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Abstract

In this article we present the �rst and second order numerical schemes for the

solution of initial value problems of the Boltzmann-Peierls equation (BPE). We also

modify the numerical schemes for the solution of initial and boundary value prob-

lems (IBVP) of its derived hyperbolic moment system. BPE is an integro-di�erential

equation which describes the evolution of heat in crystalline solids at very low tem-

peratures. The BPE describes the evolution of the phase density of a phonon gas.

The corresponding entropy density is given by the entropy density of a Bose-gas.

We derive a reduced three-dimensional kinetic equation which has a much simpler

structure than the original BPE, while it still retain all the properties of the original

BPE. Using special coordinates, we get a further reduction of the kinetic equation in

one space dimension. We introduce the discrete-velocity model of the reduce BPE

in one space dimension. This discrete-velocity model can be discretized in space

and time by using �nite volume schemes. We derive both �rst and second order

explicit upwind and central schemes for the discrete-velocity kinetic equation as well

as for the derived moment system. We use the kinetic approach in order to prescribe

boundary conditions for the IBVP of the moment system. Several numerical test

cases are considered in order to validate the theory.

1 Introduction

The Boltzmann equation is the basic model in the kinetic theory of gases. Boltzmann-type

equations are also involved in modelling electron transport in solids and plasma, neutron

transport in nuclear reactors, radioactive transfer in planetary and stellar atmosphere, and

heat transport in crystalline solids.

In 1929, Peierls [19] proposed his celebrated theoretical model based on the Boltzmann

equation. According to him the lattice vibrations responsible for the heat transport can be

described as an interacting gas of phonons. The Boltzmann-Peierls approach is one of the

milestones of the theory of thermal transport in solids, especially at very low temperatures.

It is important to mention that Fourier theory of heat 
ow fails to describe heat conduction

processes at low temperatures, see for example Dreyer and Struchtrup [8] and references

therein.

When solving the models like BGK or BPE, the main diÆculty is the velocity discretization.

Most numerical methods like Issautier [10], Aoki et al. [1], and Yang [23] have lacking to

satisfy the conservation laws and entropy inequality. This leads to algorithms which are

expensive due to the �ne velocity mesh which guarantee robustness, in particular with

implicit schemes.
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An elegant approach which allows to have conservation and entropy properties with Boltz-

mann equation approximations is the discrete kinetic theory. It has been widely developed

by Gatignol [9] who constructed some discrete velocity models (DVM) of Boltzmann equa-

tion. In addition, she demonstrated conservation properties and some other interesting

results. These models were initially used to simplify the mathematical study of the Boltz-

mann equation. However, the recent numerical methods developed by Buet [3] as well as

Rogier and Schneider [21], also use the DVM with above mentioned properties. Mieussens

[17] has used a similar approach to that of [3, 21] for the development of a DVM of the

BGK equation. He proved that this discrete model satis�es the conservation laws for

mass, momentum and energy, as well as entropy inequalty. He also proved the existence

and uniqueness results for that model. He used the conservative explit �nite volume scheme

to approximate the solution of this DVM. This conservative model was found to be very

economic as compared to the non conservative methods for which a large number of discrete

velocities are needed to recover conservation properties.

In this paper we present a similar approach to that of [3, 17, 21] for the development of a

DVM of the Boltzmann-Peierls equation (BPE). This model is a simpli�ed model of the

actual BPE due to the simpli�cation of the collision term by Callawy [4, 8]. This model is

very similar in shape to the BGK-model of the gas kinetic theory with a main di�erence of

two collision operators. Despite of this simplicity it contains most of the basic properties

such as conservation of energy and heat 
ux. Therefore like BGK-equation this type of

equation can also be used for testing numerical methods for kinetic equations.

Dreyer, Herrmann and Kunik [6] have used a �rst order kinetic scheme in order to solve

the macroscopically one-dimensional and microscopically two-dimensional BPE. While,

Kunik, Qamar and Warnecke [14] have used the �rst order kinetic scheme for the solution

of microscopically three-dimensional model of BPE in one space dimension. We have also

used kinetic schemes in order to solve the ultra-relativistic Euler equations [12, 13, 15],

which utilizes similar ideas of [6, 14]. Here we present the �rst order and second order

explicit upwind scheme [17] and central schemes [11, 18, 16] in order to solve the initial

value problems of microscopically three-dimensional discrete-velocity model of the BPE

equations in one space dimension.

Heat conduction processes are usually described by a parabolic system. It results from

a di�usion law, where the heat 
ux is proportional to the temperature gradient. That

constitutive law implies the paradox of heat conduction whereupon heat may traverse a

body with in�nite speed. This fact is not acceptable from physical point of view. In most

technical process, in particular at room temperature, those modes that propagate with

in�nite speed su�er a considerable damping and are thus not observable. However, there

are cases where either the damping of heat pulses is quite low or where its travel distance

is so small that the transit time is an observable quantity. In those cases the parabolic

system has to be replaced by physically justi�ed hyperbolic system of heat conduction. A

comprehensive study of many phenomena which appear in the temperature range between

5oK and 20oK is described in [5, 8]. In that range heat conduction of crystalline solids

must be considered as the motion of phonons which may interact with the lattice impurities

and with each other. The articles [5, 8] report on special circumstances that are met in
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a quite pure crystal at not too low temperature. Here the state of crystal is suÆciently

described by four thermodynamic �elds as the basic variables. These are the energy density

e, or the temperature T , and the heat 
ux Q = (Qi)i=1;2;3. The resulting system of �eld

equations is of the symetric hyperbolic type.

In this paper we also consider this system in one space dimension and solve it for IBVP. We

apply the same schemes which we are using for the solution of BPE equation with some

modi�cations. This nonlinear system consist of a conservation equation for the energy

density e and a balance equation for the heat 
ux Qi, and it is derived by averaging of the

BPE. The closure problem is solved by the Maximum Entropy Principle [7]. The IBVP

that uses exclusively prescirbed boundary data for the energy density e is solved by a

kinetic approach. The kinetic representation of the IBVP reveal a peculiar phenomenon.

