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Abstract

We study a nonlinear stochastic partial di�erential equation whose solution

is the conditional log-Laplace functional of a superprocess in a random environ-

ment. We establish its existence and uniqueness by smoothing out the nonlinear

term and making use of the particle system representation developed by Kurtz

and Xiong (1999). We also derive the Wong-Zakai type approximation for this

equation. As an application, we give a direct proof of the moment formulas of

Skoulakis and Adler (2001).

1 Introduction and main results

1.1 Introduction

We study the behavior of a branching interacting particle system in a random envi-

ronment. For simplicity of notation, we assume that the particles move in the one

dimensional space R. The branching is critical binary, i.e., at independent exponential

times, each particle will die or split into two with equal probabilities. Between branch-

ings, the motion of the ith particle is governed by an individual Brownian motion Bi(t)

and a common Brownian motion W (t) which applies to all particles in the system:

d�it = b(�it)dt+ c(�it)dW (t) + e(�it)dBi(t); i = 1; 2; � � � (1.1)

where b; c; e are real functions on R (c; e � 0), W; B1; B2; � � � are independent

(standard) Brownian motions, �it is the position of the ith particle at time t. Let

MF (R) denote the set of all �nite Borel measures on R. It is established by Skoulakis

and Adler [18] that the high-density limit Xt of this system is the unique MF (R)-

valued solution to the following martingale problem (MP): Xt is a continuous process
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with initial X0 = � 2 MF (R) such that for any � 2 C2
b (R),

Mt(�) � hXt; �i � h�; �i �
Z t

0
hXs; b�

0 + a�00i ds

is a continuous martingale with quadratic variation process

hM(�)it =
Z t

0

�D
Xs; �

2
E
+ jhXs; c�

0ij2
�
ds

where a(x) = 1
2
(e(x)2 + c(x)2). Moment formulas are derived in [18]. A related model

is studied by Wang [19] and Dawson et al [4].

Log-Laplace equation has been used by many authors in deriving various properties

for superprocesses (cf. Dawson [2], Dynkin [5]). It is natural, as indicated in [18],

to derive properties of Xt by making use of the corresponding backward stochastic

log-Laplace equation (LLE):

ys;t(x) = f(x) +

Z t

s

�
b(x)@xyr;t(x) + a(x)@2xyr;t(x)� yr;t(x)

2
�
dr

+

Z t

s
c(x)@xyr;t(x)d̂Wr (1.2)

where f is the test function for the Laplace transform (cf. (1.8)), @x, @
2
x are the �rst

and second partial derivatives with respect to x and the last integral is the backward

Itô integral. Since a solution to (1.2) is not established in [18], the moment formulas

for Xt are derived based on other techniques. The establishment of a unique solution

to (1.2) is posed by [18] as an interesting challenge.

In this paper, we study the LLE (1.2). The main result is Theorem 1.2 in which we

prove that the log-Laplace transform of Xt is indeed given by the solution to (1.2).

For simplicity of notation, we consider the forward version of the LLE:

yt(x) = f(x) +

Z t

0

�
b(x)@xyr(x) + a(x)@2xyr(x)� yr(x)

2
�
dr

+

Z t

0
c(x)@xyr(x)dWr: (1.3)
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Stochastic partial di�erential equation (SPDE) is an important �eld of current re-

search. We refer the reader to the books of Da Prato and Tubaro [1], Kallianpur and

Xiong [11], Rozovskii [17] for an introduction to this topic. Many authors studied lin-

ear SPDEs. Here we only mention two recent papers: Gy�ongy [9] and Krylov [14]. Fine

properties of the solutions are established. Nonlinear SPDEs have also been studied.

Here we mention a sequence of papers by Kotelenez ([12], [13]) which are the closest

to the present setting. In this case, the derivative of the solution is not involved in the

noise term. To the best of our knowledge, the LLE (1.3) does not �t into the setups

of existing theory of SPDE.

1.2 Main results

First we study the existence and uniqueness for the solution to (1.3). We also establish

its particle system representation in the spirit of Kurtz and Xiong [15].

To begin with, we introduce some notations needed in this paper. Let H0 = L2(R) be

the set of all square integrable functions on R, and let H+
0 consist of all the nonnegative

functions in H0. Let Hm = f� 2 H0 : �
0; � � � ; �(m) 2 H0g. De�ne Sobolev norm on

Hm by

k�k2m =
mX
j=1

Z
j�(j)(x)j2dx:

Use h�; �i to denote the inner product in H0 or the integral of a function with respect

to a measure.

De�nition 1.1 An H+
0 -valued (measurable) process yt is a solution to (1.3) if for any

� 2 C1
0 (R),

hyt; �i = hf; �i+
Z t

0
hyr;�(b�)0 + (a�)00 � yr�i dr

+

Z t

0
hyr;�(c�)0i dWr; t � 0:
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Throughout this paper, we assume the following

Boundedness condition (BC): f � 0; b; c; e are bounded functions with bounded �rst

and second derivatives. Denote a bound by K. Further, e is bounded away from 0, c

has third continuous and bounded derivative, and f is of compact support.

Theorem 1.2 Suppose that the condition (BC) holds. Then

i) The LLE (1.3) has a unique solution yt(x).

ii) yt is the unique solution of the following in�nite particle system: i = 1; 2; � � �,

d�it = e(�it)dBi(t) + (2a0 � b� cc0)(�it)dt� c(�it)dWt; (1.4)

dmi
t = mi

t

�
(a00 � b0 � yt)(�

i
t)dt� c0(�it)dWt

�
; (1.5)

Yt = lim
n!1

1

n

nX
i=1

mi
tÆ�i

t
; a:s: (1.6)

where for any t � 0, Yt is absolutely continuous with respect to Lebesgue measure and

yt is the Radon-Nikodym derivative.

Next, we consider the Wong-Zakai type approximation to LLE (1.3):

y�t(x) = f(x) +

Z t

0

�
�b(x)@xy

�
r(x) + �a(x)@2xy

�
r(x)� y�r(x)

2
�
dr

+

Z t

0
c(x)@xy

�
r(x)

_W �
rdr (1.7)

where �b(x) = b(x) � 1
2
c(x)c0(x), �a(x) = 1

2
e(x)2 and for k� � r < (k + 1)�, _W �

r =

��1(W(k+1)� �Wk�).

