyn

;11 � (yn
;11)

2
�	

dx :

(2.16)

As 0 < � < 1
2
, relation (2.16) shows that fwng , fy

n

;12g , fy
n

;11g are bounded in

L2(
) , and (2.13) yields that also fyn
;22g is bounded in L2(
) . That is, fyng

is bounded in H2
0 (
) . One can take weakly convergent subsequences yn ! y� ,

wn ! w� in H2
0 (
) , L

2(
) respectively, pass to the limit in (2.13){(2.15) as K

is weakly closed and end the proof by the weak lower semicontinuity of the cost

functional (2.12). Uniqueness is a clear consequence of the strict convexity of (2.12).

2

Remark. Notice that, in this proof, 
 � IR2 plays an essential role.
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The characterization of [y�; w�] via the Euler (in)equation has to take the state

constraints into account. We perform admissible variations of the form y�+s(z�y�) ,

w� + s(l � w�) , s 2 [0; 1] ; 8z 2 K , l = �z � e�3g 2 L2(
) to obtain that

0 �

Z



e3
�
w�(l � w�) + 2(1� �)y�

;12(z;12 � y�
;12)

+2(� � 1)
�
y�
;11(z;22 � y�

;22) + y�
;22(z;11 � y�

;11)
�	

dx ;

(2.17)

for any z 2 K .

Using the fact that w� = �y�� e�3g ; l = �z� e�3g , a convenient grouping of the

terms in (2.17) and the partial integrationZ



e3(�z ��y�)e�3g dx =

Z



f(z � y�) dx

yield:

Corollary 2.2 y� 2 H2
0 (
) is the unique solution to (2:10), (2:11).

Remark. It is possible to compute directional derivatives and to write necessary

conditions as in the previous case. Other boundary conditions may be studied as

well, for instance partially clamped plates. Then, another arti�cial control has to

be introduced in (2.14) which becomes y = v 2 H3=2(@
) ; v = 0 on the \clamped"

part of @
 . A weak penalization "jvj2
H3=2(@
)

, " > 0 , has to be added to (2.12).

The analysis involves a limiting process for "! 0 and it is more technical. Finally,

let us underline that cost functionals (2.2) or (2.12) represent the usual energy (up

to a constant), after the substitution of the control by the state.

3 Thickness optimization of plates with unilateral

conditions

We study the optimal design problem

Min fJ(e; y) ; e 2 Eadg ; (3.1)

subject to (2.10), (2.11), and with J : L1(
)�H2
0 (
)! IR a lower semicontinuous

functional;

Ead =
�
e 2 L1(
) ; 0 < � � e � � a.d. 
 ; jejW 1;t(
) � 


	
: (3.2)

Here, � ; � 
 ; t > 2 are some given positive real numbers. One can also in-

clude other constraints in the de�nition of Ead . For instance, the constant volume

constraint Z



e dx = const:
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may be considered. Concerning the possible state constraints, as 
 � IR2 , the

solution y of (2.11) belongs to C(�
) and one example of interest is given by the

pointwise state constraint

y(x0) � �Æ ; (3.3)

with x0 2 
 and Æ > 0 conveniently �xed.

An important case covered by (3.1){(3.3) is the minimization of the volume (thick-

ness) of the plate such that the de
ection y remains above a given tolerance �Æ

(in one or in any point in 
), for a prescribed load f 2 L2(
) . This is a natural

safety requirement.

In the sequel, we shall denote by a(e; y; v) the functional (2.10), and we assume

0 2 K , just in order to simplify the writing.

Proposition 3.1 Let en ! e in L1(
) strongly, and let yn ; y denote the corre-

sponding solutions to (2:11). Then, yn ! y strongly in H2
0 (
) .