The contributions to the solution are from intial data at the right of the wall, as well as

the �elds at the wall ew and Qw. However, only one of these quantities can be controlled in

an experiment. To overcome this problem we use a continuity condition. It turns out that

after short time energy and heat 
ux are related to each other according to the Rankine

Hugoniot jump relations given in [7, 5].

The Boltzmann-Peierls equation is a kinetic equation for the phase density of phonons. This

equation describes the evolution of the phase density f(t;x;k), where f(t;x;k)d3xd3k is

interpreted as the number of phonons at time t in an in�nitesimally small phase cell element

d3xd3k centered at (x;k). Here ~k denote the momentum, k the phonon wave vector and

~ is Planck's constant, see [19, 8] for further details. The microscopically three dimensional

Boltzmann-Peierls equation (BPE) can be written as

@f

@t
+
@!

@kk

@f

@xi
= �(f) ; (1)

where ! is the phonon frequency, t is time, and � is the collision operator which will be

de�ned below. In a real crystal there are three phonon modes and thus there are three

phase densities corresponding to two transversal modes and one longitudinal mode. In [8]

it is described that for simplicity one can replace the actual crystal by a so called Debye

solid, which is characterized by a single mode only. In addition the assumed dispersion

relation between the phonon frequency ! and the wave vector k is given by

! = c jkj : (2)

Here the Debye velocity c is related to mean of the two transveral and longitudinal sound

speeds of the actual crystal. Thus the BPE is given by

@f

@t
+ c

ki

jkj

@f

@xi
= �(f) : (3)

The moments of the phase density f re
ect the kinetic processes on the scale of continuum
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physics. The most important moments are

e(t;x) = ~c

1Z
�1

jkj f(t;x;k) d3k ; (4)

Qi(t;x) = ~c2

1Z
�1

kif(t;x;k) d3k ; (5)

N ij(t;x) = ~c

1Z
�1

kikj

jkj
f(t;x;k) d3k ; i; j = 1; 2; 3 : (6)

The �elds e, Q = (Q1; Q2; Q3) and the Matrix N = (N ij) are the energy density, heat 
ux

and momentum 
ux, respectively. Phonons are classi�ed as Bose particles [19, 8], and the

corresponding entropy density-entropy 
ux pair (h; ') is given by

h(f) : = y

Z
R3

��
1 +

f

y

�
ln

�
1 +

f

y

�
�
f

y
ln

�
f

y

��
d3k ; (7)

'i(f) : = yc

Z
R3

ki

jkj

��
1 +

f

y

�
ln

�
1 +

f

y

�
�
f

y
ln

�
f

y

��
d3k ; (8)

where y = 3

8�3
, see [8] .

In contrast to the ordinary gas atoms, the phonons may interact by two di�erent collision

processes, called R- and N-processes. R-processes include interactions of phonons with

lattice impurities which destroy the periodicity of the crystal, while N-processes can be in-

terpreted as phonon-phonon interactions which are due to the deviations from harmonicity

of the crystal forces. N-processes conserve both, energy and momentum, while R-processes

only conserve energy. The Callaway approximation of the collision operator [4, 8] is a

suitable simpli�cation of the actual interaction processes. The Callaway collision opera-

tor is written as the sum of two relaxation operators modelling the R- and N-processes

seperately. We write

�(f) = �R(f) + �N(f) ; �� =
1

��
(P�f � f) ; � 2 fR;Ng : (9)

The positive constants �R and �N are the relaxation times, while PR and PN are two

nonlinear projectors. Here PRf and PNf represent the phase densities in the limiting case

when the relaxation time tends to zero. Explicitly, we de�ne PRf and PNf as the solutions

of two optimization problems, namely

h(PRf) = max
f 0

fh(f) : e(f 0) = e(f)g ; (10)

h(PNf) = max
f 0

fh(f) : e(f 0) = e(f); Q(f 0) = Q(f)g ; (11)
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where e(f), Q(f) are given by (4), (5). The maximization problems can be solved by

means of Lagrange multipliers �0

R
and �0

N
; �1

N
; �2

N
, �3

N
. Therefore we get

PRf(k) =
y

�1 + exp(�R)
; PNf(k) =

y

�1 + exp(�N )
; (12)

where

�R(t;x;k) = ~c jkj�0

R
; (13)

�N (t;x;k) = ~c jkj�0

N
(t;x) + ~ ki �i

N
(t;x) : (14)

From (10) and (11) the Lagrange multipliers can be calculated explicitly. They are given

by, see [5], [6],

�0

R
=

�
10~3c3

�2
e

�� 1

4

; �0

N
= 


�
F

e

� 1
4

(4� F )
3

4

; �i

R
= �




4

�
F

e

� 5
4

(4� F )
3

4

Qi ; (15)

F =
6

1 +

r
1� 3

4

�
jQj
ce

�
2

; 
 =

�
4�5y

45~3c3

� 1

4

: (16)

When the thermodynamic state is described by four �elds e and Qi only, then we can

derive the following balance equations from the Boltzmann-Peierls equation (3) and the

maximum entropy principle, see [5],

@e

@t
+
@Qi

@xi
= 0 ;

@Qi

@t
+
@ (c2N ij)

@xj
= �

1

�R
Qi ; i; j = 1; 2; 3; (17)

N ij =
1

3
e Æij +

1

2
e(3�� 1)

�
QiQj

jQj2
�
1

3
Æij
�
;

where � is the so called Eddington-factor:

� =
5

3
�
4

3

s
1�

3

4

�
jQj

ce

�
2

: (18)

Note that in above equations (17) the �N term do not appear on the right hand side,

therefore the applicability of these equations is restricted to the relaxation limit �N ! 0.

