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Abstract

In this work the dispersion relation for surface waves on an impermeable

boundary of a fully saturated poroelastic medium is investigated numerically

in the whole range of frequencies. A linear model of a two-component poroe-

lastic medium is used in the form proposed by K. Wilma�nski in [12]. Similarly

to the classical Biot's model [3] it is a continuum mechanical model but it is

much simpler.

In the whole range of frequencies there exist two modes of surface waves

corresponding to the classical Rayleigh and Stoneley waves. The numerical

results for velocities and attenuations of these waves are shown for di�erent

values of the bulk permeability coeÆcient, �; in di�erent ranges of frequencies.

1 Introduction

The theoretical investigation of surface waves in porous materials is motivated by

the construction of a method of nondestructive testing of such systems as

� soils and rocks,

� concrete and other porous construction materials,

� road surface and pavement,

� bones and soft tissues such as the surface of the heart,

� surface coating by nanomaterials.

In most cases of practical interest in soil mechanics the range of applicable frequen-

cies lies between 1 Hz and 100 Hz. However, some medical applications, for instance,

allow for higher frequencies up to app. 3 MHz while testing of nanomaterials requires

frequencies of app. 100 MHz. The classical approach to the propagation of surface

waves is based on one-component elastic models in the limit ! ! 1: Then, solely

a so-called Rayleigh wave appears [11]. However, according to the above remark on

soil mechanics, the other limit: ! ! 0 for heterogeneous elastic solids has to be

applied and, particularly, the inverse problem for low frequencies is investigated [9],

[10].

One of the �rst attempts to investigate surface waves in two-component porous

materials stems from Deresiewicz [5]. An extensive analysis for Biot's model in
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the range of high frequencies was carried by Feng & Johnson [8]. They show some

basic properties of surface waves in a high-frequency approximation by means of a

numerical technique. They have investigated additional modes of surface waves in

dependence on the permeability of the boundary and on the coeÆcient of added

mass ("tortuosity") in di�erent ranges of the sti�ness of the skeleton.

In this work we rely on a simpler model than this of Biot. We neglect two e�ects:

� an added mass e�ect reected in the Biot's model by o�-diagonal contributions

to the matrix of partial mass densities,

� a static coupling e�ect between partial stresses.

The �rst contribution is neglected because it yields a non-objectivity of Biot's equa-

tions (see e.g. [13]). This does not mean that the tortuosity may not have an

inuence on the propagation of surface waves but solely that it is not modelled in

the right way by Biot. Incidentally, the conclusion on the existence of three surface

modes for impermeable boundaries (T ! 1 in [8]) contradicts the basic principle

of the linear system describing three body waves (P1; P2; S). These may combine

only into two surface modes. The third surface mode in the work [8] is apparently

related to � 6= 0 supposedly describing the tortuosity.

The second contribution is neglected because it yields small quantitative changes

(app. 5%) [16] and does not inuence spectral qualitative properties of surface

waves. Consequently, the model becomes simpler and its high-frequency properties

for surface waves seem to be physically correct (see e.g. [7] where they were inves-

tigated by means of an asymptotic analysis of the dispersion relation in function of

the wavelength 1/k; k { wave number).

The purpose of this work is to investigate the dispersion relation for surface waves

on an impermeable boundary of a fully saturated poroelastic medium in the whole

range of frequencies.

In the next section we present the linear form of the model for a two-component

poroelastic saturated medium. We show the governing equations and, briey, the

construction of the solution for a semiin�nite medium with an impermeable bound-

ary. Section 2.2.4 is devoted to the presentation of the boundary conditions on such

an interface between a porous medium and a vacuum. Afterwards we show the

general dispersion relation and summarize results of an earlier work for the high

and low frequency approximations. The main part of the paper concerns numerical

aspects: �rst we indicate the applied numerical procedure and then we illustrate

the numerical results for the normalized velocities and attenuations of the Rayleigh

and Stoneley waves. It is known that surface modes of propagation in linear models

result from the combination of bulk modes. Physically, this means that at any point

of the boundary classical longitudinal and shear waves combine into the Rayleigh
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wave which must be slower than both bulk waves. The presence of the second longi-

tudinal bulk wave P2 yields the existence of the second surface mode { the Stoneley

wave which should be slower than the P2-wave { the slowest of bulk waves. Both

quantities, velocities and attenuations, are shown for di�erent values of the bulk per-

meability coeÆcient, �; in di�erent ranges of frequencies. A decay of the Rayleigh

wave velocity, mentioned in the book [4] (p. 265) has been con�rmed in the range of

small frequencies in spite of the lack of static coupling between components. As it is

very small it may not be observable experimentally. It is claimed in the above book

that the decay results from an inuence of the P2-wave. Moreover we compare the

behaviour of the two types of surface waves with the behaviour of two bulk waves:

P1, and P2.