Proof. By Corollary 2.2 and (2.12), (2.13), we getZ



e3
n
(e�6
n
g2) dx �

Z



e3
n

�
w2
n
+ 2(1� �)(yn

;12)
2 + 2(� � 1)yn

;11y
n

;22

	
dx ; (3.4)

obtained by the admissible choice ~yn = 0 , ~wn = �e�3
n
g . Then (3.2) and (3.4) show

that, for any n :Z



�
w2
n
+ 2(1� �)(yn12)

2 + 2(� � 1)yn11y
n

22

	
dx � c :

Arguing again as in (2.16), we see that fwng , fy
ng are bounded in L2(
) ; H2

0 (
) ,

respectively. Denoting by ~y 2 K the weak limit of yn in H2
0 (
) , on a subsequence,

we can use the form (2.10), (2.11) of the variational inequality to see that ~y = y , by

the weak lower semicontinuity of quadratic forms. By summing a(en; y
n; yn � ym)

and a(em; y
m; ym � yn) according to (2.11) and to the uniform (in e) coercivity of

a(e; y; v) on H2
0 (
) , we obtain, for some c > 0 :

cjyn � ymj2
H2

0
(
) � a(em; y

m; ym � yn)� a(en; y
m; ym � yn) :

Using (2.10), and the uniform convergence of feng , a short computation gives the

strong convergence in H2
0 (
) for fyng , and the proof is �nished. 2

Corollary 3.1 The optimization problem (3:1){(3:3) has at least one optimal solu-

tion e� 2 Ead if it has admissible elements.

This is a consequence of the compact embedding of W 1;t(
) in C(�
) ; t > 2 , by

the Sobolev theorem and of Proposition 3.1.
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Remark. Corollary 3.1 is a partial extension of results obtained by Hlavacek, Bock

and Lovi�sek [10], Bendsoe [3], Sprekels and Tiba [14]. If (2.11) is the obstacle prob-

lem, Sokolowski and Rao [13] have studied its sensitivity with respect to variations

around e� .

In the present more general setting, we prove a weaker di�erentiability-type property.

We �x some b 2 L1(
) , and we denote by y� the solution of (2.11) associated to

e+ �b , � 2 IR . By Proposition 3.1, y� ! y strongly in H2
0 (
) as �! 0 . Denote

by v� = y
�
�y

�
2 H2

0 (
) .

Proposition 3.2 fv�g is bounded in H2
0 (
) . If v̂ is a limit point of fv�g , then

it satis�es:

a(e; y; v̂) =

Z



f v̂ dx ; (3.5)

0 � a(e; v̂; v̂ � l) +

Z



3e2b
�
y;11(v̂;11 � l;11) + �y;11(v̂;22 � l;22) (3.6)

+ �y;22(v̂;11 � l;11) + y;22(v̂;22 � l;22) + 2(1� �)y;12(v̂;12 � l;12)
�
dx ; 8l 2 Ẑ ;

with Ẑ � H2
0 (
) a closed convex nonvoid set de�ned in the proof.

Proof. By adding a(e; y; y � y�) and a(e+ �b ; y�; y� � y) and by (2.11), we get

0 � a(e; y� � y; y� � y) + �

Z



(3e2b + 3�eb2 + �2b3)
�
y�
;11(y

�

;11 � y;11)

+ �y�
;11(y

�

;22 � y;22) + �y�
;22(y

�

;11 � y;11) + y�
;22(y

�

;22 � y;22)

+ 2(1� �)y�
;12(y

�

;12 � y;12)
�
dx :

(3.7)

Dividing by �2 in (3.7), and using the coercivity of a(e; �; �) and the convergence

of y� , we �nd that fv�g is bounded in H2
0 (
) . Let v̂ be a limit point of fv�g , on

some subsequence. Passing to the limit �& 0+ in

a(e; y;�v�) � �

Z



fv�dx ;

a(e+ �b; y�; v�) �

Z



fv�dx ;

we get (3.5).

Consider now test functions l� 2 Z� =
�
1
�
(K � y) \ 1

�
(y� �K)

�
� H2

0 (
) ; � > 0 .

Notice that Z� is a nonvoid closed convex set and 0 2 Z� , v
� 2 Z� . If l

� 2 Z� ,

then y + �l� 2 K , y� � �l� 2 K , � > 0 . We use these test functions in (2.11) to

obtain:

a(e; y; y � y� + �l�) � �

Z



f(y � y� + �l�) dx ;

a(e+ �b; y�; y� � y � �l�) �

Z



f(y� � y � �l�) dx :
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Adding these inequalities, and dividing by �2 , we have

0 � a(e; v�; v� � l�) +

Z



(3e2b+ 3�eb2 + �2b)
�
y�
;11(v

�

;11 � l�
;11) + �y�

;11(v
�

;22 � l�
;22)

+ �y�
;22(v

�

;11 � l�
;11) + y�

;22(v
�

;22 � l�
;22)