Taking the integral-moments of the BPE, one can generate an in�nite number of further

balance equations, because there follows for any vector m(n) of moment weights

@u(f)

@t
+
@Fi(f)

@xi
= u(�(f)) ; i = 1; 2; 3: (19)

Here, u and Fi are the vectors of densities and 
uxes, respectively. They are de�ned as

u(f) =

Z
R3

m(k)f(k) d3k ; Fi(f) =

Z
R3

ki

jkj
m(k)f(k) d3k : (20)
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Furthermore, the kinetic equation (3) implies an entropy inequality, i.e., any solution f of

(3) satis�es

@h(f)

@t
+
@'i(f)

@xi
� 0 : (21)

It is well known that the balance-laws (19) can be reduced to a hyperbolic moment system

by using the maximum entropy principle like in (10), (11) and (17)-(18), see [6].

This paper consist of seven sections. In Section 2, we recall the three-dimensional original

BPE and derive a reduced kinetic equation for a reduced kinetic phase density, see [6, 14].

Moreover, we give a reduced form of the reduced entropy density-entropy 
ux pair. In

Section 3, we introduce one-dimensional reduced BPE. Using special coordinates, we futher

reduce the already reduced BPE in one space dimension. We then replace this reduced

BPE by a discrete-velocity model. In Section 4, we solve this discrete-velocity model by

�rst and second order explicit upwind and cenral schemes. In Section 5, we introduce the

one-dimensional hyperbolic moment system [5, 8]. We modify our numerical schemes for

the solution of the initial and boundary value problems of the moment system. In order

to calaculte the force term we allow the phonon-phonon collisions at the cell interface.

In section 6, we present some numerical test case computations for both BPE and its

hyperbolic moment system. In Section 7, we give the conclusion of the results and future

recommendations.

2 Reduced Boltzmann-Peierls Equation

In this section we intend to recall results from [6, 14] in order to derive a reduced kinetic

equation for a reduced phase density. This procedure relies on the observation that for any

solution f of (3) there exists a corresponding solution of a reduced equation that deter-

mines all physically important moments of f . Additionally we give the expression for the

reduced entropy density-entropy 
ux pair, as it was done in [6, 14].

The phase density f depends on the wave vector k 2 R
3 , therefore we can calculate the

reduced phase density according to the radial integration in polar-coordinates:

	(n) = ~c

1Z
0

jkj3 f(jkjn) djkj : (22)

Note that 	 only depends on the unit vector n = (n1; n2; n3) =
k

jkj
.

Let m be a homogeneous moment weight of degree 1, i.e. m(�k) = �m(k) for all � � 0.
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Also let u be the corresponding moment function, then we have

u(f) = ~c

Z
R3

m(k)f(k) dk = ~c

I
@B(0;1)

1Z
0

jkj3m(n)f(jkjn) djkj dS(n) (23)

=

I
@B(0;1)

m(n)	(n) dS(n) : (24)

The moment u of f is thus given by the corresponding moments of 	. All the moments

with physical interpretation cf. (4), (5), (6) are formed by homogeneous moment weights

of degree 1. In particular we have

e(f) = e(	) ; Qi(f) = Qi(	) ; N ij(f) = N ij(	) ; (25)

where

e(	) =

I
@B(0;1)

	(n) dS(n) ; Qi(	) = c

I
@B(0;1)

ni	(n) dS(n) ; (26)

N ij(	) =

I
@B(0;1)

ninj	(n) dS(n) : (27)

Similarly the reduced collision operators �, �R and �N are given by, see [6],

�� =
1

��
(��	� 	) ; � 2 fR;Ng ; � = �R + �N ; (28)

where

�R	 =
e

4�
; �N	 =

3

4�

e(4� F )3

F

�
1� F niQi

4 c e

�
4
; F =

6

1 +

r
1� 3

4

�
jQj
c e

�
2

; (29)

and

~c

1Z
0

jkj3 P�f(jkjn) djkj = ��(n); � 2 fR;Ng : (30)

We �nally conclude that any solution f(t;x;k) of (3) induces a solution 	(t; x;n) of the

following reduced Boltzmann-Peierls equation

@	

@t
(t;x;n) + c ni

@	

@xi
(t;x;n) = �(t;x;n) : (31)

This reduced kinetic equation can be rewritten in the following time integral form by using

Duhamel's principle

	(t+ �;x;n) = 	(t;x� c�n;n) +
X

�2fR;Ng

�Z
0

��(s;x� c(� � s)n;n) ds ; (32)
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where 	(t;x� c�n;n) is the solution at time t+ � of the collisionless kinetic equation

@	

@t
(t;x;n) + c ni

@	

@xi
(t;x;n) = 0 : (33)

In particular, 	0(t;x� c�n;n) is the free-
ight solution of (33) for initial data 	0.

Finally we introduce an entropy density-entropy 
ux pair for the reduced equation (31).

The de�nition is not so straight forward as before, because in general the entropy density

h(f) cannot be determined from 	. The following de�nition is proposed in [6]

h(	) = �

I
@B(0;1)

	
3

4 (n) dS(n) ; (34)

'i(	) = � c

I
@B(0;1)

ni	
3

4 (n) dS(n) ; � =
4�

3

�
y

15

� 1

4

; y =
3

8�3
: (35)

It was shown in [6] that this entropy density de�nition for the transformed BPE leads to

the same results of the original entropy density de�nition (7) for the original BPE.

3 One-dimensional Reduced Kinetic Equation

Here we are interested in further reduction of the already reduced continuous-velocity

Boltzmann-Peierls equation (31), see [14]. Later on, we write the discrete-velocity form of

this reduced equation.

