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Abstract 

A fifth-order system is considered for which the existence of a set of bounded 
trajectories that are neither periodic nor almost periodic is proven by means of 
analytical methods. The set is situated in the region of dissipation and has a 
positive Lebesgue measure. 

Many numerical results of investigation of strange attractors of dynamical systems with 
quadratic nonlinearities have been received by now [Lorenz, 1963; Schuster, 1984; Sparrow, 
1982; Dolzhansky et al., 1974]. 
In this paper a fifth-order autonomous system with nonlinearities of quadratic type is 
considered. It is demonstrated by analytical methods that the system has a set of bounded 
trajectories which are neither periodic nor almost periodic in any sen~e [Bohr, 1932; 
Osipov, 1992]. It is also shown that this set of trajectories is situated in dissipative 
region, i.e. in the region of contraction of volumes. We have used here certain ideas of 
0. Perron [Perron, 1930], which were applied by him in order to investigate of irregular 
·systems. 

Consider the system 

u -u2 
' -uz2 , 

uz1 , 

z3 -az3 , 

y - (-2a + z1 + z2)Y + z~ - f(y). 

(1) 

*This work was supported by Institut fur Angewandte Analysis und Stochastik, Berlin and the Fund 
of Fundamental Investigations of the Russian Federation. 
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Here 

{ 

0, for IYI ~ e, 
f(y)= v(y-e)2 , for y ~e, 

-v(y+c;)2 , for y ~ -e, 

where a, v and e are positive numbers. 

Proposition 1 
All trajectories of system {1) with initial data u(O) > 0 are bounded on the interval (0, +oo). 

Proof. Integrating the first three equations of system (1) we have 

1 
u(t) = t+u(o)-1.;i 

Hence it follows that functions u(t), z1(t), z2(t) are bounded fort ~ 0. 

Since z3(t) = e-atz3 (0) function z3(t) is bounded as well. For function y2(t) we have the 
relation 

(2) 

From the fact that z1(t), z2(t), z3(t) are bounded and from the form of f(y) it follows 
that the expression (2) is negative for great enough values ly(t)I ~ a. That is why if 
ly(to)I ~a for a certain t~ ~ 0 then ly(t)I ~ ly(to)I for all t ~ta. Thus the proposition is 
proven. D 

Note that the four first equations of the system may be integrated in a closed form 

u(t) 

z1(t) 
z2(t) 
Z3(t) 

1 
t + u(0)-1 ' 

Acoslog(t + u(Ot1) - Bsinlog(t + u(Ot1), 
A sin log( t + u(Ot1

) + B cos log( t + u(Ot1 
), 

e-atz3(0). 

where the consta:nts A and B can be determined from the initial data z1(0), z2(0). 

Note the following obvious properties of the solutions 

lim u(t) = 0, t-+oo 

lim zi(t) = 0, i = 1, 2, 3. t-+oo 

Proposition 2 

(3) 

For the solutions of system {1) with initial data satisfying the inequalities u(O) > 0, 
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Z3(0) > 0, y(O) > 0, A > o, B > o,_ A+ 2B < 2a there exists a sequence {tk}, tk ~ +oo 
such that 

(4) 

Proof. First of all we must note that from the inequalities u(O) > 0, z3(0) > 0 it follows 
that u(t) > 0, z3(t) > 0, Vt?:_ 0. Besides if y(t) == 0 we have y(t) == z5(t) > 0. That is 
why y(t) > 0, Vt?:_ 0. 

We shall consider at first the case when v = 0, i.e. f (y) = 0. Then a solution y( t) may 
be written in the form 

y(t) == exp[-2at + (t + u(Ot1)[Asinlog(t + u(Ot1
) + B coslog(t + u(Ot1

)]] 

x ( C + l exp[-(r + u(Ot1
) (Asinlog(r + u(Ot1

) 

+ B cos log( r + u(Dt1
) )] z~(O) dr) . (5) 

Here C is a constant which depends on y(O). Let us use an obvious inequality 

la' exp[-( r + u(Ot1 ))(A sin log( r + u(Ot1
) + B cos log( r + u(Ot1 

))] dr 

~ l exp[( A+ B)(r + u(Dt1
))] dr 

and let tk + u(Ot1 == exp(27rk). Since in this case Asinlog(tk + u(Ot1
) == 0 we shall get 

y(tk) ~ exp[-2atk + B(tk + u(Ot1
)] 

X ( C + z~(O) l exp[( A+ B)( 'T + u(Ot1 
)] dr) . 