2 Model

In this section we present a linear model of a two-component poroelastic saturated

medium. (see e.g. [12]).

2.1 Governing equations

Within this model the process is described by themacroscopic �elds �F (x;t) { partial

mass density of the uid, vF (x;t) { velocity of the uid, vS (x;t) { velocity of the

skeleton, eS (x;t) { symmetric tensor of small deformations of the skeleton and the

porosity n. These �elds satisfy the following set of linear equations

@�
F

@t
+ �

F
0 div v

F = 0;

������
F � �

F
0

�
F
0

������ 1;

�
F
0

@vF

@t
+ � grad �F + � grad (n� nE) + p̂ = 0; p̂ :=�

�
vF � vS

�
;

�
S
0

@vS

@t
� div

�
�
S
�
tr eS

�
1+ 2�eS + � (n� nE)1

�
� p̂ = 0; (1)

@eS

@t
= sym gradvS;

eS� 1; nE := n0

�
1 + Æ tr eS

�
;

@ (n� nE)

@t
+ �div

�
vF � vS

�
+
n� nE

�
= 0;

����n� n0

n0

����� 1:

Here �F0 ; �
S
0 ; n0 denote constant reference values of partial mass densities, and poros-

ity, respectively, and �; �
S
; �

S
; �; �; �; Æ;� are constant material parameters. The

�rst one describes the macroscopic compressibility of the uid component, the next

two are macroscopic elastic constants of the skeleton, � is the coupling constant,

� is the coeÆcient of bulk permeability, � is the relaxation time and Æ; � describe

equilibrium and nonequilibrium changes of porosity, respectively. For the purpose

of this work we assume � = 0. Then the problem of evolution of porosity described
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by equation (1)5 can be solved separately from the rest of the problem and does not

inuence the propagation of acoustic waves in the medium.

2.2 Construction of solution for a semiin�nite medium with

impermeable boundary

We follow here the same procedure of construction of solutions as in the works [15],

[7] and [17]. In contrast to some earlier works on this model, here, we consider solely

monochromatic waves with a given real frequency !: This may be considered either

as a Fourier component of the expansion of the solution in time space or as a far

�eld boundary value problem with a harmonic surface source of waves.

2.2.1 Compatibility with �eld equations

We introduce the displacement vector uS for the skeleton, and formally the dis-

placement vector uF for the uid. The latter is introduced solely for the technical

symmetry of considerations and does not have any physical bearing. Then

uS = grad'S + rot S
; vS =

@uS

@t
; eS = sym graduS

; (2)

uF = grad'F + rot F
; vF =

@uF

@t
:

For the two-dimensional case1 we make the following ansatz for monochromatic wave

solutions in the x-direction

'
S = A

S (z) exp [i (kx� !t)] ; '
F = A

F (z) exp [i (kx� !t)] ; (3)

 
S
z = B

S (z) exp [i (kx� !t)] ;  
F
z = B

F (z) exp [i (kx� !t)] ;

 
S
x =  

S
y =  

F
x =  

F
y = 0;

and

�
F � �

F
0 = A

F
� (z) exp [i (kx� !t)] : (4)

Substitution in �eld equations (1) leads after straightforward calculations to the

following compatibility conditions

B
F =

i�

�
F
0 ! + i�

B
S
; A

F
� = ��F0

 
d
2

dz2
� k

2

!
A
F
; (5)

as well as

1Under this assumption we are not able to describe the geometrical dispersion of waves which

is the main practical motivation for surface waves in contrast to bulk waves. The attenuation of

waves calculated in this work follows solely from the dissipation caused by di�usion.
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"
�

 
d
2

dz2
� k

2

!
+ !

2

#
A
F +

i�

�
F
0

!

�
A
F � A

S
�
= 0; (6)

"
�
S + 2�S

�
S
0

 
d
2

dz2
� k

2

!
+ !

2

#
A
S � i�

�
S
0

!

�
A
F � A

S
�
= 0; (7)

"
�
S

�
S
0

 
d
2

dz2
� k

2

!
+ !