In the one dimensional case we have x = (x; 0; 0), Q = (Q(t; x); 0; 0) and e = e(t; x). We

introduce the new variables �1 � � � 1, 0 � # � 2� by

n1 = � ; n2 =
p
1� �2 sin# ; n3 =

p
1� �2 cos# ; (36)

with the surface element dS(n) = d�d#. Since in the one dimensional case the macroscopic

�elds inside the phase density 	(t; x;n) will not depend on the angle #, we can further

reduce 	 to

 (t; x; �) =

Z
2�

0

	(t; x; 0; 0;n) d# = 2�	(t; x; �): (37)

The reduced Boltzmann-Peierls equation(31) then further reduces to

@ 

@t
(t; x; �) + c �

@ 

@x
(t; x; �) =

X
�2fR;Ng

1

��
(�� �  ) (t; x; �) ; (38)

where

�R =
e

2
; �N =

3

2

e(4� F )3

F
�
1� F � Q

4 c e

�4 ; F =
6

1 +

q
1� 3

4

�
Q

c e

�2 : (39)
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We have used the same notation for the projection as in (29), but this will not lead to

confusion within the context. Also the reduced moments integrals are given by

e(t; x) =

1Z
�1

 (t; x; �) d�; Q(t; x) = c

1Z
�1

� (t; x; �) d� ; (40)

N(t; x) = N11(t; x) =

1Z
�1

�2 (t; x; �) d�: (41)

In our paper [14] we have shown by three lemmas that the above reduction is valid for all

later times.

Discrete-Velocity Model of the Equation

Let us discretize the continuous � � velocity in to discrete velocity set of the form

N = f�m = �1 +m��;m = 1; 2; 3; :::; N�g ; (42)

where N� is the number of discretizations of �-velocity and �� = 2

N�
. Then we can replace

the \continuous" velocity distribution functions  (t; x; �) and �� (t; x; �) by N� vectors

of the form  m(t; x) =  (t; x; �m) and �� m(t; x) = �� (t; x; �m). Therefore the discrete-

velocity model of the above reduced BPE is given by

@ m

@t
(t; x) + c �m

@ m

@x
(t; x) =

X
�2fR;Ng

1

��
(�� m �  m) (t; x) ; m 2 N ; (43)

where for  m =  m(t; x)

�R m =
e

2
; �N m =

3

2

e(4� F )3

F
�
1� F �m Q

4 c e

�4 ; F =
6

1 +

q
1� 3

4

�
Q

c e

�2 : (44)

The reduced moments integrals are then replaced by Riemann sum

e(t; x) = ��

N�X
m=1

 m(t; x) ; Q(t; x) = c��

N�X
m=1

�m m(t; x) ; (45)

N(t; x) = N11(t; x) = ��

N�X
m=1

�2
m
 m(t; x) : (46)

4 Numerical Schemes for the Reduced BPE

Here we present the upwind and central schemes for the reduced BPE in one space dimen-

sion. However the extension of the schemes to multi-dimensional case is analogous.
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4.1 Upwind Finite Volume Schemes

First order Scheme:

Let us consider a spatial grid de�ned by nodes xi = i�x and cells Ii =
h
x
i� 1

2

; x
i+

1

2

i
.

Consider also a time discretization with tn = n�t. Let  n

m;i
=  m(tn; xi) and �� 

n

m;i
=

�� m(tn; xi) ; � 2 fR;Ng ; be the corresponding discrete average values of the phase

density  m(tn; x) and equilibrium phase densities �� m(tn; x) in each cell Ii at time tn,

respectively. Then the transport part of (43) is simply the linear convection equation,

and can be approximated by a standered upwind �nite volume scheme. For the nonlinear

relaxation term, a standered centered approximation technique is used, see [17]. Our

scheme thus reads

 n+1

m;i
=  n

m;i
� �

�
Fn

m;i+
1

2

�Fn

m;i� 1

2

�
+�tSn

m;i
; (47)

where � = �t

�x
, and for the CFL condition �t � �x

2
we have

Sn
m;i

=
X

�2R;N

1

��

�
�� 

n

m;i
�  n

m;i

�
; Fn

m;i+
1

2

=
c

2

�
�m 

n

m;i
+ �m 

n

m;i+1
� j�mj� 

n

m;i

�
; (48)

where � n

m;i
= �m 

n

m;i+1
� �m 

n

m;i
. In order to get the average values of the moments from

this discrete phase density at any time tn in each cell Ii we use the Riemann sums (45)

and (46) as

en
i
= ��

N�X
m=1

 n

m;i
; Qn

i
= c��

N�X
m=1

�m 
n

m;i
; Nn

i
= ��

N�X
m=1

�2
m
 n

m;i
: (49)

Second Order Extension of the Scheme:

For the second order accuracy in space and time we have the following three steps.

(I): Data Reconstruction. Starting with a piecewise-constant solution in time and

space,
P
 n

m;i
�i(x), one reconstruct a piecewise linear (MUSCL-type) approximation

in space, namely

 n

m
(x) =

X�
 n

m;i
+  x

m;i

(x� xi)

�x

�
�i(x) : (50)

Here, �i(x) is the characteristic function of the cell, Ii := f� j j��xij �
�x

2
g, centered

arround xi = i�x, and  x

m;i
abbreviates a �rst order discrete slope.

The extreme points x = 0 and x = �x, in local coordinates correspond to the

intercell boundaries in general coordinates x
i� 1

2

and x
i+

1

2

, respectively, see Figure 1.

The values of  m;i at the extreme points are

 L

m;i
=  n

m;i
�
1

2
 x

m;i
;  R

m;i
=  n

m;i
+
1

2
 x

m;i
; (51)
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R
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Figure 1: Second order reconstruction

and are usually called boundary extrapolated values.

A possible computation of these slopes, which results in an overall non-oscillatory

schemes (consult [22]), is given by family of discrete derivatives parameterized with

1 � � � 2, i.e., for any grid function  m;i we set

 x

m;i
=MM

�
�� 

m;i+
1

2

;
�

2
(� 

m;i� 1

2

+� 
m;i+

1

2

); �� 
m;i� 1

2

�
:

Here, � denotes the forward di�erencing, � 
m;i+

1

2

=  m;i+1� m;i, andMM denotes

the min-mod nonlinear limiter

MMfx1; x2; :::g =

8<
:

minifxig if xi > 0 8i ;
maxifxig if xi < 0 8i ;
0 otherwise :

(52)

The interpolant (50), is then evolved exactly in time and projected on the cell-

averages at the next time step.