Theorem 1.3 Suppose that the condition (BC) holds. Then for any t � 0,

E

Z
jy�t(x)� yt(x)j2dx! 0

as �! 0.
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Now, we consider the Wong-Zakai approximation to the measure-valued process X.

Let PW be the conditional probability measure given W . Let X� be the solution to the

following conditional martingale problem (CMP): X� is a continuous MF (R)-valued

process such that for any � 2 C2
b (R),

M �
t (�) � hX�

t ; �i � hX
�
0; �i �

Z t

0

D
X�

s; (
�b+ c _W �

s )�
0 + �a�00

E
ds

is a continuous PW -martingale with quadratic variation process

hM �(�)it =
Z t

0

D
X�

s; �
2
E
ds:

Let �R � R [ f@g be the one-point compacti�cation of R. Denote by MF (�R) the space

of all �nite measures on �R with the weak convergence topology. Note thatMF (R) can

be regarded as a subset of MF (�R) by extending the measure at @ as 0.

Theorem 1.4 As � ! 0, if X�
0 ! � in MF (R), then X� ! X in C([0;1);MF (�R))

in conditional law P
W for almost all W . As a consequence, we have

E
W exp (�hXt; fi) = exp (�h�; y0;ti) a:s: (1.8)

Finally, we derive the moment formulas of Xt. Note that these formulas have been

obtained in [18] by a di�erent method. Let p(t; x; y) and q(t; (x1; x2); (y1; y2)) be the

transition density functions of the Markov processes with generators

L1�(x) = b(x)�0(x) + a(x)�00(x)

and

L2F (x1; x2) = b(x1)@x1F + b(x2)@x2F

+a(x1)@
2
x1
F + a(x2)@

2
x2
F + c(x1)c(x2)@x1@x2F

respectively.
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Theorem 1.5 Suppose that the condition (BC) holds. For any bounded continuous

function f , we have

E(hXt; fi) =
Z Z

f(y)p(t; x; y)dy�(dx) (1.9)

and

E(hXt; fi
2
) (1.10)

=

Z
R4

f(y1)f(y2)q(t; (x1; x2); (y1; y2))dy1dy2�(dx1)�(dx2)

+2

Z Z t

0

Z
p(t� s; x; y)

Z Z
f(z1)f(z2)q(s; (y; y); (z1; z2))dz1dz2dyds�(dx):

We shall use K with a subscript to denote a constant. If it will be quoted, the

subscript will be the equation where it is de�ned. Otherwise, we shall use K1; K2; � � �

in the proof of a proposition and the sequence starts over again in the proof of a new

proposition. For example, K1 may appear in the proofs of two di�erent propositions

to represent di�erent constants.

Note that the Wong-Zakai approximation is not really needed to obtain the results in

Theorems 1.4 and 1.5. An easier approach in deriving (1.8) is available. We refer the

reader to Li et al [16] for the treatment of a related model which adds immigration

structure to a branching interacting system studied by Dawson et al [4] and Wang

[19]. In this paper, we use the Wong-Zakai approximation because this is part of the

conjecture in [18] and the main purpose of the current paper is to solve that conjecture.

Furthermore, Wong-Zakai approximation is of interest on its own.

2 Stochastic log-Laplace equation

In this section, we prove Theorem 1.2.
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2.1 Approximation

To establish the existence of a nonnegative solution to (1.3), we smooth and truncate

its nonlinear term and consider

�yt(x) = f(x) +

Z t

0

�
b(x)@x

�yr(x) + a(x)@2x
�yr(x)� (T�

�y�r(x))
�yr(x)

�
dr

+

Z t

0
c(x)@x

�yr(x)dWr (2.1)

where T�h(x) �
R
p�(x � z)h(z)dz, p�(x) = (2��)�1=2 exp

�
�1

2
x2
�
, �y�r(x) =

�̂yr
�yr(x)

and

�̂yr =

R
�yr(u)du ^ ��1R

�yr(u)du

with the convention that 0
0
= 0.

Lemma 2.1 (2.1) has a unique solution.

Proof: Consider the following in�nite particle system: i = 1; 2; � � �,
8><
>:

d�it = e(�it)dBi(t) + (2a0 � b� cc0)(�it)dt� c(�it)dWt

dm
�;i
t = m

�;i
t ((a

00 � b0 � T�
�Y �

t )(�
i
t)dt� c0(�it)dWt)

�Yt = limn!1
1
n

Pn
i=1m

�;i
t Æ�i

t

a:s:;

(2.2)

where, 8� 2M+(R), �
� 2M+(R) is de�ned by �� =

�(R)^��1

�(R)
�.

Now we show that the conditions of [15] are satis�ed by the coeÆcients of the system

(2.2). We only check those for

d�(x; �) � �(T���)(x):

The veri�cation for other coeÆcients is trivial.

Note that p�(x) � (
p
2��)�1 and

j@xp�(x)j �
1p
2��

sup
x
e�

x
2

2�

jxj
p
�
=

1p
2�e�

:
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Then

jd�(x; �)j =
����
Z
p�(x� y)��(dy)

���� � (
p
2���)�1:

Let

B 1 = fg 2 C(R) : jg(x)j � 1; jg(x)� g(y)j � jx� yj; 8 x; y 2 Rg

and

�(�1; �2) = sup
g2B1

jh�1 � �2; gij :

For g 2 B 1 , we have

jh��1 � ��2; gij �
�1(R) ^ ��1

�1(R)
jh�1 � �2; gij

+ jh�2; gij
������1(R) ^ �

�1

�1(R)
�
�2(R) ^ ��1

�2(R)

�����
� �(�1; �2) + jh�1 � �2; 1ij+

����1(R) ^ ��1 � �2(R) ^ ��1
���

� 3�(�1; �2):

Then

jd�(x1; �1)� d�(x2; �2)j

�
����
Z
(p�(x1 � y)� p�(x2 � y))��1(dy)

����+
����
Z
p�(x2 � y)��1(dy)�

Z
p�(x2 � y)��2(dy)

����
� (

p
2�e�2)�1jx1 � x2j+ (

p
2��)�1(e� ^ 1)�1=2�(��1; �

�
2)

� K1

q
jx1 � x2j2 + �(�1; �2)2:

By Kurtz and Xiong [15], �Yt is the unique solution to

h �Yt; �i = hf; �i+
Z t

0
h �Yr; (a�)00 � (b�)0 � (T�

�Y �
r )�i dr �

Z t

0
h �Yr; (c�)0i dWr:

Further, �Yt has density
�yt which belongs to H0.
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2.2 Boundedness

In this subsection, we establish a comparison result for SPDEs of the form (2.1). As a

consequence, we obtain the boundedness of �yt.

