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Abstract

This work contains the material presented in the key lecture during the

Congress Cancam 2003 (Calgary, Canada). It contains a review of the recent

development of thermodynamic modeling of porous and granular materials.

We present brie
y main features of the thermodynamic construction of a non-

linear poroelastic model but the emphasis is put on the analysis of a linear

two-component model. In particular we indicate similarities and di�erences

of the thermodynamic model with the classical Biot's model of porous materi-

als. We analyze jacketed and ujacketed Gedankenexperiments which provide

a micro-macrotransition procedure for compressibilities. This gives rise to

Gassmann-like relations which are incorporated in wave analysis. An acous-

tic waves analysis is presented in some details. In particular we show the

construction of bulk monochromatic waves as well as some surface waves and

indicate their practical applications in testing of soils.

1 Introduction

Porous materials appear in nature so often that we tend to overlook them. Soils and

rocks, biological tissues, wood and paper, ceramics like bricks or micro�lters, etc.

All of them are characterized by a microstructure which consists of a solid frame

{ a skeleton, channels which are voids in the solid frame (pores), and 
uids �lling

channels. The most characteristic feature of mechanical processes in such materials

is the relative motion of 
uid components with respect to the skeleton, i.e. there

appears a di�usion.

Macroscopic modeling of such media is usually based on a theory of mixtures. Due

to the presence of a solid component such mixtures are called immiscible.

From the point of view of technical applications of such models one can distinguish

two very simple classes of models:

1) a solid skeleton is described as it was a normal solid whose e�ective (macroscopic)

parameters are dependent on the porosity (volume fraction of voids), and a motion

of a 
uid is described by an additional �eld equation { usually a parabolic partial

di�erential equation (Darcy model),

2) a solid skeleton is considered to be rigid (not deformable) and solely an e�ective

motion of a mixture of 
uids is described by a classical theory of miscible 
uids.

The �rst class appears in particular in applications to soil mechanics and the model

of consolidation introduced by Terzaghi is the most prominent example of such a
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model. To the same class belongs the model proposed by Kolymbas for plastic

deformations of rocks (hypoplasticity).

The second class of models is frequently used to describe 
ows of ground water (e.g.

Non-aqueous Phase Liquid { NAPL), sedimentation, motion of pollutants, etc.

In the general case one can expect couplings between deformations of the skele-

ton and motions of 
uid components. For instance, deformable solid and 
uid

components must be accounted for in the wave analysis in geophysical problems.

Consequently the thermodynamic modeling of immiscible mixture seems to be an

appropriate macroscopic way to describe such media.

The �rst linear model proposed for a two-component poroelastic fully saturated

material was published in 1941 by M. A. Biot [1]. This model predicts correctly

many properties of linear acoustic waves in porous materials. For instance it yields

the existence of an additional mode of propagation of bulk waves { the so-called

P2- (slow, Biot's) wave. Generalizations of the model on viscoelastic materials and

viscous 
uids are still commonly and successfully used in geotechnics.

The fully nonlinear multicomponent thermodynamical model of immiscible mixtures

has been developed by R. M. Bowen (e.g. see his contribution to the book [2]). The

model which we present in this lecture belongs to the same class even though there

are some di�erences (e.g. the consistent Lagrangian description, the form of porosity

balance equation, etc.). Basic features of the model used in the present contribution

can be found in my book [3].

2 Microstructure

In contrast to miscible mixtures porous and granular materials possess microstruc-

ture which goes beyond di�erent mass densities (or concentrations) and di�erent

velocities of components. The most important additional microstructural feature

is the porosity. It may be related to interconnected voids or to cavities without

any connection with channels. These channels possess an additional property es-

sential for di�usive motions { tortuosity. This quantity measures the ratio of the

real length of channels to a characteristic macroscopic length. In addition some


uid components may exchange the mass with the skeleton due to freezing, adsorp-

tion, evaporation and cavitation, etc. All these microstructural variables require

additional equations describing their temporal and spacial variations.

The full thermodynamic description of all those microstructural properties is not yet

available. Existing models account for changes of porosity, for mass exchange due to

chemical reactions and some phase transformations. However, very little has been

done for such processes as evaporation leading to unsaturated media, or adsorption

processes for high concentrations of adsorbate.