(II): Evolution. For each cell Ii, the boundary extrapolated values  L

m;i
,  R

m;i
in (51) are

evolved for a time 1

2
�t by

 ̂L

m;i
=  L

m;i
�
�

2

�
FR

m;i
�FL

m;i

�
+
�t

2
Sn
m;i

;

(53)

 ̂R

m;i
=  R

m;i
�
�

2

�
FR

m;i
�FL

m;i

�
+
�t

2
Sn
m;i

;

where FL

m;i
= c�m 

L

m;i
and FR

m;i
= c�m 

R

m;i
. Also to calculate source term at half time

step we use

 ̂m;i =  n

m;i
�
�

2

�
Fn

m;i+1
�Fn

m;i

�
+
�t

2
Sn
m;i

; (54)

11



where Fn

m;i
= c�m 

n

m;i
and

êi = ��

N�X
m=1

 ̂m;i; Q̂i = c��

N�X
m=1

�m ̂m;i : (55)

(III): Finally we use the conservative formula (47) in order to get the discrete phase density

at next time step

 n+1

m;i
=  n

m;i
� �

�
F
m;i+

1

2

� F
m;i� 1

2

�
+
X

�2R;N

�t

��

�
�� m(êi; Q̂i)�  ̂m;i

�
; (56)

where the numerical 
uxes are de�ned by

F
m;i+

1

2

=
c

2

h
�m ̂

R

m;i
+ �m ̂

L

m;i+1
� j�mj( ̂

L

m;i+1
�  ̂R

m;i
)
i
: (57)

4.2 Central Schemes

Central schemes for the numerical solution of conservation laws have been widely developed

in the last decade. The �rst prototype of such schemes is Lax-Friedrichs scheme. Such

scheme is more dissipative than �rst order Godunov scheme, but it is certainly easier to

implement, since it does not require the knowledge of the charactersitic decomposition

of the system or the knowledge of the (exact or approximate) solution to the Riemann

problem.

Second order central schemes on staggrered grid have been derived independently by

Nessyahu and tadmor (NT) [18] for the one space dimension and by Jaing and Tadmor (JT)

[11] for the two space dimensions. Both NT and JT schemes do not require the solution of

the Riemann problem. These schemes are very simple and eÆcient. It provide sharp shock

resolution and can be easily used for systems for which the charactersitic decomposition is

not known. Only an estimate of the largest eigenvalue of the jacobian matrix is necessary,

in order to satisfy a suitable CFL condition.

NT scheme is obtained by piecewise linear non-osicllatory reconstruction from cell averages,

and by the mid-point rule to compute the time integrals. Forward Euler scheme is used to

compute the predictor value of the �elds at the node of the midpoint rule. A generalization

of NT schemes to the sytems with source term can be easily obtained by including the e�ect

of the source predictor, and by using a quadrature formula to approximate the source term,

see Liotta et al. [16]. In this paper we apply the central scheme to solve the one-dimensional

reduced BPE and its moment system.

First Order Central (Lax-Friedrichs) Scheme:

Let us consider a spatial grid de�ned by node xi = i�x and cells Ii =
h
x
i� 1

2

; x
i+

1

2

i
.

Consider also a time discretization with tn = n�t. Let  n

m;i
=  m(tn; xi) and �� 

n

m;i
=

�� m(tn; xi) ; � 2 fR;Ng ; be the corresponding discrete average values of the phase

density  m(tn; x) and equilibrium phase densities �� m(tn; x) in each cell Ii at time tn,
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respectively. The integration of the reduced BPE (43) over the control volume [xi; xi+1]�
[tn; tn+1] gives the �rst order central scheme as

 n+1

m;i+
1

2

=
1

2

�
 n

m;i
+  n

m;i+1

�
� �

�
Fn

m;i+1
� Fn

m;i

�
+
�t

2

�
Sn
m;i

+ Sn

m;i+1

�
; (58)

where the force F and the source S are given by

Fn

m;i
= c�m 

n

m;i
; Sn

m;i
=
X

�2R;N

1

��

�
�� 

n

m;i
�  n

m;i

�
: (59)

In order to get the moments from this discrete phase density at any time tn we use the

Riemann sums (49). Again the CFL condition is �t = �x

2
.

Second Order Extension of the Scheme:

Starting with a piecewise-constant solution in time and space, one reconstruct a piecewise

linear (MUSCL-type) approximation of the form (50). The integration of the reduced BPE

(43) over the control volume [xi; xi+1]� [tn; tn+1] gives

 n+1

m;i+
1

2

= n

m;i+
1

2

+
�

�t

0
@ tn+1Z

tn

Fm;i(t)dt�

tn+1Z
tn

Fm;i+1(t)dt

1
A +

1

�x

xi+1Z
xi

tn+1Z
tn

Sm(t; x) dt dx ;

(60)

where � = �t

�x
, and

Sm(t; x) =
X

�2R;N

1

��
(�� m(t; x)�  m(t; x)) ; (61)

x

t

xi

x
i+

1

2

xi+1

 
n

m;i
(x)

 
n

m;i

 
n+1

i+
1

2

 
n

m;i+1

 
n

m;i+1
(x)

1

�x
 
x

m;i

Figure 2: Second Order Reconstruction
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The averaging of the linear data (50) at t = tn, yields

 n

m;i+
1

2

=
1

�x

xi+1Z
xi

 n

m
(x)dx

=
1

�x

0
BB@

x
i+1

2Z
xi

 n

m
(x)d� +

xi+1Z
x
i+1

2

 n

m
(x)d�

1
CCA

=
1

2
( n

m;i
+  n

m;i+1
) +

1

8
( x

m;i
�  x

m;i+1
) : (62)