Lemma 2.2 For all r; x, we have

�yr(x) � kfk1; a:s:

where kfk1 is the supremum of f .

Proof: Let ~mi
t be given by

d ~mi
t = ~mi

t

�
(a00 � b0)(�it)dt� c0(�it)dWt

�

and let

~Yt = lim
n!1

1

n

nX
i=1

~mi
tÆ�i

t
; a:s:

Then m
�;i
t � ~mi

t and hence, for � � 0,

h �Yt; �i �
D
~Yt; �

E
: (2.3)

Similar to lemma 2.1, it is easy to show that

D
~Yt; �

E
= hf; �i+

Z t

0

D
~Yr; (a�)

00 � (b�)0
E
dr �

Z t

0

D
~Yr; (c�)

0
E
dWr: (2.4)

Let �t be given by

hf; �ti = hf; �i+
Z t

0
haf 00 + bf 0; �ri dr +

Z t

0
hcf 0; �ri d ~Wr (2.5)

where ~W is an independent copy of W . The existence of a solution to (2.5) follows

from [15]. By Itô's formula, we see that

e��h ~Yt;�i �
Z t

0
e��h ~Ys;�i

 
�
D
a ~Y 00

s + b ~Y 0
s ; �

E
+
�2

2

D
c ~Y 0

s ; �
E2!

ds

9



and

e��hf;�ti �
Z t

0
e��hf;�si

 
� haf 00 + bf 0; �si+

�2

2
hcf 0; �si

2

!
ds

are martingales. By a duality argument (cf. page 188 in Ethier and Kurtz [6]), we

have

Ee��h ~Yt;�i = Ee��hf;�ti:

This implies that
D
~Yt; �

E
and hf; �ti have the same distribution. Taking f � 1 in (2.5),

it is clear that Z
�t(x)dx =

Z
�(x)dx; a:s:

Then

hf; �ti � kfk1
Z
�(x)dx; a:s:

and hence D
~Yt; �

E
� kfk1

Z
�(x)dx; a:s:

This implies the conclusion of the lemma.

From the proof of the above lemma, we have

Corollary 2.3

sup
0�t�T

j�̂yt � 1j ! 0 a:s:

as �! 0.

Proof: From (2.4) and condition (BC), it is easy to see that

sup
0�t�T

D
~Yt; 1

E
<1; a:s:

The conclusion then follows from (2.3).

10



2.3 Estimates on Sobolev norm

Now we give an estimate for the Sobolev norm of �yt.

Lemma 2.4

E sup
0�t�T

k�ytk41 � K2:6: (2.6)

Proof: We freeze the nonlinear term and consider �yt(x) as the unique solution to the

following linear equation

z�t (x) = f(x) +

Z t

0

�
b(x)@xz

�
r(x) + a(x)@2xz

�
r(x)� (T�

�y�r(x))z
�
r(x)

�
dr

+

Z t

0
c(x)@xz

�
r(x)dWr: (2.7)

By Rozovskii [17], the solution has derivatives and their estimates depend on the

bounds of b; a; T�
�y�r; c and their derivatives. Since the bound of the derivative of

T�
�y�r may depend on �, we cannot apply Rozovskii's estimate directly. Instead, we

derive our estimate here. Note that

hz�t ; �i = hf; �i+
Z t

0

D
b@xz

�
r + a@2xz

�
r � (T�

�y�r)z
�
r; �

E
dr

+

Z t

0
hc@xz�r; �i dWr:

By Itô's formula, we have

hz�t ; �i
2

= hf; �i2 +
Z t

0
2 hz�r; �i

D
b@xz

�
r + a@2xz

�
r � (T�

�y�r)z
�
r; �

E
dr

+

Z t

0
2 hz�r; �i hc@xz

�
r; �i dWr +

Z t

0
hc@xz�r; �i

2
dr:

Adding over � in a complete orthonormal system (CONS) of H0, we have

kz�tk
2
0 = kfk20 +

Z t

0
2
D
z�r; b@xz

�
r + a@2xz

�
r � (T�

�y�r)z
�
r

E
dr

+

Z t

0
2 hz�r; c@xz

�
ri dWr +

Z t

0
kc@xz�rk

2
0dr:

11



Apply Itô's formula, we have

kz�tk
4
0 = kfk40 +

Z t

0
4kz�rk

2
0

D
z�r; b@xz

�
r + a@2xz

�
r � (T�

�y�r)z
�
r

E
dr

+

Z t

0
4kz�rk

2
0 hz

�
r; c@xz

�
ri dWr +

Z t

0
2kz�rk

2
0kc@xz

�
rk

2
0dr

+

Z t

0
4 hz�r; c@xz

�
ri

2
dr:

By (3.4) in [15], we have

jhz�r; b@xz
�
rij � K1kz�rk

2
0 and jhz�r; c@xz

�
rij � K2kz�rk

2
0: (2.8)

By (3.8) in [15] (with Æ = 0 there), we have

2
D
z�r; a@

2
xz

�
r

E
+ kc@xz�rk

2
0 � K3kz�rk

2
0:

Therefore,

kz�tk
4
0 � kfk40 +K4

Z t

0
kz�rk

4
0dr +

Z t

0
4kz�rk

2
0 hz

�
r; c@xz

�
ri dWr:

By Burkholder-Davis-Gundy inequality and (2.8), we then have

E sup
s�t

kz�sk
4
0 � kfk40 +K4

Z t

0
kz�rk

4
0dr +K5E

�Z t

0
kz�rk

4
0 hz

�
r; c@xz

�
ri

2
dr

�1=2

� kfk40 +K4

Z t

0
kz�rk

4
0dr +K6E

 
sup
s�t

kz�sk
2
0

�Z t

0
kz�rk

4
0dr

�1=2!