Further we present only a few chosen features of thermodynamic modeling based on

general principles of evaluation of the second law of thermodynamics (e.g. see [4]).
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3 Multicomponent continuous models

The aim of macroscopic thermodynamic modeling of porous and granular materials

is to �nd �eld equations for the following quantities (�elds)

{ �St - current partial mass density of the skeleton,

{ ��t - current partial mass densities of 
uid components, � = 1; :::; A,

{ FS - deformation gradient of the skeleton,

{ vS - velocity of the skeleton,

{ v� - velocities of 
uid components,

{ �S - temperature of the skeleton,

{ �� - partial temperatures of 
uid components,

{ �m - internal variables (porosity, tortuosity, extents of chemical reac-

tions, phase fractions, plastic deformations, number of occupied sites,

etc.), m = 1; :::;M .

In the construction of �eld equations for macroscopic �elds one usually relies on

partial balance equations of mass, momentum, and energy. For the internal vari-

ables additional equations are required and these follow from particular physical

considerations. These are, for example, a balance equation of porosity, an equation

for equilibrated forces, proposed by Goodman and Cowin to describe microinertia,

an evolution equation for occupied sites in adsorption processes, proposed by Lang-

muir, an evolution equation for stresses in hypoplasticity, proposed by Kolymbas,

etc.

Construction of these additional equations may be supported by some microscopic

considerations such as a kinetic theory of granular gases, or properties of simple

tests and a micro-macrotransition for homogeneous granular microstructures. We

present further an example of such a transition.

Let us consider a simple example of such a model { a linear two-component isother-

mal medium. In the Eulerian description the fundamental balance laws have the

form

1) partial mass balance equations

@�
S
t

@t
+ div (�St v

S) = �̂
S
;

@�
F
t

@t
+ div (�Ft v

F ) = ��̂S ; (1)

2) partial momentum balance equations

@�
S
t v

S

@t
+ div (�St v

S 
 vS �TS) = p̂;
@�

F
t v

F

@t
+ div (�Ft v

F 
 vF �TF ) = �p̂; (2)

3



3) balance equation for porosity

@nJ
S�1

@t
+ div (nvS + �

�
vF � vS

�
) = (n̂+ Æ

@J
S

@t
)JS�1; (3)

J
S := 1 + e; e := treS;

4) integrability conditions for small deformations

@eS

@t
= gradvS; grad eS = ( grad eS)

23

T
; eS :=

1

2

�
1� FS�1FS�T

�
; (4)

where �St ; �
F
t are current mass densities of skeleton and 
uid, respectively, vS;vF

are velocities of components (their local di�erence de�nes the di�usion velocity),

TS
;TF are Cauchy partial stress tensors for both components, eS is the Almansi-

Hamel tensor of small deformations of skeleton, n is the porosity, �̂S; p̂; n̂ are sources

of mass, momentum, and porosity, respectively. The �rst one describes the rate of

exchange of mass between components (e.g. melting rate or adsorption rate), the

second one describes the so-called di�usive force (an internal friction due to the

relative motion of components), and the third one describes relaxation properties of

porosity. � and Æ are material parameters.

In order to transform the above equations into �eld equations one has to specify the

dependence of constitutive quantitiesn
�̂
S
; p̂;TS

;TF
;�; Æ; n̂

o
(5)

on constitutive variables. These are the so-called constitutive relations.

For poroelastic materials without mass exchange these variables are as followsn
eS; �Ft ;v

F � vS; n
o
: (6)

For other materials such as elastoplastic skeleton or exchange of mass between com-

ponents this set must be chosen accordingly.

4 Thermodynamics and thermodynamic models

Once the set of governing equations has been chosen and constitutive relations were

speci�ed we have to check if some fundamental laws of macroscopic models ar sat-

is�ed. They do so authomatically if we construct an empirical model based on

experimental observations. This is seldom the case and usually we choose constitu-

tive relations in a much more general form than this which we can verify in simple

experiments. Then we impose the following conditions:

{ Any solution of �eld equations (i.e. the so-called thermodynamic pro-

cess) must satisfy the entropy inequality. This is the second law of ther-

modynamics. In the particular case of a two-component system the en-

tropy inequality has the form
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@

@t
(�St �

S + �
F
t �

F ) + div (�St �
SvS + �

F
t �

FvF + hS + hF ) � 0; (7)

where �S; �F are partial entropy densities, and hS;hF { their 
uxes.