Hence and from the inequality 2a > A+ 2B it follows that ( 4) is true in case v == 0. 

Let us compare now the solution y0(t) of system (1) corresponding to v == 0 and the· 
solution Yv(t) of system (1) corresponding to v > 0. We suppose here that Yo(O) == Yv(O). 

From the form of function f(y) we get that iJo(t) ?:_ Yv(t), Vt?:_ 0. Consequently, Yo(t) ?:_ 
Yv(t), Vt?:_ 0. Hence and from the positiveness of Yv(t) it follows that if the relation (4) 
holds for v = 0 then it holds for any v > 0 as well. The proposition is proven. D 

Proposition 3 
For the solutions of system {1) with initial data satisfying the inequalities u(O) > 0, 
z3(0) > 0, y(O) > 0, A > 0, B > 0, 2a + B(l + e-'lf) < A(l + e-7r /2) there exists a 
sequence {ti}, ti ~ +oo such that 

y(ti) ?:_ e, (6) 

Proof. Suppose the opposite, i.e. suppose that the inequality (6) is false. Then without 
loss of generality we may affirm, that y(t) ~ e, Vt ?:_ 0. Then the solution y(t) may be 
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represented in the form of (5). Lett; +u(o)-1 = exp(2?rj +?r /2). In this case the following 
estimates are true: 

exp[-2at; +(ti+ u(Ot1 )(Asinlog(ti + u(Of1
) + B cos log( ti.+ u(Of1

))] 

~ exp[u(Of1(A - B) + ti(-2a +A- B)], 

l; exp[-(r + u(Ot1 )(Asinlog(r + u(Ot1
) + Bcoslog(r + u(o)-1))] dr 

~ J:; exp[(A/2 - B)(r + u(Dt1
)] dr 

J 

~(ti+ u(Of1
) · (e-211"/3 

- e-11") exp [(A/2 - B)(ti + u(Of1 )e-11"]. 

Here a.;= (t; + u(Ot1 )e-11" - u(Ot1, {3; = (t; + u(Ot1 )e-211"/3 - u(Ot1 . 

It follows from the estimates that in case 2a + B(l + e-11") < A(l + e-11" /2) the relation 

)im y(ti) = +oo 
J--t+oo 

is true. This fact contradicts the assumption that y( t) ::; e, Vt ~ 0 aJ?.d therefore proves 
the affirmation (6). D 

Let us denote the trace of Jacobi matrix of the right handside of system (1) by Q( u, z1 , z2 , z3 , y ). 
It is not difficult to see that 

Q(u, z1, z2, Z3, y) = -2u - 3a + z1 + z2 - f'(y). 

It is also easy to see that for positive functions u(t) and y(t) the following inequality is 
true l Q( u( T ), z1( r), z2( r), za(r ), y( T )) dr 

::; -3at + (t + u(Ot1 )(Asinlog(t + u(Of1 ) + B coslog(t + u(Of1
)) 

- u(Ot1 (A sin log( u(Of1
) + B cos log( u(o)-1 

)). 

Hence it follows that if 3a >A+ B then 

lim rQ(u(r),z1(r),z2(r),z3(r),y(r))dr = -oo, 
t.-+oo Jo 

and we watch the asymptotic contraction of the volume [Leonov & Boichenko, 1992] on 
these trajectories. · 

So for the trajectories with the initial data which satisfy the hypotheses of propositions 
2 and 3, the conditions of dissipation are fulfilled and there exist sequences { tk} and {ti} 
for which the relations (3), ( 4) and (6) are true. It is evident that the trajectory, for which 
(3), ( 4) and (6) are satisfied, can be neither periodic nor almost periodic. 