+ 2(1� �)y�
;12(v

�

;12 � l�
;12)
�
dx ; 8l� 2 Z� :

(3.8)

If �n & 0 is chosen such that v�n ! v̂ weakly in H2
0 (
) , we denote by Ẑ =

lim inf
�!0

Z�n =
�
p 2 H2

0 (
) ; 9p�n 2 Z�n , p�n ! p in H2
0 (
)

	
. This is a nonvoid

closed convex subset of H2
0 (
) . Passing to the limit in (3.8) gives (3.6) which ends

the proof. 2

Remark. The dependence of Ẑ and of v̂ on the way we choose a convergent

subsequence of fv�g shows that they may be not uniquely determined.

4 Curved rods and shells

For the three-dimensional curved rods, we relax the usual regularity hypotheses on

the parametrization, of type W 3;1(0; L) , by avoiding the use of the classical Frenet

or Darboux frames, Cartan [5]. A new local system of axes valid for C1(0; L) or

W 2;1(0; L) curves was introduced in Ignat, Sprekels and Tiba [12]. As, here, we are

mainly interested in optimization questions, we perform a direct parametrization of

the tangent vector,

�t(�) = (sin �(�) cos (�) ; sin �(�) sin (�) ; cos �(�)) : (4.1)

The curve is then parametrized by

��(x3) =

Z
x3

0

�t(s)ds ; x3 2 [0; L] : (4.2)

Notice that in this way a unit speed curve �� in IR3 with �xed length L > 0 is

automatically generated. Moreover, the local frame can be obtained by algebraic

means,

�n = (cos � cos ; cos � sin ; � sin �) ; (4.3)

�b = (� sin ; cos ; 0) : (4.4)

The mappings �;  2 C1(0; 1) give the real parametrization. If !(x3) � IR2 is a

bounded domain, not necessarily simply connected, we de�ne the open set


 =
[

x32]0;L[

(!(x3) � fx3g) � IR3 : (4.5)
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The curved rod ~
 associated to �� is then obtained by the transformation

�x = (x1; x2; x3) � 
 7! F �x = ~x = (~x1; ~x2; ~x3)

= ��(x3) + x1�n(x3) + x2�b 2 ~
 ; 8�x 2 
 :
(4.6)

The Jacobian J of the transformation F satis�es det J(�x) � c > 0 ; 8�x 2 
 , if

the sets !(x3) are all contained in a suÆciently small disk in IR2 . In Ciarlet [8] it

is proved that F is one-to-one and that ~
 is well de�ned.

We make the geometrical assumption that the displacement has the following form

for ~x 2 ~
 :

�y(~x) = ��(x3) + x1 �N(x3) + x2 �B(x3) ; �x = F�1(~x) : (4.7)

The unknowns are �� ; �N ; �B 2 H1
0 (0; L)

3 , and (4.7) enters the category of polyno-

mial models. Comparing with the shell model considered later in this section, we

may say that (4.7) gives a generalized Naghdi model for curved rods. By introduc-

ing (4.7) into the elasticity system, we get the following variational equation (here

(hij) = J�1 and ~� ; ~� are the Lam�e coeÆcients) for �� ; �N , �B :

~�

Z



3X
i;j=1

h
Ni(x3)h1i(�x) +Bi(x3)h2i(�x) +

�
�0
i
(x3) + x1N

0

i
(x3)

+ x2B
0

i
(x3)

�
h3i(�x)

ih
Mj(x3)h1j(�x) +Dj(x3)h2j(�x) +

�
�0
j
(x3) + x1M

0

j
(x3)

+ x2D
0

j
(x3)

�
h3j(�x)

i
j detJ(�x)j d�x+ ~�

Z



X
i<j

h
Ni(x3)h1j(�x) +Bi(x3)h2j(�x)

+
�
�0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3j(�x) +Nj(x3)h1i(�x) +Bj(x3)h2i(�x)

+
�
�0
j
(x3) + x1N

0

j
(x3) + x2B

0

j
(x3)

�
h3i(�x)

ih
Mi(x3)h1j(�x) +Di(x3)h2j(�x) (4.8)

+
�
�0
i
(x3) + x1M

0

i
(x3) + x2D

0

i
(x3)

�
h3j(�x) +Mj(x3)h1i(�x) +Dj(x3)h2i(�x)