They must depend on chosen constitutive variables.

{ All constitutive relations must be invariant with respect to a rigid time

dependent motion of the frame (the material objectivity).

Exploitation of these conditions yields a number of limitations on constitutive rela-

tions (such as the Gibbs equation or Maxwell relations in classical thermostatics).

One of them is the so-called dissipation inequality which describes a deviation of

processes from the thermodynamic equilibrium in which the dissipation is equal to

zero.

In the example of the two-component system quoted above the dissipation is as

follows

D := (�S � �
F )�̂S + p̂ � (vF � vS) +

@

@n
(�St  

S + �
F
t  

F )n̂ � 0; (8)

where  
S
;  

F are constitutive functions called Helmholtz free energy functions,

�
S
; �

F are chemical potentials given by derivatives of free energies with respect

to partial mass densities. In a linear model this inequality indicates that the mass

source is proportional to the di�erence of chemical potentials (see, e.g. theories

of drying of wood and ceramics), the source of momentum (the di�usive force) is

proportional to the di�usive (relative) velocity and that the source of porosity is a

linear function of the deviation of porosity from its equilibrium value: n� nE.

More general models of elastoplastic porous materials, non-Newtonian 
uids etc.

require a new thermodynamical analysis. These thermodynamic admissibility con-

ditions have been formulated in the literature only for some particular cases. Many

models used in practice are constructed ad hoc and thermodynamics is ignored. One

can quote many such models which violate the second law of thermodynamics.

One of the most important thermodynamic problems still open even in its basic

principles is the construction of models with di�erent partial temperatures. This

seems to have a big practical bearing but it is still unknown how to construct thermal

quantities of such models and how to formulate the second law of thermodynamics.

In order to illustrate the role of the second law of thermodynamics in the construction

of models we present some details concerning the famous Biot's model of poroelastic

materials. Biot constructed a linear two-component model of poroelastic materials

described by �elds of velocities vS;vF , the deformation tensor of the skeleton eS

and the so-called increment of 
uid content � related in the following way to the

above used variables

� = n0(e�
�
F
0 � �

F
t

�
F
0

); e � treS; (9)

5



where zero denotes an initial constant value of the quantity. By means of the stress

potential the constitutive relations for the bulk stress tensor T := TS +TF and for

the pore pressure have been formulated.

It can be shown that such a model may follow from the thermodynamic analysis

provided we make the following two assumptions about the model:

1) we include a constitutive dependence on the gradient of porosity: gradn,

2) we neglect relaxation processes of porosity: n̂ = 0.

If this is the case the constitutive relations

T = T0 + (K �
2

3
�
S)e1+ 2�SeS � C�1; (10)

TF = �n0pf1; pf = p
0
f � Ce+M� �N

n� n0

n0
;

where

n = n0(1 + Æe+



n0
�); 
 :=

�

n0
; (11)

satisfy both the second law of thermodynamics and the porosity balance equation

with n̂ = 0. In these relations K;�S; C;M; Æ; 
;N are material parameters depending

on the initial porosity n0 and T0; p
0
f are the bulk initial stresses and the initial pore

pressure, respectively.

It is convenient to write constitutive relations (10) transformed to partial stresses.

They have the form

TS = TS
0 + �

S
e1 + 2�SeS +Q"1�N(n� n0); (12)

TF
0 = �

�
p
F
0 � �

F
0 �"+Qe�N(n� n0)

�
1; " :=

�
F
0 � �

F
t

�F0

� e�
�

n0
;

where material parameters are related in the following way

K = �
S +

2

3
�
S + �

F
0 �+ 2Q; C =

1

n0
(Q + �

F
0 �); M =

�
F
0 �

n0
: (13)

Relations (10) coincide with Biot's relations provided the constant N is approx-

imately zero. In order to check this approximation we analyse a set of simple

gedankenexperiments.