2 +
i��

F
0

�
S
0 (�

F
0 ! + i�)

!
2

#
B

S = 0: (8)

2.2.2 Dimensionless notation

It is convenient to introduce a dimensionless notation. Therefore we de�ne the

following dimensionless quantities

cs :=
cS

cP1

< 1; cf :=
cP2

cP1

; �
0 :=

��

�
S
0

> 0; (9)

r :=
�
F
0

�
S
0

< 1; z
0 :=

z

cP1�
; k

0 := kcP1�; !
0 := !�;

where cP1; cS; cP2 are de�ned by the relations

cP1 :=

s
�S + 2�S

�
S
0

; cP2 :=
p
�; cS :=

s
�S

�
S
0

: (10)

These are the front velocities of the three bulk waves in a two-component porous

medium: Two longitudinal waves, P1 (fast wave) and P2 (slow wave, also called

Biot's wave), and one shear wave, S. In the case of Biot's model there would be an

additive contribution in the numerator of cP1 of the coupling parameter Q which is

of the order of a few percent of �S:

2.2.3 Ansatz

Further we omit the prime for typographical reasons. Substitution of (9) in equations

(6), (7), (8) yields

"
c
2
f

 
d
2

dz2
� k

2

!
+ !

2

#
A
F + i

�

r
!

�
A
F � A

S
�

= 0;

" 
d
2

dz2
� k

2

!
+ !

2

#
A
S � i�!

�
A
F � A

S
�

= 0; (11)

"
c
2
s

 
d
2

dz2
� k

2

!
+ !

2 +
i�!

2

! + i
�

r

#
B

S = 0:
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The matrix of coeÆcients for homogeneous materials is independent of z. Hence the

di�erential eigenvalue problem can be easily solved. Consequently we seek solutions

in the form

A
F = A

1
fe

1z + A
2
fe

2z; A
S = A

1
se

1z + A
2
se

2z; B
S = Bse

�z
: (12)

Substitution in (11) yields relations for the exponents in the form

 
�

k

!2

= 1� 1

c2s

 
1 +

i�

! + i
�

r

!�
!

k

�2
; (13)

and

c
2
f

"�


k

�2
� 1

#2
+

�
1 +

�
1 +

1

r

�
i�

!

� �
!

k

�4

+

�
1 + c

2
f +

�
c
2
f +

1

r

�
i�

!

� "�


k

�2
� 1

# �
!

k

�2
= 0: (14)

Simultaneously we obtain for the eigenvectors the following relations

R1 =
�
Bs; A

1
s; A

1
f

�T
; R2 =

�
Bs; A

2
s; A

2
f

�T
; (15)

where

A
1
f = ÆfA

1
s; A

2
s = ÆsA

2
f ; (16)

Æf :=
1

r

i�

!

!
2

k2

c
2
f

"�
1

k

�2
� 1

#
+

�
!

k

�2
+
i�

!r

!
2

k2

; (17)

Æs :=

i�

!

!
2

k2�
2

k

�2
� 1 +

�
!

k

�2
+
i�

!

!
2

k2

: (18)

The above solution for the exponents still leaves three unknown constants Bs; A
2
f ; A

1
s

which must be speci�ed from boundary conditions.

2.2.4 Boundary conditions

In order to determine surface waves in a saturated poroelastic medium we need

conditions for z = 0. In the general case of a boundary between a saturated porous

material and a uid the boundary conditions were formulated by Deresiewicz &
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Skalak [6]. We quote them here in a slightly modi�ed form. If we denote quantities

outside of the porous medium by a "+" sign the boundary conditions have the form

�
�
T13 � T

+
13

����
z=0

� T
S
13

���
z=0

= �
S

 
@u

S
1

@z
+
@u

S
3

@x

!�����
z=0

= 0;

�
�
T33 � T

+
33

����
z=0

� (T S
33 + p

F+ � p
F )
���
z=0

=

= c
2
P1�

S
0

 
@u

S
1

@x
+
@u

S
3

@z

!
� 2c2S�

S
0

@u
S
1

@x
+

+ �
+
�
�
F+ � �

F+
0

�
� �

�
�
F � �

F
0

����
z=0

= 0; (19)

� �
F
0

@

@t

�
u
F
3 � u

S
3

������
z=0

= �
F+
0

@

@t

�
u
F+
3 � u

S
3

������
z=0

;

� �
F
0

@

@t

�
u
F
3 � u

S
3

�
+ �

�
p
F � n0p

F+
������

z=0

= 0;

where uS1 ; u
S
3 are x-, and z-components of the displacement uS, respectively, and

u
F
3 ; u

F+
3 are z-components of the displacements uF and uF+

; respectively.