The integral for the 
uxes in (60) are discretized by midpoint rule. While for the integrals

of the source term we use quadrature formula which is midpoint in time and trapezoidal

rule in space. Thus we have

tn+1Z
tn

Fm;i(t)dt � F
n+

1

2

m;i
�t +O(�t)3 : (63)

xi+1Z
xi

tn+1Z
tn

Sm(t; x) dtdx �
1

2

�
S
n+

1

2

m;i
+ S

n+
1

2

m;i+1

�
�t�x +O(�t)3 : (64)

By Taylor expansion and BPE (43), we have

 
n+

1

2

m;i
=  n

m;i
+
�t

2
( n

m;i
)t +O(�t)2 =  n

m;i
�
�

2
Fx

m;i
+
�t

2
Sn
m;i

+O(�t)2 : (65)

This may serve as our approximate midvalues  
n+

1

2

m;i
within the permissible second-order

accuracy requirement. Here, 1

�x
Fx

m;i
stands for an approximate numerical derivatives of

the 
ux Fm;i,
1

�x
Fx

m;i
=

@

@x
Fm;i +O(�x) :

The 
uxes Fx

m;i
are computed by applying the min-mod limiter to each of the component

of F , i.e.,

Fx

m;i
=MM

�
��F

m;i+
1

2

;
�

2

�
�F

m;i� 1

2

+�F
m;i+

1

2

�
; ��F

m;i� 1

2

�
:

Here, � denotes the forward di�erencing, �F
m;i+

1

2

= Fm;i+1�Fm;i, and MM denotes the

min-mod nonlinear limiter given by (52).

In summary, this family of central di�erencing scheme takes the easily implemented predictor-

corrector form,

 
n+

1

2

m;i
=  n

m;i
�
�

2
Fx

m;i
+
�t

2
Sn
m;i

; (66)
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 n+1

m;i+
1

2

=
1

2
( n

m;i
+  n

m;i+1
) +

1

8
( x

m;i
�  x

m;i+1
)

+ �

�
F

n+
1

2

m;i
�F

n+
1

2

m;i+1

�
+
�t

2

�
S
n+

1

2

m;i
+ S

n+
1

2

m;i+1

�
: (67)

In order to get the moments from this discrete phase density at any time tn we use the

Riemann sums (49).

5 Moment system of the One-Dimensional BPE

In this section we intend to solve the intial and boundary value problems of the moment

system (17) of BPE in one-dimensional case. In this case the intial phase density at

each time step is taken to be the eqilibrium phase density (44) of phonons �N . In one

dimensional case we can write (17) for �R !1 as

@e

@t
+
@Q

@x
= 0 ;

@Q

@t
+
@ (c2N)

@x
= 0 ; (68)

N =
5

3
e�

4e

3

s
1�

3

4

�
Q

ce

�
2

:

Given the piecewise constant initial data for the moments en
i
= e(tn; xi) and Q

n

i
= Q(tn; xi)

at any time tn in each cell Ii, we can calculate the intial phase density as  n

m;i
= �N 

n

m;i
.

The inital phase density at the next time step is obtained by using the conservative formula

(47) with zero collision term, i.e,

 n+1

m;i
=  n

m;i
� �

�
Fn

m;i+
1

2

� Fn

m;i� 1

2

�
; (69)

where � = �t

�x
. In order to add the phonon-phonon collisions to the collision-free phonon

transport, we use the force term F as a convex combination of the form

Fn

m;i+
1

2

= (1� �)F e

m;i+
1

2

+ �Ff

m;i+
1

2

; 0 � � � 1 : (70)

Here F e is the equilbrium 
ux obtained from the equilibrium phase density �N . While,

Ff is free-
ight (collision free) force terms. Here � is adjustable parameter. We have

also used similar idea in [15] for the solution of the ultra-relativistic Euler equations.

Theoritically, the parameter � should depend on the real 
ow situation: in equilibrium

and smooth region, the use of � � 0 is physically resonable, and in discontinuity region, �

should be close to 1 in order to have enough numerical dissipation to recover the smooth

shock transition. A possible choice for � can be taken as a function of the energy density

di�erence, such as the switch function in JST scheme. One possible choice for � can be

� = 1� exp

�
��

jel � erj

el + er

�
; (71)

15



where � is some constant and el and er are the energy density jump accross the the cell

interface. If the natural CFL condition �t � �x

2
is satis�ed, then

Ff

m;i+
1

2

=
c

2

�
�m 

n

m;i
+ �m 

n

m;i+1
� j�mj� 

n

m;i

�
: (72)

As a simple particle collisional model, we can imagin that the particles from the left-

and right-hand sides of a cell interface collapse totally to form an equilibrium state. In

order to de�ne the equilibrium state at the cell interface, we need �rst to �gure out the

corresponding macroscopic quantitires ee
�+

1

2

and Qe

�+
1

2

there, which are the combination of

the total energy and momentum of the left and right moving beams. Thus we have

ee
i+

1

2

(tn) = e+
i
(tn) + e�

i+1
(tn) ; Qe

i+
1

2

(tn) = Q+

i
(tn) +Q�

i+1
(tn) ; : (73)

where for 
n
i
=

F
n
i Q

n
i

4 c e
n
i

we obtain from (40)

e�
i
(tn) =

en
i

2

(
n
i
)2 � 3
n

i
+ 3

(
n
i
)2 + 3

(1� 
n
i
)3 ; Q�

i
(tn) =

cen
i

4

3� 
n
i

(
n
i
)2 + 3

(
n
i
� 1)3 : (74)

The \+" sign in (74) means that the integration limits for � in (40) are taken from 0 to 1,

while the \�" sign means that the integration limits for � are ranging from �1 to 0. Thus
we have

F e

m;i+
1

2

= c�m�N (tn; e
e

i+
1

2

; Qe

i+
1

2

) : (75)

Using the relations (72) and (75) in conservative formula (69) we obtain the phase density at

the next time step. Using the Riemann sums (49), we get the moments en+1
i

andQn+1

i
at the

next time step. These moments are then used in the equilibrium phase density (44) in order

to prepare the initial phase density for the next time step, i.e.,  n+1

m;i
= �N (e

n+1

i
; Qn+1

i
; �m).