Before we proceed with this analysis we consider some relations between micro and

macro quantities. It is customary to de�ne macroscopic average quantities of porous

materials by integrating real microscopic properties of the material over a domain

whose volume is small when compared with characteristic macroscopic domains and

large compared to such microscopic domains as pores or grains. Such domains are

called Representative Elementary Volumes (REV) and macroscopic volume averages

are de�ned by integrating over such domains prescribed to macroscopic points x of

the continuum. Let us introduce a characteristic function H(z; t) for the real 
uid
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component, i.e. a function whose value is one in point z occupied by the real 
uid

at the instant of time t and zero otherwise. Then we can de�ne the macroscopic

(average) current mass density of the 
uid �Ft (x; t) in a macroscopic point x at the

instant of time t by the following relation

�
F
t (x; t) =

1

V

Z
REV (x;t)

�
FR(z; t)H(z; t)dV; (14)

where V denotes the volume of REV and �FR(z; t) is the real (true) mass density of

the 
uid. Under the assumption of homogeneous microstructure this mass density

is approximately constant over the domain of REV and we obtain

�
F
t = n�

FR
; �

S
t = (1� n)�SR; n :=

1

V

Z
REV (x;t)

H(z; t)dV; (15)

where the second relation for �St follows by a similar argument for the skeleton, and

the last relation de�nes the porosity.

It is convenient to introduce volume changes "; e; "R; eR in both levels of description

by the following de�nitions

�
F
t =

�
F
0

1 + "
; �

S
t =

�
S
0

1 + e
; (16)

�
FR =

�
FR
0

1 + "R
; �

SR =
�
SR
0

1 + eR
:

Mass balance equations (without mass exchange!) indicate then

@"

@t
= div vF ;

@e

@t
= div vS: (17)

Substitution of relations (16) in (15) yields the following geometric compatibility

relations for the above described micro-macrotransition

e = e
R +

n� n0

1� n0
; " = "

R �
n� n0

n0
: (18)

Simultaneously we have

� = n0(e� "): (19)

We are now in the position to consider the above mentioned gedankenexperiments.

They have been discussed by Biot and Willis (compare [1]) even though their origin

is older. We consider two classes of systems: a jacketed system shown in Fig.1 and

an ujacketed system shown in Fig.2.
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Figure 1: Jacketed Gedankenexperiments

Figure 2: Unjacketed Gedankenexperiment

In the �rst case we consider two experiments: undrained when the valve is closed and

drained with the open valve. These two experiments are described by the following

conditions

� = 0 �undrained; pf � p
0
f = 0 �drained: (20)

For the second, unjacketed system we have the following condition

p
0 = pf � p

0
f ; (21)

where p0 is the excess pressure applied to the system.

It can be shown that equilibrium conditions, macroscopic constitutive relations (10)

and the microscopic constitutive relations for real pressures in the skeleton and in

the 
uid

p
SR � p

SR
0 = �Kse

R
; p

FR � p
FR
0 = �Kf"

R
; (22)

yield solutions of these three homogeneous problems and, additionally, three com-

patibility relations between materials parameters. Certainly, Ks; Kf denote true

compressibility moduli of the skeleton and of the 
uid respectively.
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The above mentioned compatibility relations have the following form

0 = K �KV + n0(Ks �Kf)
C �Kf

Kf �N
;

0 =
Ks

Kb

(n0 �
C

M
)�

Ks

Kn

(n0 �
N(K + C)

KbM
); (23)

0 = K � 2C +M +
MKb

KW

+N
1� n0

n0
(
K

Ks

(1�
C

K
)� 1 +

C

KW

);

0 = Kd �Kb(1 +
NC

KbM

1

Kn

)�1;

where

KV : = (1� n0)Ks + n0Kf ;
1

KW

:=
1� n0

Ks

+
n0

Kf

;

Kn : = Ks

(1� n0)
NC
KbM

� n0

1� (1� n0)
Ks

Kb

; Kb := K �
C

2

M
; (24)

and Kd denotes the so-called drained compressibility modulus measured in the

drained jacketed real experiment.

If we ignore the compatibility relation (23)2 following from the drained jacketed ex-

periment and assume N= 0 then the above equations lead to the so-called Gassmann

relations for macroscopic compressibility parameters (e.g. see [5]). If we do not make

this simpli�cation the results for macroscopic parameters di�er from those obtained

by Gassmann but substantial di�erences appear primarily in the range of small

porosities (see: Fig.3 and Fig.4). In addition it is seen that values of the constant

N are indeed much smaller than values of other material parameters (app. 5-10%).