The �rst two conditions describe the continuity of the full traction, t :=
�
TS +TF

�
n;

n =(0; 0; 1)
T
; on the boundary; the third condition is the continuity of the uid mass

ux, and the last condition speci�es the mass transport through the surface. The

in- and outow through the boundary is proportional to the di�erence of the pore

pressures on both sides of the boundary. In this condition � denotes a surface per-

meability coeÆcient and pF+ is the external pressure. This condition relies on the

assumption that the pore pressure p and the partial pressure pF satisfy the relation

p
F � n0p at least in a small vicinity of the surface.

For the impermeable boundary, for which � = 0; the above boundary conditions

simplify to the following ones

� T13jz=0 � T
S
13

���
z=0

= �
S

 
@u

S
1

@z
+
@u

S
3

@x

!�����
z=0

= 0; (20)

� T33jz=0 � (T S
33 � p

F )
���
z=0

=

= c
2
P1�

S
0

 
@u

S
1

@x
+
@u

S
3

@z

!
� 2c2S�

S
0

@u
S
1

@x
+ (21)

��
�
�
F � �

F
0

����
z=0

= 0;

� @

@t

�
u
F
3 � u

S
3

������
z=0

= 0; (22)

due to the fact that the quanities outside of the porous medium are equal to zero.

Then the third and the fourth boundary conditions are identical. Let us mention

here that the problem with permeable boundaries will be the topic of a forthcoming

paper.
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2.2.5 Dispersion relation

Substitution of the above results in the boundary conditions (20)-(22) yields the

following equations for the three unknown constants Bs; A
2
f and A1

s

AX = 0; (23)

where

A :=

0
BBBBBBBBBBBB@

�
�

k

�2
+ 1 2i2

k
Æs 2i1

k

�2ic2s �k

��
2
k

�2
� 1 + 2c2s

�
Æs+

+rc2f

��
2
k

�2
� 1

�
�
1
k

�2
� 1 + 2c2s+

+rc2f

��
1
k

�2
� 1

�
Æf

i
r!

r!+i�
� (Æs � 1) 2

k
(Æf � 1) 1

k

1
CCCCCCCCCCCCA
; (24)

X :=
�
Bs; A

2
f ; A

1
s

�T
:

This homogeneous set yields the dispersion relation: detA = 0 determining the

! � k relation. We investigate the numerical solution of this equation and compare

the results for high and low frequencies with approximations shown in [17]. These

are briey summarized in the next subsection.

2.2.6 High and low frequency approximations

High frequencies In the limit ! !1 we immediately obtain from relations (13)

and (14)  
�

k

!2

= 1� 1

c2s

�
!

k

�2
;

�
1

k

�2
= 1�

�
!

k

�2
;

�
2

k

�2
= 1� 1

c
2
f

�
!

k

�2
;

(25)

and

Æf = Æs = 0 ) R1 =
�
Bs; A

1
s; 0
�T
; R2 =

�
Bs; 0; A

2
f

�T
: (26)

The dispersion relation follows in the form

PR

s
1� c

2
f

�
!

k

�2
+
r

c4s

�
!

k

�4s
1�

�
!

k

�2
= 0; (27)

where

PR :=

 
2� 1

c2s

�
!

k

�2!2

� 4

s
1�

�
!

k

�2vuut1� 1

c2s

�
!

k

�2
: (28)

Hence for r = 0 the relation (27) reduces to PR = 0 which is the Rayleigh dispersion

relation for single component continua.
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Low frequencies For the limit ! ! 0 one arrives at the following results for the

�rst order approximation of exponents (notice a singularity of the last contribution

to 2
k
!)  