The procedure for the second order accuracy is exactly the same as given in the previous

section. Also the modi�cation of the central scheme for the moment system is just to

neglect the collision term S in (66) and (67). Therefore we omit these discussions here.

5.1 Application of Boundary Conditions

Since we are using the conservative schemes, therefore the application of the boundary

conditions is not complicated for the moment system. For the illustration of the boundary

conditions we consider half space. We will discuss the boundary conditions only at the

left boundary x = 0, however the procedure is similar for the other boundary and in

multi-dimensional case. We consider the boundary x = 0 as a cell interface. We name the

moments at the auxiliary cell IA by en
A
and on Qn

A
at the left of the boundary x = 0 at

time tn. We denote the values of the moments at the wall x = 0 by en
w
and Qn

w
. Once we

have the values of the moments at the auxiliary elements, we can calculate the equilibrium

phase density at that element. According to (73) we have the conditions

ew(tn) = e+
A
(tn) + e�

1
(tn) ; Qw(tn) = Q+

A
(tn) +Q�

1
(tn) ; : (76)

16



where e� and Q� can be obtained from (74) for a particular element. The �elds en
1
and Qn

1

on the right-hand side of the wall are known from the initial data. We have the following

boundary conditions.

Re
ecting Boundary Conditions

In this case we need the heat 
ux at the wall to be zero. Thus we take en
A
= en

1
and Qn

A
=

�Qn

1
, which is equivalent to  A(tn; �m) = �N (e

n

1
; jQn

1
j;��m). This gives us the phase

density at the auxiliary element for the re
ecting boundary conditionas in our scheme.

Out
ow Boundary Conditions

In this case we need the same values on both sides of the wall. Thus we take en
A
= en

1
and

Qn

A
= Qn

1
, which is equivalent to  A(tn; �m) = �N (e

n

1
; jQn

1
j; �m). This gives us the phase

density at the auxiliary element for the out
ow boundary condition.

In
ow Boundary Conditions

In this case if we are given the values of en
w
and Qn

w
at the wall then we can use the equations

(76) in order to �nd en
A
and Qn

A
. However, in experimental point of view en

w
and Qn

w
can

not be given simultaneously. Either the energy density en
W

is controlled at the wall, or the

wall is equipped with a procedure of Joule's heat and thus the heat 
ux is prescribed. Here

we consider the case that en
w
is given from the experiment but not Qn

w
. It turns out that

we require the continuity condition en
A
= en

w
at each time step tn. Using (74) we rede�ne

an =
F n

A
Qn

A

4 c en
A

; f(an) =
1

2

(an)2 � 3an + 3

(an)2 + 3
(1� a)3 ;

then (76)1 with e
n

A
= en

w
gives

en
w
= en

A
f(an) + e�

1
(tn) ;

which implies

1� f(an) =
e�
1
(tn)

en
w

: (77)

We know the right-hand side of this equation. Also f(a) is monotonically increasing with

f(�1) = 0 and f(1) = 1, therefore the solution of the above equation only exist whenever

the right-hand side is out of the range [0; 1]. We use Newton method to solve this equation

for the unknown an. Finally we determine the auxiliary �eld Qn

A
according to

Qn

A
=

4an

(an)2 + 3
en
A
: (78)

Once we have the auxiliary �elds en
A
and Qn

A
, then we can calculate the auxiliary phase

density by  A(tn; �m) = �N (e
n

1
; Qn

1
; �m).

6 Numerical Examples

In order to validate our results obtained in the previous sections, we present some numerical

test cases. We consider the numerical test cases for the BPE, as well as for the hyperbolic
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moment system. The initial data in Subsections 6:1� 6:2 are given for the BPE, while the

IBVP data in Subsections 6:3� 6:4 are given for the moment system.

6.1 Energy Pulse

Here we assume that �R =1, so that from the physical point of view, we study a phonon

gas in a pure crystal at low temperature. Since there are no lattice impurities, di�usion

cannot appear. In particular, the propagation of heat behaves like a wave phenomenon.

Further we assume that the phase density only depends on x = x1. In order to simulate

the problem for the BPE, we consider the following three types of macroscopic initial data

for energy density e and the momentum density Q in the spatial domain 0 � x � 2.

Problem 1:

The initial data are

e(0; x) =

�
1:5 if 0:99 � x � 1:01

1:0 otherwise
; Q(0; x) = 0:0 : (79)

Furthermore, the Debye speed c is set to 0:5. We use N� = 200 and Nx = 100, where N�

and Nx are the number of dicretizations in �� and x�space.

0 1 2
1

1.1

1.2

1.3

1.4

1.5

1.6
initial  data

Figure 3: Initial energy pulse

Figures 4 shows the spatial dependence of the energy density, heat 
ux and momentum 
ux

at di�erent times for the relaxation time �N = 0:5. While Figures 5 gives the distribution

functions  and �N at time t=1.2.

Problem 2:

The initial data are

e(0; x) = 2:5e�40(x�1:0)
2

; Q(0; x) = 0:0 ; (80)

where c = 1:0. We use N� = 200 and Nx = 100. Figures 6 shows the spatial dependence

of the energy density, heat 
ux and momentum 
ux at time t = 0:5.

Problem 3:
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The initial data are

e(0; x) = 2 + cos(4�x) ; Q(0; x) = 0:0 ; (81)

where c = 1:0. We use N� = 200 and Nx = 100. Figures 7 shows the spatial dependence

of the energy density, heat 
ux and momentum 
ux at time t = 0:5.