+
�
�0
j
(x3) + x1M

0

j
(x3) + x2D

0

j
(x3)

�
h3j(�x)

i
j det J(�xj d�x

+ 2~�

Z



3X
i=1

h
Ni(x3)h1i(�x) +Bi(x3)h2i(�x) +

�
�0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3i(�x)

i
h
Mi(x3)h1i(�x)+Di(x3)h2i(�x)+

�
�0
i
(x3)+ x1M

0

i
(x3)+ x2D

0

i
(x3)h3i(�x)

i
j detJ(�x)j d�x

=

3X
l=1

Z



fl(�x)(�l(x3) + x1Ml(x3) + x2Dl(x3)
�
j detJ(�x)j d�x

+

3X
i;j=1

3X
l=1

Z
@


gl(�x)(�l(x3) + x1Ml(x3) + x2Dl(x3)
�
j detJ(�x)j

p
�igij�j d� :

Above, �� ; �M ; �D 2 H1
0 (0; L)

3 are test functions, (�i) is the normal vector to @
 ,

(gij) = J�1(JT )�1 , and �f 2 L2(
)3 , �g 2 L2(@
)3 are the acting forces.
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The coercivity of the bilinear form is established under the assumption that !(x3) �

! , 8x3 2 [0; L] , and

0 =

Z
!

x1 dx1dx2 =

Z
!

x2 dx1dx2 =

Z
!

x1x2 dx1dx2 :

The argument in Ignat, Sprekels and Tiba [12] is a direct one. It is based on the

algebraic identity

1

2

h
(z1h32 + z2h31)

2 + (z2h33 + z3h32)
2 + (z1h33 + z3h31)

2
i

+
3

2
(z21h

2
31 + z22h

2
32 + z23h

2
33) =

1

2
(z21 + z22 + z23)(h

2
31 + h232 + h233)

+
1

2
(z1h31 + z2h32)

2 +
1

2
(z1h31 + z3h33)

2 +
1

2
(z2h32 + z3h33)

2 :

A general formulation of optimization problems associated to curved rods is (see

(4.7)):

Min
�; 

f�(�;  ) = j(��; �y)g ; (4.9)

subject to (4.8) and to constraints �� 2 K � C2(0; L)3 , bounded closed subset. A

typical example for (4.9) is the quadratic case, for instance j(��; �y) =
P3

i=1 j�ij
2
H1

0
(0;L)

(minimization of the displacement of the line of centroids). Notice that our construc-

tion eliminates degenerate cases like rods of length zero. By imposing the constraint

0 � �(x3) �
�

2
� " , x3 2 [0; L] , self-intersecting curves are also eliminated. The

partial periodicity constraintZ
L

0

t1 dx3 =

Z
L

0

t2 dx3 = 0

can be used for the optimization of spirals, etc.

Theorem 4.1 If the set of admissible f�;  g is compact in C1(0; L)2 , and if j :

C2(0; L)3 �H1
0 (0; L)

9 ! IR is lower semicontinuous, then the problem (4:9), (4:8)

admits at least one optimal curved rod ��� .

In Arn�autu, Sprekels and Tiba [2] it is also proved that the mapping f�; �g 7! y is

Gâuteaux di�erentiable from C1(0; L)2 to H1
0 (0; L)

9 and the directional derivative

for the cost (4.9) are computed together with the �rst order optimality conditions.

Many numerical examples may be found in Ignat, Sprekels and Tiba [12] and in

Arn�autu, Sprekels and Tiba [2]. Some of them have a clear physical meaning, which

may be interpreted as a validation of the model.

In the case of shells, we consider an open bounded set ! � IR2 , not necessarily

simply connected and " > 0 , \small". We denote by 
 = !�] � "; "[ and by

p : ! ! IR a C2(�!) mapping whose graph represents the middle surface of the

11



shell. The shell 
̂ is obtained via the transformation F̂ : 
 ! 
̂ , F̂ (x1; x2; x3) =

(x1; x2; p(x1; x2)) + x3�n(x1; x2; x3) where �n is the normal vector:

�n = (n1; n2; n3) =
1p

1 + p21 + p22
(�p1;�p2; 1)

and where p1; p2 are the partial derivatives of p . The shell is assumed to be partially

clamped along �̂0 = F̂ (�0) , with �0 = 
0�]� "; "[ and 
0 � @! being some open

part. The displacement û 2 V (
̂) = fv̂ 2 H1(
̂)3 ; v̂j�̂0 = 0g is supposed to be of

the form

û(x̂) = �u(x1; x2) + x3�r(x1; x2) ; (x1; x2; x3) = F̂�1(x̂) :

The unknowns �u; �r 2 V (!) = f�v 2 H1(!)3 ; �vj
0 = 0g represent the displacement

of the middle surface of the shell, respectively the modi�cation of the normal vector.