�

k

!2

= 1� r + 1

c2s

�
!

k

�2
;

�
1

k

�2
= 1� r + 1

rc
2
f + 1

�
!

k

�2
;

�
2

k

�2
= 1�

rc
4
f + 1

c
2
f

�
rc

2
f + 1

� �!
k

�2
� i�

!

rc
2
f + 1

rc
2
f

�
!

k

�2
;

(29)

and for the coeÆcients of amplitudes

Æf = 1� !r

i�

1� c
2
f

1 + rc
2
f

; Æs = �rc2f
 
1� !r

i�

1� c
2
f

1 + rc
2
f

!
: (30)

If we account for the relations (29) and (30) in the condition detA =0 then we

obtain a relation specifying !

k
. From this we get as a solution a Rayleigh wave

whose speed is given by a relation analogous to (28) in which the speeds of bulk

waves (10) are replaced by their low frequency counterparts coP1 and coS:

 
2� c

2
P1

c
2
oS

�
!

k

�2!2

� 4

vuut1� c
2
P1

c
2
oS

�
!

k

�2vuut1� c
2
P1

c
2
oP1

�
!

k

�2
= 0; (31)

coP1 :=

vuut�S + 2�S + �
F
0

�
S
0 + �

F
0

; coS :=

s
�S

�
S
0 + �

F
0

:

In contrast to the high frequency approximation this wave is neither dispersive nor

dissipative (no attenuation). The Stoneley wave does not exist in this approxima-

tion.

3 Numerical prodedure

The problem detA =0 has been solved for the complex wave number, k; using the

two computing packages MATLAB 5.3 and MAPLE V Release 5.1. The attempt

to execute the calculation with the third package, MATHEMATICA 5, failed. In

both successful packages, in principle, it is possible to use the existing equation

solvers although they need for the calculations with complex variables very much

of the main memory. It has been observed that the package MAPLE calculates

solely one of the solutions for k for any choice of sign combinations of exponents

1; 2 and �; changing between branches of solution by the variation of exponents

without any apparent reason. Sometimes it was the Rayleigh solution calculated

9



and sometimes the Stoneley solution. On the other hand, MATLAB revealed all

solutions independently of a chosen combination of signs of exponents and this

required testing any solution in order to �nd a corresponding combination of signs.

Of course, the ascertained values agreed in both packages. The duration of the

calculation for one value of ! was about 90s on a 1000 MHz machine.

From the complex results for k we are able to determine the normalized velocities

of the Rayleigh and Stoneley modes c0Ra =
!

Re k1
; c
0

St =
!

Re k2
; respectively, and the

corresponding normalized attenuations Im k1 for the Rayleigh wave and Im k2 for

the Stoneley wave.

Numerical solutions of the dispersion relation for controlled real k and complex !

have not been constructed because, as well known, the solution for P2-waves and,

consequently, for Stoneley waves becomes singular in the range of long waves (small

k) (e.g. [1], [14]). Hence, such results seem to be solely of an academic interest.

4 Parameters

The results have been performed for the following numerical data

� = 0; cP1 = 2500
m

s
; cP2 = 1000

m

s
; cS = 1500

m

s
;

�
S
0 = 2500

kg

m3
; �

F
0 = 250

kg

m3
; cs =

cS

cP1

= 0:6; cf =
cP2

cP1

= 0:4;

r =
�
F
0

�
S
0

= 0:1; � =

(
107 kg

m3s

or variable
; � = 10�6 s; �

0 :=
��

�
S
0

=

(
0:004

or variable
:

These data correspond approximately to, for instance, either marls or porous and

saturated sandstones [4].

5 Numerical results

In the whole range of frequencies there exist two surface modes of propagation

corresponding to the classical Rayleigh and Stoneley waves.

Results are shown for di�erent values of the bulk permeability coeÆcient, �. This

parameter describes the resistance of the porous medium against the ow of the

uid.
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The classical form of the Darcy law refers to simple seepage experiments and de-

scribes the seepage velocity vS in terms of the pressure gradient

vS = �
K

�g

dp

dx
;

where � { mass density of the uid, g { earth acceleration, and K { hydraulic

conductivity.

This corresponds to the quasistatic form of the relation (1)2

dp

dx
+ �

�
v
F
� v

S
�
= 0:

Consequently the relation between permeability coeÆcients in these two approaches

is as follows
K

�g
�

1

�
:

For instance, for water saturated sands K � 10�2 � 10�3 m
s
; � � 103 kg

m3 and

g � 10 m
s2

=) � � 106 � 107 kg
m3s

(see e.g. [2]). In standard units of permeability

this corresponds to app. 0.1�1 darcy.