� kfk40 +K7

Z t

0
kz�rk

4
0dr +

1

2
E sup

s�t

kz�sk
4
0:

Therefore

E sup
s�t

kz�sk
4
0 � 2kfk40 +K2:9

Z t

0
Ekz�rk

4
0dr (2.9)

where K2:9 is a constant. Gronwall's inequality implies that

E sup
0�t�T

kz�tk
4
0 � K2:10: (2.10)

Let u�r = @xz
�
r. Note that

�yr(x)@x (T�(ŷ
�
ry

�
r)(x)) =

�yr(x)ŷ
�
rT�u

�
r =

�y�r(x)T�u
�
r:

12



Then

u�t(x) = f 0(x) +

Z t

0

�
b1(x)@xu

�
r(x) + a(x)@2xu

�
r(x) + c1(x)u

�
r(x)�

�y�r(x)T�u
�
r(x)

�
dr

+

Z t

0
(c(x)@xu

�
r(x) + c0(x)u�r(x)) dWr

where b1 = b+ a0, c1 = b0 � T�
�y�r. So

ku�tk
2
0 = kf 0k20 +

Z t

0
kc@xu�r + c0u�rk

2

0 dr

+

Z t

0
2
D
u�r; b1@xz

�
r + a@2xu

�
r + c1u

�
r �

�y�rT�u
�
r

E
dr

+

Z t

0
2 hu�r; c@xu

�
r + c0u�ri dWr:

Similar to arguments leading to (2.10), we have

E sup
0�t�T

ku�tk
4
0 � K2:11: (2.11)

The conclusion then follows from (2.10) and (2.11).

2.4 Existence and uniqueness

In this subsection, we prove the �rst part of Theorem 1.2. Let

zt(x) � z
�;�
t (x) � �yt(x)� �yt(x):

Then

zt(x) =

Z t

0

�
b(x)@xzr(x) + a(x)@2xzr(x)� (T�

�y�r(x)
�yr(x)� T�

�y�r (x)
�yr(x))

�
dr

+

Z t

0
c(x)@xzr(x)dWr:

Note that

T�
�y�r

�yr � T�
�y�r

�yr = �̂yr(T�
�yr)zr + �̂yr(T�zr)

�yr

+(�̂yr � �̂yr)(T�
�yr)

�yr + �̂yr(T�
�yr � T�

�yr)
�yr:

13



Similar to (2.9), we have

E sup
0�s�t

kzsk40 � K2:12

Z t

0
Ekzrk40dr + 3kfk41E

Z t

0

�Z
jT� �yr(x)� T�

�yr(x)j2dx
�2
dr

+K2:12E

Z t

0
j�̂yr � �̂yrj

4dr: (2.12)

As

T�
�yr(x)� T�

�yr(x) =

Z Z 1

0
@x

�yr(x + (�
p
�+ (1� �)

p
�)a)(

p
��

p
�)ad�p(a)da;

we have, when �; � ! 0,

Z
jT� �yr(x)� T�

�yr(x)j2dx � k@x �yrk20(
p
��

p
�)2 ! 0 (2.13)

here p(a) is the standard normal density. By Corollary 2.3 and the dominated conver-

gence theorem, we have

E

Z t

0
j�̂yr � �̂yrj

4dr! 0: (2.14)

It follows from Gronwall's inequality, (2.12), (2.13) and (2.14) that

E sup
0�t�T

k �yt � �ytk40 ! 0 as �; � ! 0:

Hence, there exists yt s.t.
�yt ! yt in H0.

Note that

h�yt; �i = hf; �i+
Z t

0
h�yr;�(b�)0 + (a�)00 � (T�

�y�r)�i dr

+

Z t

0
h�yr;�(c�)0i dWr:

We consider the limit of the nonlinear term only, since the other terms clearly converge

to the counterpart with �y replaced by y.

E

����
Z t

0

Z
�yr(x)(T�

�y�r)(x)�(x)dxdr �
Z t

0

Z
yr(x)

2�(x)dxdr

����
� E

Z t

0

Z
jT�(�y�r � yr)j(x) �yr(x)j�(x)jdxdr

14



+E

Z t

0

Z
jT�yr � yrj(x) �yr(x)j�(x)jdxdr

+E

Z t

0

Z
j�yr � yrj(x)yr(x)j�(x)jdxdr

! 0:

It is then easy to show that yt solves (1.2).

To prove the uniqueness, we assume that yt and ~yt are two solution to (1.3). Similar

to (2.12), we have

E sup
s�t

kyt � ~ytk40 � K2:15

Z t

0
Ekyr � ~yrk40dr: (2.15)

The uniqueness then follows from Gronwall's inequality.

Lemma 2.5

E sup
0�t�T

k@xytk40 � K2:11:

Proof: Note that

E sup
0�t�T

k@xytk40 = E

 
sup

0�t�T

X
i

h@xyt; �ii2
!2

= E

 
sup

0�t�T

X
i

hyt; �0ii
2

!2

= E

 
sup

0�t�T

X
i

lim
�!0

h�yt; �0ii
2

!2

� lim inf
�!0

E

 
sup

0�t�T

X
i

h�yt; �0ii
2

!2

= lim inf
�!0

E sup
0�t�T

k@x �ytk40

� lim inf
�!0

Ek@x �ytk40

� K2:11;

where f�ig is a CONS of H0.

15



2.5 Particle representation

In this subsection, we verify (ii) of Theorem 1.2. Let yt be the solution to (1.3) and

let Yt(dx) = yt(x)dx. Let (�
i
t; m

i
t) be given by (1.4, 1.5). Denote the process given by

the right hand side of (1.6) by ~Yt. Now we only need to verify that ~Yt coincides with

Yt. Applying Itô's formula to m
i
t�(�

i
t), it is easy to show that

D
~Yt; �

E
= hf; �i+

Z t

0

D
~Yr; (a�)

00 � (b�)0 � yr�
E
dr

+

Z t

0

D
~Yr;�(c�)0

E
dWr: (2.16)

By (1.3), we see that (2.16) holds with ~Yt replaced by Yt. Similar to last section, we

have uniqueness for the solution of (2.16). This proves Yt = ~Yt and hence, Yt has the

particle representation given in Theorem 1.2.