6.2 Two Interacting Heat Pulses

This test problem demonstrates the interaction of two heat pulses, which leads to a large

increase of the energy density at the collision point during a short time interval. The initial

data are

e(0; x) =

8>>>><
>>>>:

1 ; x � 0:3

2 ; 0:3 � x � 0:4

1 ; 0:4 � x � 0:6

2 ; 0:6 � x � 0:7

1 ; x � 1:0

; Q(0; x) =

8>>>><
>>>>:

0 ; x � 0:3

1 ; 0:3 � x � 0:4

0 ; 0:4 � x � 0:6

�1 ; 0:6 � x � 0:7

0 ; x � 1:0

: (82)

We solve the BPE for the above problem at time t = 0:2 for two values of �N , i.e., �N = 1

and �N = 0:1, while �R = 1:0. Figure 8 shows the results. From the comparison of the

initial and �nal curves of energy density, we observe a large increase of the energy density

e at the collision point x = 0:5.

6.3 Re
ection of a Single Shock

Here consider a single shock solution for the moment system with re
ecting boundary

conditions at the lower boundary x = 0. The initial data are

(e; Q)(0; x) =

(
(1; 0) ; x � 0:5 ;�
2;� 1p

3

q
3

p
2�1p
2+1

�
; x � 0:5 :

(83)

This single shock data was obtained in [7] by using Rankine-Hugoniot jump conditions.

The computational domain is 0 � x � 1. Here we take 200 discretizations in velcity � and

200 mesh points in x�space. Figure 9 show the results in time range 0 � t � 1:7. While

Figure 10 show the comparison of the results from upwind and central schemes at time

t = 1:7. We take � = 1:0 in equation (70) which is a collision-free transport at the cell

interface.

6.4 Further Examples of IBVP for the Moment System

In the following numerical problems we apply the in
ow boundary conditions to the mo-

ment system. We observe the following phenomena:
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a) the formation and steeping of shock fronts,

b) the speed of shock front is apparently larger than cp
3
,

c) the broadening of initial heat pulses at later times.

Test Case 1:

This problem represent the propagation of heat pulse

ew(t) =

8<
:

1 ; t � 0:0 ;

3 ; 0:0 < t � 0:5 ;

1 ; t > 0:5 :

(84)

which is generated at lower boundary. The initial data are e0 = 1 and Q0 = 0, and the

computational domain is 0 � x � 1:5. Note that only ew(t) is prescribed, while Qw(t) is

calculated according to (77) and (78). Figure 11 gives the results. The �rst row in Figure

11 show the boundary data, while the second row illustrate the solution at t = 1:5. We

observe that the pulse front remains a shock moving with speed 0:72c, which is con�rmed

by the shock conditions in [7]. The rear side of the pulse changes into rarefaction wave.

We take � = 0:5 in equation (70).

Test Case 2:

Here we create a periodic heat pulse

ew(t) = 2� cos(8�t) ; (85)

at the lower boundary. The initial data are again e0 = 1 andQ0 = 0, and the computational

doamin is 0 � x � 1:5. Again ew(t) is prescribed but Qw(t) is calculated according to (77)

and (78). Surprisingly even in this case Qw(t) meet the value which can be obtained by

shock conditions in [7]. Figure 12 gives the results. The �rst row in Figure 12 show the

boundary data, while the second row illustrate the solution at t = 1:5. The formation and

steepening of shock fronts is clearly visible. We take � = 0:5 in equation (70).

7 Conclusions

In this paper we have derived �rst- and second-order �nite volume schemes for the solution

of the reduced discrete velocity model of the Boltzmann-Peierls equations in one space

dimension. The �rst reduction of the BPE reduces its moment integrals to surface integrals

over the unit sphere. This reduction can be obtained without further assumptions on the

initial data. Moreover we can obtained a second reduction of the already reduced BPE

which is looking much simplier than the �rst one, but requires the additional assumption

of a one-dimensional 
ow. Using special coordinates which when adapted for this one-

dimensional 
ow, we can reduce the surface integrals for the moments to simple one-

fold integrals ranging over the compact interaval �1 to 1. We have replaced this one-

dimensional continuous-velocity BPE to a discrete-velocity model. This discrete-velocity

model was then discretized in space and time by using explicit �nite volume schemes. The

numerical implementation of the �rst and second order upwind and central schemes for the
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initial value problems of the one-dimensional discrete-velocity model of BPE was found to

be very simple due to the reduction of the actual BPE. However, the application of the

boundary conditions for the BPE equation are complicated and need further study. On the

other hand, we have solved the IBVP of the dervied hyperbolic four-�eld moment system.

The application of the boundary conditions to the conservative schemes for the moment

system are straightforward. We have used the kinetic approach in order to prescribe these

boundary conditions. In experiments either energy density (temperature) or heat 
ux can

be controlled on the boundary but not both simultaneously. To over come that problem

we have used the continuity condition. Using that continuity condition and the initial data

on the right of the wall we can easily obtain the other quantity. In this paper we have

presented the case where the energy density is given at the wall but not the heat 
ux. It

was found that after very short time the energy density and heat 
ux were related to each

other according to Rankine Hugoniot Jump conditions, [7]. We have performed several

numerical test case computations. It was found that the �rst order upwind scheme gives

better resolution as compared to the �rst order central (Lax-Friedrichs) scheme. However,

the second order central and upwind schemes have almost the same resolution. Both

upwind and central schemes were found to be simple, compact, and easy to implement.

The future tasks are the extension of the schemes to multi-dimensions and the application

of the appropriate boundary conditions to the BPE.
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Figure 4: Evolution of enrgy, heat 
ux and momentum 
ux pulses at �N = 0:5.
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Figure 6: Evolution of energy and heat and momentum 
uxes.
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Figure 9: A single shock re
ection using second order upwind scheme.
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Figure 11: Creation of heat pluse
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Figure 12: Periodic boundary conditions
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