5.1 Velocities of Rayleigh and Stoneley waves

Fig. 1 shows the velocity of the Rayleigh wave normalized by the P1-velocity in

dependence on the frequency (see: (9)). The velocity is given for di�erent values of

the bulk permeability parameter �: The left and the right �gure di�er in the range

of frequencies: While in the left one we see a range of frequencies from zero to the

very large value of 100 MHz the right one shows a range from zero to 1 MHz. On

the left �gure we indicate additionally the high and low frequency limits common

for all values of permeability, calculated according to section 2.2.6. We see that,

indeed, the numerical results lie between these limits.

In the range of very small frequencies the velocity remains constant (independent

of !) for all practical purposes. This range depends on the permeability and grows

with growing �: There is an interesting small deviation from the constant value

which we discuss later.

Simultaneously one can observe the selfsimilarity of curves for di�erent values of �:

This is due to the fact that � and ! are normalized by the characteristic time � :

!
0 = !�; �

0 = ��

�S
0

and these are the only independent parameters which contain �:

Certainly, as in the classical case of Rayleigh waves in a single component elastic

medium, all values lie below the normalized velocity of the shear wave cs � cS
cP1

= 0:6:
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Fig. 1: Normalized velocities of the Rayleigh wave c0Ra � cRa
cP1

for di�erent values of

the permeability coeÆcient � in units
h
kg

m3s

i
and in di�erent ranges of frequencies.

cs � cS
cP1

= 0:6

Fig. 2: Decay of the normalized Rayleigh velocity cRa
cP1

in the range of relatively small

frequencies. Left: for di�erent values of the permeability coeÆcient � in units
h
kg

m3s

i
;

right: detail for � = 107 kg

m3s
.

An interesting feature occurs for the velocity of the Rayleigh wave in the range of

relatively small frequencies. This can be observed in a blow-up presented in Fig. 2.

The Rayleigh velocity decays �rst a little and then it becomes growing to its limit

value for ! ! 1. The maximum decay is very little indeed { app. 0.025% of the

di�erence of limit values for ! = 0 and ! ! 1. Interestingly, the minimum value

remains constant for the di�erent values of �. This means that the decay is not

driven by the di�usion.
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Bourbi�e, Coussy and Zinszner [4] prescribe this e�ect to an inuence of the P2-wave,

whose velocity is in this range very small. Consequently, it has a bigger inuence

than in the range of higher frequencies. It is interesting that this coupling is present

in the simpli�ed model where the coupling term in stresses is absent. Due to the

latter property of the model the size of the e�ect is very small indeed, even though

within the Biot's model it is not very large either (compare: Fig. 6.11 in [4], where

the maximum corresponds to app. 0.3%).

In any case this region of the Rayleigh velocity has been investigated particularly

carefully to eliminate the possibility of numerical artefacts.

Fig. 3: Normalized velocities of the Stoneley wave c0St � cSt
cP1

for di�erent values of the

permeability coeÆcient � in units
h
kg

m3s

i
in di�erent ranges of frequencies.

cf � cP2

cP1

= 0:4

In Fig. 3 we present the velocity of the Stoneley wave. It is normalized in the same

way as the Rayleigh velocity. Also in these �gures we see the curves for several

values of �. The velocity increases from the zero value for ! = 0: This property

was indicated as a nonexistence of the Stoneley wave. The growth is faster than the

growth of the Rayleigh velocity but the maximum value is smaller. It lies always

below the normalized velocity of the uid cf � cP2

cP1

= 0:4: This happens for all

values of �: The maximum value of the Stoneley velocity appearing for ! ! 1 is

approximately 0.15% smaller than the velocity of the uid. One should point out

that the Stoneley velocity behaves regularly in the whole range of frequencies and

it ceases to exist only for ! = 0: In the vicinity of this point the Stoneley velocity

possesses a similar feature to the P2-wave: it decays to zero as
p
!:

In order to be more speci�c, in the following �gures we consider a selected case which

may appear in geotechnics and show the normalized velocities of both Rayleigh and

Stoneley waves for a permeability coeÆcient � = 107 kg

m3s
: This corresponds, as shown

above, to sandstone saturated with water.

13



Fig. 4: Comparison of the behaviour of Rayleigh and Stoneley wave velocities in

di�erent frequency ranges) for a permeability coeÆcient � = 107 kg

m3s
.
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In Fig. 4 we see the velocities of both surface modes in di�erent ranges of frequencies.