3 Wong-Zakai approximation

In this section, we prove Theorem 1.3.

3.1 Some estimates on y
�

t

For the convenience of the reader, we state a de�nition and a theorem which are

simpli�ed versions of a de�nition on page 141 and Theorem 4.6 on page 142 in the

book of Friedman [8]. Let

Lu = ~a@2xu+
~b@xu+ ~cu:

De�nition 3.1 A fundamental solution of the parabolic operator L�@=@t in R�[0; T ]

is a function �(x; t; �; �) de�ned for all (x; t) and (�; �) in R � [0; T ], t > � , satisfying

the following condition: For any continuous function �(x) with compact support, the

16



function

u(x; t) =

Z
R

�(x; t; �; �)�(�)d�

satis�es

Lu� @u=@t = 0 if x 2 R; � < t � T;

u(x; t)! �(x) if t! � + :

To state the next theorem, we need the following conditions:

(A1) There is a positive constant K such that

~a(x; t) � K for all x 2 R and t 2 [0; T ]:

(A2) The coeÆcients of L are bounded continuous functions in R � [0; T ].

(A3) The coeÆcients of L are H�older continuous in x, uniformly with respect to (x; t)

in compact subsets of R � [0; T ].

Theorem 3.2 Let (A1)-(A3) hold. Let g(x; t) be a bounded continuous function in

R � [0; T ], H�older continuous in x uniformly with respect to (x; t) in compact subsets,

and let �(x) be a bounded continuous function in R. Then there exists a solution of

the Cauchy problem

Mu � Lu(x; t)�
@u(x; t)

@t
= g(x; t) in R � [0; T ] (3.1)

with the initial condition

u(x; 0) = �(x) on R: (3.2)

The solution is given by

u(x; t) =

Z
Rn

�(x; t; �; 0)�(�)d� �
Z t

0

Z
Rn

�(x; t; �; �)g(�; �)d�d�:

17



Now we come back to our equation (1.7). We shall take

L = �a@2x + (�b+ c _W �)@x:

Lemma 3.3

Eky�t k
4
0 � K3:3: (3.3)

Proof: GivenW , let qW (y; t; x; s) be the fundamental solution of the parabolic operator

L� @t. Then, by Theorem 3.2 and (1.7),

y�t(x) =

Z
qW (x; t; y; 0)f(y)dy�

Z t

0

Z
qW (x; t; u; s)y�s(u)

2duds

�
Z
qW (x; t; y; 0)f(y)dy:

So

ky�tk
4
0 �

�Z �Z
qW (x; t; y; 0)dx

�
f(y)2dy

�2

=

Z Z �Z
qW (x1; t; y1; 0)dx1

Z
qW (x2; t; y2; 0)dx2

�
f(y1)

2f(y2)
2dy1dy2:

Note that qW (x; t; y; 0) = q�W (y; 0; x; t), q�W is the fundamental solution of L� + @t

where

L�� = �((�b + c _W �)�)0 + (�a�)00

= �(�b0 � �a00 + c0 _W �)�� (�b� 2�a+ c _W �)�0 + �a�00:

Let

d��t = e(��t )dBt � (�b� 2�a+ c _W �
t )dt:

By Feymann-Kac formula,

Z
q�W (y; 0; x; t)dx = EW

y;0 exp

�
�
Z t

0
(�b0 � �a00 + c0 _W �

r )(�
�
r)dr

�

� e2KtEW
y;0 exp

�
�
Z t

0
c0(��r)

_W �
rdr

�

18



here EW
y;0 denotes the conditional distribution of �

�
t givenW and ��0 = y. Hence (assume

t = (k + 1)�),

e�4Kt
E

�Z
q�W (y; 0; x; t)dx

�2

� E

�
exp

 
�2

kX
i=0

c0(��i�)(W(i+1)� �Wi�)

!

exp

 
�2

kX
i=0

Z (i+1)�

i�

Z r

i�

�
(2�a� �b)c00 + �ac000

�
(��s)ds

_W �
rdr

!

exp

 
�2

kX
i=0

Z (i+1)�

i�

Z r

i�
c00(��s)

�
e(��s)dBs � c(��s)

_W �
sds

�
_W �
rdr

!�

� (I1I2I3I4)
1=4

where

I1 = E exp

 
�8

kX
i=0

c0(��i�)(W(i+1)� �Wi�)

!
;

I2 = E exp

 
�8

kX
i=0

Z (i+1)�

i�

Z r

i�

�
(2�a� �b)c00 + �ac000

�
(��s)ds

_W �
rdr

!
;

I3 = E exp

 
�8

kX
i=0

Z (i+1)�

i�

Z r

i�
c00(��s)e(�

�
s)dBs

_W �
rdr

!

and

I4 = E exp

 
8

kX
i=0

Z (i+1)�

i�

Z r

i�
c00(��s)c(�

�
s)

_W �
sds

_W �
rdr

!
:

De�ne c�(s) = �8c0(��i�) for i� � s < (i + 1)�. Let ~P be the probability measure given

by

d ~P

dP
= exp

�Z t

0
c�(s)dWs �

1

2

Z t

0
jc�(s)j2ds

�
:

Then, by Girsanov formula,

I1 = ~E exp

�
1

2

Z t

0
jc�(s)j2ds

�
� exp

�
32kc0k21t

�
;

where ~E denotes the expectation under the measure ~P . Note that for � small, more

precisely, for

� < min

��
4k(2�a� �b)c00 + �ac000k1

��1=2
; (8kec00k1)

�1
�
;

19



we have

I2 � E exp

 
4k(2�a� �b)c00 + �ac000k1

kX
i=0

�jW(i+1)� �Wi�j
!

� E exp

 
2k(2�a� �b)c00 + �ac000k1

 
t+ �

kX
i=0

jW(i+1)� �Wi�j2
!!

� exp
�
2k(2�a� �b)c00 + �ac000k1t

� �
1� 4k(2�a� �b)c00 + �ac000k1�2

��k=2
� exp

�
10k(2�a� �b)c00 + �ac000k1t

�
;

I3 = EE
W exp

 
�8

kX
i=0

Z (i+1)�

i�
c00(��s)e(�

�
s)�

�1((i+ 1)�� s)(W(i+1)� �Wi�)dBs

!