This is allowed to change the length as well (that is the elastic material can dilate

or contract), which is a generalization of the classical Naghdi model, studied for

instance by Blouza [4] under similar regularity conditions. For " \small", we get

det J(�x) � c > 0 , J = rF̂ , which justi�es the above construction. If we denote by

(hij(�x)) = J(�x)�1 , the same approach as for the curved rods, based on the linear

elasticity system, generates the following BVP:

~�

Z



(
3X
i=1

��
@ui

@x1
+ x3

@ri

@x1

�
h1i +

�
@ui

@x2
+ x3

@ri

@x2

�
h2i (4.10)

+rih3i

�)( 3X
j=1

��
@�j

@x1
+ x3

@%j

@x1

�
h1j +

�
@�j

@x2
+ x3

@%j

@x2

�
h2j + %jh3j

�)

j detJ(�x)j d�x+ 2~�

Z



3X
i=1

��
@ui

@x1
+ x3

@ri

@x1

�
h1i +

�
@ui

@x2
+ x3

@ri

@x2

�
h2i

+rih3i

���
@�i

@x1
+ x3

@%i

@x1

�
h1i +

�
@�i

@x2
+ x3

@%i

@x2

�
h2i + %ih3i

#
j detJ(�x)j d�x

+~�

Z



X
i<j

(��
@ui

@x1
+ x3

@ri

@x1

�
h1j +

�
@ui

@x2
+ x3

@ri

@x2

�
h2j + rih3j +

�
@uj

@x1

+x3
@rj

@x1

�
h1i +

�
@ui

@x2
+ x3

@rj

@x2

�
h2i + rjh3i

���
@�i

@x1
+ x3

@%i

@x1

�
h1j

+

�
@�i

@x2
+ x3

@%i

@x2

�
h2j + %ih3j +

�
@�j

@x1
+ x3

@%j

@x1

�
h1i +

�
@�j

@x2
+ x3

@%j

@x2

�
h2i

+%jh3i

�)
j detJ(�x)j d�x =

Z



3X
l=1

fl(�l + x3%l)j detJ(�x)j d�x

+

Z
@
��0

3X
l=1

3X
i;j=1

gl(�l + x3%l)j detJ(�x)j

q
�i(�x)gij(�x)�j(�x) d� :
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Here, the notations are similar to (4.8). To prove the existence and the uniqueness

of the solution (�u; �r) 2 V (!)2 in (4.10), we have established the coercivity of the

bilinear form by applying Korn's inequality, Sprekels and Tiba [17]. Moreover, in

Arn�autu, Sprekels and Tiba [2], by using an extension technique to H1(IR3) , it is

shown that this coercivity constant is independent of the geometry (of p ) in some

given classes. We associate to (4.10) the shape optimization problem

Min
p2K

f�(p) = j(�y; �p)g (4.11)

with �y = (�u; �r) 2 H1(!)6 and K � C2(�!) closed. The mapping j : H1(!)6 �

C2(�!) ! IR is of general type. Some well-known examples of cost functionals and

of constraints K are:

j(�y; p) = ju1j
2
H1(!) + ju2j

2
H1(!) + ju3j

2
H1(!)

(minimization of the displacement of the middle surface of the shell), respectivelyZ
!

q
1 + p21 + p22 dx1dx2 � const

(area limitation for the shell).

Theorem 4.2 If K � C2(�!) is compact and j : H1(!)6 � C2(�!) ! IR is lower

semicontinuous, then the shape optimization problem (4:10), (4:11) has at least one

optimal solution.

Remark. It is possible to compute directional derivatives of the mapping p 7!

�y and to write optimality conditions, Arn�autu, Sprekels and Tiba [2]. However,

numerical experiments seem very diÆcult to perform as the coercivity constant is

of the order "3 which shows the lack of stability properties in the computations.
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