The �rst graph shows properties in a large range to 10 MHz in a logarithmic scale

while the second one { up to 0.5 MHz, and the third one { up to 10 Hz, both in the

normal scale. Each wave attends a �nite asymptotic value as ! !1. This value is

bigger for the Rayleigh wave than for the Stoneley wave. While the Stoneley wave

velocity starts from zero for ! = 0 the Rayleigh wave yields a low frequency limit

unequal to zero. With growing frequency the Rayleigh wave remains at �rst nearly

constant and then increases little until it reaches the high frequency limit. On the

other hand the growth of the Stoneley wave velocity is much steeper.

In order to demonstrate the existence of the Stoneley wave in the range of very small

frequencies, we present in Fig. 4 (the last graph) velocities of this wave for very small

values of the frequency (in this �gure the frequency is given in Hz while in all other

�gures the unit of measurement is MHz). It has been earlier solely indicated that

the limit of this velocity is zero for ! = 0 [17]. We show some calculated points

which make obvious that there do not appear any numerical problems to calculate

the Stoneley velocity in the limit ! ! 0. In the same range of frequencies, usual in

geophysics, the Rayleigh velocity remains nearly constant. Notice that the velocity

axis is broken in order to show the behaviour of both velocities in the same units.

For somewhat bigger values of the frequency (the middle graph) one can observe

already that both curves tend to their asymptotic values.

5.2 Attenuation of Rayleigh and Stoneley waves

This section is devoted to the behaviour of the attenuation of the Rayleigh and

Stoneley waves. Imaginary parts of the wave number k determine the damping of

waves. It is normalized by the product with the P1-velocity and the relaxation time

(see: (9)). This means for our parameters that the values presented in the �gures

are 400 times smaller than in real physical units.

Let us �rst turn our attention to the Rayleigh wave. Fig. 5 shows the normalized

attenuation of this wave. It is obvious that this wave is strongly attenuated. Due

to the logarithmic scale it does not emerge from the �gures that the attenuation

linearly increases to in�nity as ! ! 1 (see Fig. 8, right hand side). Similar to

the attenuation of P1-waves these curves intersect for di�erent values of �: The

impression one has from the left hand side of Fig. 5, namely that the attenuation

would not start from zero with zero frequency stems from the double logarithmic

plot of the curves. In the right �gure we see (at least at the frequency-axis) the

right physical behaviour, namely that the attenuation for all values of � starts from

zero. The left �gure clari�es that the attenuation is in the same manner selfsimilar

as the velocity.

In order to expose a practically important region of very small frequencies, we present

in Fig. 6 the attenuation of both surface waves and two bulk waves: P1 and P2 in

the range of frequencies up to 1000 Hz. Clearly, in this range, the Rayleigh wave is
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attenuated stronger than the P1 wave but still weaker than P2.

The above analysis reveals a singular behaviour of the Rayleigh wave in relation to

the attenuation. Namely, in contrast to all other waves whose attenuation goes to

a �nite limit as ! ! 1 { a property which, incidentally, was not clearly stated in

earlier works { the attenuation of the Rayleigh wave grows unbounded. This is the

feature of a leaky wave.

Fig. 5: Normalized attenuation of the Rayleigh wave for di�erent values of the

permeability coeÆcient � in units
h
kg

m3s

i
in di�erent ranges of frequencies.

Fig. 6: Normalized attenuation of Rayleigh, Stoneley, P1 and P2-wave, for � = 107
kg

m3s
in a small range of frequencies.
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Inspection of Fig. 7 shows that also the normalized attenuation of the Stoneley

wave starts from the zero value for ! = 0: But in contrast to the Rayleigh wave

attenuation for small frequencies it increases much faster and then approaches a

horizontal asymptotic value for larger values of the frequency. This means the limit

! !1 is �nite and dependent on the permeability coeÆcient �. This property does

not coincide with the statement in [7] in which it is claimed that the Stoneley wave

propagates "almost without attenuation" (p. 38). This feature concerns the quantity

Im ~! � Im!

k
in terms of the quoted paper, and means solely that lim

k!1
Im! <1: In

the frequency space considered in the present work we have similarly lim
!!1

Im k <1:

However, we can reinterprete the results in terms of the quality factor used frequently

in works on acoustics. As indicated in [1], [4], for instance, it may be de�ned as

Q (!) =

�����Re k (!)Im k (!)

����� �
�����Re k (!)!

!

Im k (!)

����� = 1

cph

����� !

Im k (!)

����� ; cph :=
!