� E exp

 
32

kX
i=0

Z (i+1)�

i�
c00(��s)

2e(��s)
2(W(i+1)� �Wi�)

2ds

!

� E exp

 
32kec00k21

kX
i=0

(W(i+1)� �Wi�)
2�

!

� �k
i=0(1� 64kec00k21�

2)�1=2

� exp
�
32kec00k21�t

�

and

I4 � E exp

 
8

kX
i=0

kcc00k1(W(i+1)� �Wi�)
2

!

� exp (32kcc00k1t) :

The conclusion then follows easily.

We now turn to the estimation on the norm of @xy
�
t .

Lemma 3.4 Suppose that fN(x) : x 2 Rg is a random �eld such that 9 � > 0; p > 1,

E(jN(x) �N(y)jp) � Kjx� yj1+�:

Then for any � > 0

E sup
x2R

(jN(x)jpe��jxj) <1:
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Proof: It follows from Theorem 4 in Ibragimov [10] that for any In = [n; n + 1],

 
E sup
x;y2In

jN(x)�N(y)jp
!1=p

� C

Z 1

0

Ku(1+�)=p

u1+1=p
du

� CKp=� � K1:

Note that

jN(x)�N(0)jpe��jxj �
 X

n

sup
y;z2In

jN(y)�N(z)je��jnj=p
!p

� (2(1� e��=p))(1�p)=p
X
n

sup
y;z2In

jN(y)�N(z)jpe��jnj=p:

Hence

E sup
x2R

(jN(x)�N(0)jpe��jxj)

� (2(1� e��=p))(1�p)=p
X
n

E sup
y;z2In

jN(y)�N(z)jpe��jnj=p

� (2(1� e��=p))(1�p)=p
X
n

K
p
1e

��jnj=p

� K
p
1 (2(1� e��=p))(1�2p)=p <1:

The conclusion of the lemma then follows easily.

Lemma 3.5

Ek@xy�tk
4
0 � K3:4: (3.4)

Proof: Note that

@xy
�
t = f 0 +

Z t

0

�
(�b0 � 2y�r + c0 _W �

r )@xy
�
r

+(�b + �a0 + c _W �
r )@

2
xy

�
r + �a@3xy

�
r

�
dr:

Let qW1 be the fundamental solution of L1 � @t where

L1� = �a�00 + (�b+ �a0 + c _W �
r )�

0 + (�b0 � 2y�r + c0 _W �
r )�:
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Then

@xy
�
t =

Z
qW1 (x; t; y; 0)f 0(y)dy:

Note that

L�1� = (�a�)00 � ((�b + �a0 + c _W �
r )�)

0 + (�b0 � 2y�r + c0 _W �
r )�

= �a�00 + (�a0 � �b� c _W �
r )�

0 � 2y�r�:

Similar to lemma 3.3, we have for any � and p > 1,

E

�Z
e�jxjqW1 (x; t; y; 0)dx

�p
� K1 (3.5)

and

Z
qW1 (x; t; y; 0)dy = E

W
0;x exp

�Z t

0
(�b0 � 2y�r + c0 _W �

r )(�
�;x
r )dr

�

� ek
�b0k

1

E
W
0;x exp

 
kX

i=0

Z (i+1)�

i�
c0(��;xr )dr _W �

i�

!

where �
�;x
t , with initial x, solves

d�
�;x
t = (�b + �a)(�

�;x
t )dt+ c(�

�;x
t ) _W �

t dt+ e(�
�;x
t )dBt:

Note that for i� � r � (i+ 1)�,

c0(��;xr ) = c0(�
�;x
i� ) +

Z r

i�
c00(��;xs )e(��;xs )dBs

+

Z r

i�

 
(�a+�b)c00 +

e2

2
c000
!
ds+

Z r

i�
cc00ds _W �

i�:

As

�����
kX

i=0

Z (i+1)�

i�

 Z r

i�

 
(�a� �b)c00 +

e2

2
c000
!
ds+

Z r

i�
cc00ds _W �

i�

!
dr _W �

i�

�����
�

kX
i=0

(�a� �b)c00 +
e2

2
c000

1

�(W(i+1)� �Wi�) +
kX

i=0

kcc00k
1
(W(i+1)� �Wi�)

2

�
1

4
logM(W )� k�b0k1;
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we have �Z
qW1 (x; t; y; 0)dy

�4
�M(W )N1(x;W )N2(x;W )

where

N1(x;W ) = E
W
0;x exp

 
�4

kX
i=0

c0(�
�;x
i� )(W(i+1)� �Wi�)

!

and

N2(x;W ) = E
W
0;x exp

 
�4

kX
i=0

Z (i+1)�

i�

Z r

i�
c00(��;xs )e(��;xs )dBs

_W �
rdr

!
:

By arguments similar to lemma 3.3, it is easy to see that M(W ) has �nite moments.

First take E
W and then take expectation with respect to W , for t 2 [i�; (i + 1)�] and

even integer p, we have

E j��;xt � �
�;y
t jp

� E j��;xi� � �
�;y
i� j

p +

Z t

i�
K1E j��;xs � ��;ys jpds

+pE

Z t

i�
(c(��;xs )� c(��;ys ))(��;xs � ��;ys )p�1 _W �

sds

� E j��;xi� � �
�;y
i� j

p +

Z t

i�
K2E j��;xs � ��;ys jpds

+p(p� 1)E

Z t

i�

Z s

i�
(c(��;xr )� c(��;yr ))2(��;xr � ��;yr )p�2drds��2(W(i+1)� �Wi�)

2

� (1 +K3�)Ej��;xi� � �
�;y
i� j

p:

By induction, we have

Ej��;xt � �
�;y
t jp � K2jx� yjp:

Therefore

E jNi(x;W )�Ni(y;W )jp � K3jx� yjp=2; i = 1; 2:

By lemma 3.4, we have

E sup
x
jNi(x;W )jpe��jxj � K4:

Therefore

E sup
x

�Z
qW1 (x; t; y; 0)dye��jxj

�4

23



� E

�
M(W ) sup

x
N1(x;W )e�2�jxj sup

x
N2(x;W )e�2�jxj

�

� K5:

Note that

Z
(@xy

�
t)(x)

2dx

�
Z �Z

qW1 (x; t; y; 0)jf 0(y)jdy
Z
qW1 (x; t; y; 0)dy

�
dxkf 0k1

�
Z �Z

e�jxjqW1 (x; t; y; 0)dx

�
jf 0(y)jdy sup

x

Z
qW1 (x; t; y; 0)dye��jxjkf 0k1:

Hence

�
Ek@xy�tk

4
0

�2
� kf 0k41E

�Z �Z
e�jxjqW1 (x; t; y; 0)dx

�
jf 0(y)jdy

�4

�E

�
sup
x

Z
qW1 (x; t; y; 0)dye��jxj

�4

� kf 0k41E

Z �Z
e�jxjqW1 (x; t; y; 0)dx

�4
jf 0(y)j2dy

�Z
jf 0(y)j2=3dy

�3
K5

� kf 0k41K1kf 0k20
�Z

jf 0(y)j2=3dy
�3
K5 <1:

This proves the conclusion of the lemma.

Corollary 3.6 i) For any � � 0 and p � 0, we have

E

����
Z
R

j@xy�t(x)j
1+�dx

����
p

� K3:6: (3.6)

ii)

Ek@2xy
�
tk

4
0 � K3:7: (3.7)

Proof: The proof of Lemma 3.5 can be modi�ed to verify i). ii) follows from the same

proof as well, note that i) implies Ek(@xy�t)2k40 � K3:6.
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3.2 Proof of Theorem 1.3

Now we prove Theorem 1.3. In this proof, the quantity h@2xz�r; fi for f smooth is

understood as hz�r; @2xfi.

To make use of Itô's formula, we need that y�t is adapted. We shall use y�t�� to replace

y�t . However, for simplicity of notation, we still use y�t .

Let z�t = y�t � yt. Then

hz�t ; �i =

Z t

0

D
b@xz

�
r + a@2xz

�
r � (y�r + yr)z

�
r; �

E
dr

+

Z t

0
hc@xy�r; �i _W �

r��dr

�
Z t

0
hc@xyr; �idWr �

Z t

0

�
1

2
cc0@xy

�
r +

1

2
c2@2xy

�
r; �

�
dr:

By Itô's formula, we have

hz�t ; �i
2

=

Z t

0
2 hz�r; �i

D
b@xz

�
r + a@2xz

�
r � (y�r + yr)z

�
r; �

E
dr

+

Z t

0
2 hz�r; �i hc@xy

�
r; �i _W �

r��dr �
Z t

0
2 hz�r; �i hc@xyr; �idWr

�
Z t

0
hz�r; �i

D
cc0@xy

�
r + c2@2xy

�
r; �

E
dr

+

Z t

0
hc@xyr; �i2 dr:

Add over � in a CONS of H0, we have

kz�tk
2
0 =

Z t

0
2
D
z�r; b@xz

�
r + a@2xz

�
r � (y�r + yr)z

�
r

E
dr

+

Z t

0
2 hz�r; c@xy

�
ri _W �

r��dr �
Z t

0
2 hz�r; c@xyri dWr

�
Z t

0

D
z�r; cc

0@xy
�
r + c2@2xy

�
r

E
dr

+

Z t

0
kc@xyrk20dr: (3.8)

We now estimate the second term on the right hand side of (3.8). For (i�1)� � r < i�,

note that

hz�r; �i =
D
z�(i�1)�; �

E
+

Z r

(i�1)�

D
b@xz

�
s + a@2xz

�
s � (y�s + ys)z

�
s; �

E
ds
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+

Z r

(i�1)�
hc@xy�s; �i _W �

s��ds

�
Z r

(i�1)�
hc@xys; �i dWs �

Z r

(i�1)�

�
1

2
cc0@xy

�
s +

1

2
c2@2xy

�
s; �

�
ds

and

hc@xy�r; �i =
D
c@xy

�
(i�1)�; �

E
+

Z r

(i�1)�

D
c@x(�b@xy

�
s + �a@2xy

�
s � (y�s)

2); �
E
ds

+

Z r

(i�1)�
hc@x(c@xy�s); �i _W �

s��ds:

Similar to (3.8), we have

hz�r; c@xy
�
ri �

D
z�(i�1)�; c@xy

�
(i�1)�

E

=

Z r

(i�1)�

D
c@xy

�
s; b@xz

�
s + a@2xz

�
s � (y�s + ys)z

�
s

E
ds

+

Z r

(i�1)�
kc@xy�sk

2
0
_W �
s��ds�

Z r

(i�1)�
hc@xy�s; c@xysi dWs

�
Z r

(i�1)�

�
c@xy

�
s;
1

2
cc0@xy

�
s +

1

2
c2@2xy

�
s

�
ds

+

Z r

(i�1)�

D
z�s; c@x(

�b@xy
�
s + �a@2xy

�
s � (y�s)

2)
E
ds

+

Z r

(i�1)�
hz�s; c@x(c@xy

�
s)i _W �

s��ds: (3.9)

Let t = k�. Then

E

Z t

0
2 hz�r; c@xy

�
ri _W �

r��dr

= E

k�1X
i=0

Z (i+1)�

i�
2 hz�r; c@xy

�
ri _W �

r��dr

= E

k�1X
i=0

2

Z (i+1)�

i�
(hz�r; c@xy

�
ri �

D
z�(i�1)�; c@xy

�
(i�1)�

E
) _W �

r��dr: (3.10)

Apply (3.9) to (3.10). We only consider the second, third and sixth terms in (3.9)

since it is easy to verify that the other terms result in quantities bounded by K
p
�.