Note that conditions on initial data, which guarantee that the latter satisfy the hypotheses 
of propositions (2) and (3) simultaneously, single out in the phase space a set of positive 
Lebesgue measure. 
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Let us denote by z31(t) and Z32(t) solutions of equations .Z3 = -az3 with initial data z31(0) 
and z32(0). Let y1(t) be a solution of system (1) with positive intial data u(O), A, B, z31(0), 
Y1(0) and y2(t) be a solution with positive initial data u(O), A, B, Z32(0), Y2(0) = y1(0). 

Proposition 4 (about strong instability) Suppose that following inequalities are fulfilled: 

2a + B(l + e-71") < A(l + e-71" /2), (7) 

(8) 
where µ E ( 0, 1). Suppose also that y1 ( 0) sufficiently small with respect to parameters 
a, e, v and initial data u(O), A, B, z31(0), Z32(0), µ. 

Then there exists a number T > 0 such that 

Proof Let us consider the time T > 0 such that y1(T) = e, y1(t) E (0, e), Vt E (0, T). 
Existence of this Twas proved in proposition 3. 

From the expression (5) it follows that y2(t) ~ y1(t) < e, Vt E (0, T). Hence, from the 
inequality (8) and from the expression (5) it follows that 

Y1(T) - Y2(T) > µy1(T) - µC exp[-2aT + 
+(T + u(Ot1)(Asinlog(T + u(Ot1

) + B coslog(T + u(Ot1
))] 

Here C -+ 0 as y1(0) -+ 0. Hence it follows that the proposition 4 is proven. D 

From the propositions 1 -.4 it follows that B-attractor of the set of trajectories wich has 
been considered above is the set of equilibria and heteroclinic orbits on the cylinders 

{u = O,zf + z~ = A 2 + B 2,z3 = 0,y ~ o}. 

See Fig.l. 

Figure 1. Element of B-attractor 
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Hence this B-attractor has simple trajectories. But in its small neighborhood there exist 
irregular trajectories. 

Proposition 5 
In w-limit set of solution with initial data satisfying the inequalities J~om propositions 2,3 
there exists at least one heteroclinic orbit. 

_Proof. Let us consider sufficiently large time T such that 

From the inequality for y( tk) in proof of proposition 2 it follows that there exists a positive 
number a such that 

y(T) ::; z~(O) exp ( -aT). 

From this inequality and from the expressions 

it follows that there exists positive number {3 (which depend on et, A, B) and TK > T such 
that 

lim y(TK) = 0. 
K__.oo 

Hence it follows that the heteroclinic orbit of equation 

iJ = IY - f(y) 

is for some 1 contained in thew-limit set of the solution under consideration. Thus the 
proposition is proven. D 

Conjecture 1 
In w-limit set of solution with initial data satisfying the inequalities from propositions 2,3 
there exists a lot of heteroclinic orbits. 

Conjecture 2 
Trajectories under consideration "fill densely" certain part of B-attractor. 
We underline the difference in essence between behavior of trajectories in neighborhood 
of B-attractor under consideration and behavior of trajectories in neighborhood of homo-
clinic orbits. See for example [Wiggins, 1990; Guckenheimer and Holmes, 1986; Chua et 
al., 1986]. 

It is not difficult to construct various dynamical systems with similar properties. For 
example 
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or 

u 

y 

-u2 
' 

UZ1, 

(-a + Z1 + Z2 )y + Z3 - f (y ). 

u -u2sign u, 
Z1 -UZ2 - f(z1), 

Z2 UZ1 - f(z2), 

Z3 -az3, 

y ( -b + Z1 + Z2 )y + Z3 - f ( Y) · 

Last system is dissipative also in sence of Levinson. In other words in this case there 
exists global compact attractor. 
See for example various definitions of dissipation in [Leonov et al., 1992]. 
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