Re k (!)
: (32)

Clearly, for jIm k (!)j <1; we have the limit lim
!!1

Q (!) =1; which is quali�ed in

these works as a lack of dissipation. The other limit Q = 0 would mean an in�nitely

attenuating medium.

We do not use the notion of the quality factor in this work because neither its

de�nition (32) is universally accepted, particularly for the limit ! ! 0, nor it

possesses such a clear physical interpretation as Im k.

Fig. 7: Normalized attenuation of the Stoneley wave for di�erent values of the

permeability coeÆcient � in units
h
kg

m3s

i
in di�erent ranges of frequencies.

In Fig. 8 we show the normalized attenuation of the surface and bulk waves. For

low frequencies the attenuation of the Stoneley wave is much higher than this of

17



the Rayleigh wave. Both attenuations are starting from zero for ! = 0: The Stone-

ley wave attenuation increases rapidly until it reaches a certain value which de-

pends on the permeability coeÆcient �; in the case under consideration { app.

0.0496� (cP1�)
�1 ' 19:84 1

m
. After reaching this value { which happens in the low

frequency range { it remains constant. The Rayleigh wave attenuation, however,

does not have a �nite value for ! !1. As we have already mentioned, the Rayleigh

wave is for this reason a leaky wave. Generally, the Rayleigh attenuation increases

linearly with growing ! (i.e. the corresponding quality factor lim
!!1

Q (!) <1), only

for very low frequencies the growth is a little bit faster. Consequently, there appears

an intersection of the attenuation curves of both waves. This point lies in the range

of high frequencies.

Fig. 8: Normalized attenuation of Rayleigh, Stoneley, P1 and P2-wave, for � = 107
kg

m3s
in di�erent ranges of frequencies.

6 Concluding remarks

This work is devoted to the numerical investigation of the dispersion relation for

surface waves on an impermeable boundary of a fully saturated poroelastic medium

in the whole range of frequencies. In the whole range there exist two modes of

surface waves corresponding to the classical Rayleigh and Stoneley waves. We have

shown numerical results for the normalized velocities
�

1
cP1

!
Re k(!)

�
and attenuations

(Im k (!) cP1�) of these waves for di�erent values of the bulk permeability coeÆcient,

�; in di�erent ranges of frequencies, !.

Rayleigh

� the velocity of propagation of this wave lies in the interval determined by the

limits ! ! 0 (following from (31)) and ! ! 1 (following from (27)). The
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high frequency limit is app. 4.7% higher than the low frequency limit. The

velocity is always smaller than cS; i.e. slower than the S-wave. As a function

of ! it possesses an inection point and it is slightly nonmonotonous,

� this nonmonotonicity appears in the range of small frequencies. The velocity

possesses in this range a minimum whose size is very small (app. 0.025% of the

di�erence of limit values for ! = 0 and ! !1). Interestingly, the minimum

value remains constant for the di�erent values of �. This means that the decay

is not driven by the di�usion. Such a behaviour is also observed within Biot's

model;

� the attenuation of this wave grows from zero for ! = 0 to in�nity as ! !1.

In the range of large frequencies it is linear (i.e. the quality factor is a constant

di�erent from zero). This means that it is a leaky wave.

Stoneley

� the velocity of this wave grows monotonically from the zero value for ! = 0

to a �nite limit which is slightly smaller (app. 0.15%) than the velocity cP2
of the P2-wave. The growth of the velocity of this wave in the range of low

frequencies is much steeper than this of Rayleigh waves similarly to the growth

of the P2-velocity. According to arguments of Bourbi�e, Coussy, Zinszner [4]

this explains the nonmonotonicity of the Rayleigh velocity;

� both the velocity and attenuation of the Stoneley wave approach zero as
p
!;

� the attenuation of the Stoneley wave grows monotonically to a �nite limit for

! !1. It is slightly smaller than the attenuation of P2-waves. Consequently,

in contrast to the claims in the literature, the Stoneley wave is attenuated.

Solely its quality factor goes to zero as ! !1:

Results for di�erent values of the permeability coeÆcient � are selfsimilar, i.e. a

change of � yields a corresponding change in the scale of the frequency axis for

velocities, and of both axes for attenuations. Otherwise the qualitative behaviour

remains unchanged.

The above presented results distort the qualitative behaviour of surface waves be-

cause the analysis is two-dimensional. This means that the attenuation has solely

a dissipative but not dispersive character. This suppresses the main advantage of

surface waves in comparison to bulk waves.
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