Note that

E

k�1X
i=0

2

Z (i+1)�

i�

Z r

(i�1)�
kc@xy�sk

2
0
_W �
s��ds

_W �
r��dr
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� E

k�1X
i=0

2

Z (i+1)�

i�

Z i�

(i�1)�
kc@xy�(i�2)�k

2
0
_W �
s��ds

_W �
r��dr

+E

k�1X
i=0

2

Z (i+1)�

i�

Z r

i�
kc@xy�(i�2)�k

2
0dsdr�

�2(Wi� �W(i�1)�)
2

=
k�1X
i=0

�2Ekc@xy�(i�2)�k
2
0�
�2�

� E

Z t

0
kc@xy�rk

2
0dr (3.11)

where x � y means that jx� yj � K
p
�. Similarly

E

k�1X
i=0

2

Z (i+1)�

i�

Z r

(i�1)�
hz�s; c@x(c@xy

�
s)i _W �

s��ds
_W �
r��dr

� E

Z t

0
hz�r; c@x(c@xy

�
r)i dr: (3.12)

Note that

E

k�1X
i=0

2

Z (i+1)�

i�

Z r

(i�1)�
hc@xy�s; c@xysi dWs

_W �
r��dr

� E

k�1X
i=0

2

Z (i+1)�

i�

Z r

(i�1)�

D
c@xy

�
(i�2)�; c@xy(i�2)�

E
dWs

_W �
r��dr

� 2E

Z t

0
hc@xy�r; c@xyri dr: (3.13)

By (3.8), (3.10-3.13), we have

Ekz�t k
2
0 � K1

Z t

0
Ekz�sk

2
0ds+K2

p
�:

Gronwall's inequality then implies the conclusion of the theorem.

4 Log-Laplace transform of Xt

In this section we prove Theorem 1.4. Since X� solves the (CMP) de�ned in Section

1.2, it is easy to show that

E sup
s�t

hX�
s; 1i

4 � K1:
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For any � 2 Cc(R), it is then easy to show that

E hX�
t �X�

s; �i
4 � K2jt� sj2:

This implies the tightness of fX�g in C([0;1);MF (�R)). It is then easy to verify that

any one of the limit points solves the MP. The uniqueness for the solution to MP

implies the weak convergence of X�.

Now we prove (1.8). First we assume that � 2 H0 and �x X
�
0 = �. Let  be a bounded

continuous function on C([0; t]; R). Then

E (exp (�hXt; fi) (W )) = lim
�!0

E (exp (�hX�
t ; fi) (W ))

= lim
�!0

E

�
exp

�
�
D
�; y�0;t

E�
 (W )

�

= E (exp (�h�; y0;ti) (W )) :

For general �, we take �� 2 H0 converging to � in MF (R). Denote the solution of the

MP with � replaced by �� by X(�). Then

E (exp (�hXt; fi) (W )) = lim
�!0

E

�
exp

�
�
D
X

(�)
t ; f

E�
 (W )

�

= lim
�!0

E (exp (�h��; y0;ti) (W ))

= E (exp (�h�; y0;ti) (W ))

where the last equation follows since y0;t is bounded and continuous.

5 Moments of Xt

In this section we prove Theorem 1.5. Let y�t be the solution of

y�t (x) = �f(x) +

Z t

0

�
b(x)@xy

�
r (x) + a(x)@2xy

�
r (x)� y�r (x)

2
�
dr

+

Z t

0
c(x)@xy

�
r (x)dWr: (5.1)

28



Let zt and ht be solutions to

zt(x) = f(x) +

Z t

0

�
b(x)@xzr(x) + a(x)@2xzr(x)

�
dr

+

Z t

0
c(x)@xzr(x)dWr (5.2)

and

ht(x) =

Z t

0

�
b(x)@xhr(x) + a(x)@2xhr(x)� 2zr(x)

2
�
dr

+

Z t

0
c(x)@xhr(x)dWr: (5.3)

De�ne z�t = ��1y�t � zt. Then

z�t (x) =

Z t

0

�
b(x)@xz

�
r (x) + a(x)@2xz

�
r (x)

�
dr

+

Z t

0
c(x)@xz

�
r (x)dWr �

Z t

0
��1y�r (x)

2dr:

Similar to arguments in previous sections, we have

Ekz�t k
2
0 ! 0; as �! 0:

De�ne h�t = ��2(y2�t � 2y�t )� ht. Then

h�t (x) =

Z t

0

�
b(x)@xh

�
r (x) + a(x)@2xh

�
r (x)

�
dr

+

Z t

0
c(x)@xh

�
r (x)dWr

�
Z t

0
((��2(y2�r (x)2 � 2y�r (x)

2)� 2zr(x)
2)dr:

Note that jy�r (x)j � �kfk1 and jzr(x)j � kfk1. Hence

E

Z
(��2(y2�r (x)2 � 2y�r (x)

2)� 2zr(x)
2)2dx

= E

Z
(4(

y2�r (x)

2�
� zr(x))

2 � 2(
y�r (x)

�
� zr(x))

2 + 4zr(x)
y2�r (x)� y�r (x)� �zr(x)

�
)2dx

! 0:
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Similar to above we have

Ekh�t k
2
0 ! 0; as �! 0:

Therefore zt = @�y
�
t j�=0 and ht = @2�y

�
t j�=0.

Note that

E(hXt; fi jW ) = h�; zti

and

E(hXt; fi
2 jW ) = h�; zti

2 � h�; hti :

Take expectation on both sides of (5.2), we have

Ezt(x) = f(x) + E

Z t

0

�
b(x)@xzr(x) + a(x)@2xzr(x)

�
dr;

and hence, (1.9) holds.

Apply Itô's formula to (5.2), we have

Ezt(x1)zt(x2) = f(x1)f(x2) + E

Z �
b(x1)@x1zr(x1)zr(x2) + b(x2)@x2z(x1)zr(x2)

+a(x1)@
2
x1
z(x1)zr(x2) + a(x2)@

2
x2
z(x1)zr(x2)

+c(x1)c(x2)@x1@x2z(x1)zr(x2)

�
dr:

Hence

Ezt(x1)zt(x2) =

Z Z
f(y1)f(y2)q(t; (x1; x2); (y1; y2))dy1dy2: (5.4)

Take expectation on both sides of (5.3), we have

Eht(x) = E

Z t

0

�
b(x)@xhr(x) + a(x)@2xhr(x)� 2zr(x)

2
�
dr: (5.5)

Hence, making use of (5.4) and solving (5.5), we obtain

Eht(x) = �2
Z t

0

Z
p(t� s; x; y)Ezs(y)

2dyds

= �2
Z t

0

Z
p(t� s; x; y)

Z Z
f(z1)f(z2)q(s; (y; y); (z1; z2))dz1dz2dyds:
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This proves (1.10).
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