Figure 3 (left): Macroscopic material parameters according to classical Gassmann

relations with N= 0 and Ks = 48GPa; Kf = 2:25GPa

Figure 4 (right): Macroscopic material parameters of the model with porosity

gradient, Ks = 48GPa;Kf = 2:25GPa
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In addition solutions for porosity in the above homogeneous experiments give rise

to the following relations for material parameters appearing in the relation (11) for

porosity

Æ =
KV �K

n0(Ks �Kf)
; 
 =

C �Kf

Ks �Kf

: (25)

These are illustrated in Fig.5 for the same data as before. Clearly an in
uence

of the nonequilibrium (di�usion) processes becomes essential solely in the range of

moderate porosities (n0 � 0:2).

Figure 5: CoeÆcient Æ (equilibrium, left) and coeÆcient 
 (nonequilibrium, right)

of the porosity relation for Ks = 48GPa;Kf = 2:25GPa

The dependence of shear modulus �S on microscopic properties cannot be estimated

in this simple matter. There are some attempts to derive this relation from the

solution of Hertz contact problem for particular arrangements of granuli but they

are not very reliable.

One should stress that, in general, the above linear model does not re
ect too well

real properties of granular materials due to the lack of dependence on con�ning

pressure (dilatancy problem) and other nonlinear e�ects. Research in this �eld is

still not very advanced. However the results indicated above are suÆcient for the

linear wave analysis essential in practical geotechnical testing problems. We present

some aspects of these problems further in this lecture.

5 Some boundary-initial value problems

5.1 Bulk monochromatic waves

As we have mentioned above one of the main reasons for investigating poroelastic

models is their applicability in the description of acoustic waves of small amplitude.

Such waves are a perfect tool for testing morphology (porosity, degree of saturation,
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heterogeneity and inclusions, etc.) of soils. Application of surface waves yields even

a nondestructive testing particularly desired for economical reasons.

We proceed to present some features of such a wave analysis and we rely on a simple

model in which we assume

Q := n0(C � n0M) � 0; N � 0: (26)

As indicated above realistic numerical data support this simpli�cation.

We consider two problems: properties of monochromatic bulk waves and properties

of surface waves in the low frequency approximation. We conduct the analysis for

a chosen real frequency !. This choice indicates that we consider waves iniciated

on the boundary by a harmonic source. However we consider solely solutions far

away from the source (far �eld approximation) in order to avoid solving complicated

boundary value problems.

Let us begin with bulk waves in two-component (fully saturated) poroelastic material

whose �elds have the following form

�
F
t � �

F
0 = R

F
e
i(kn�x�!t)

; eS = ES
e
i(kn�x�!t)

; (27)

vF = VF
e
i(kn�x�!t)

; vS = VS
e
i(kn�x�!t)

:

In these relations n is the unit vector pointing in the direction of propagation, k

is the wave number and it is usually complex, ! is the frequency of the wave and

it is assumed to be real and given, RF
;ES

;VF
;VS are constant amplitudes of the

waves. Substitution in �eld equations yields the following compatibility relations

R
F =

k�
F
0

!
VF � n; ES = �

k

2!
(VS 
 n+ n
VS); (28)

 
!
21�

�
c
2
P1 � c

2
S

�
k
2n
 n�c2Sk

21+ i
�!

�S0

1

!
VS � i

�!

�S0

VF = 0; (29)

�i
�!

�F0

VS +

 
!
21� c2P2k

2n
 n+ i
�!

�F0

1

!
VF = 0;

where

c
2
P1 :=

�
S + 2�S

�S0

; c
2
P2 := �; c

2
S :=

�
S

�S0

: (30)

This is, of course, an eigenvalue problem. We seek its solution separating compo-

nents of equations (29) in the direction parallel to n and perpendicular to n.

Let us �rst take the scalar product of equations (29) with a unit vector perpendicular

to n. We obtain the set of homogeneous alebraic relations for the components of

VS
;VF perpendicular to n, i.e. the second { transversal { case. It follows that we

have to satisfy the following dispersion relation which is the determinant of the set

!

 
!
2

k2
� c

2
S

!
+ i

�

�F0

 
�
F
0 + �

S
0

�F0

!
2

k2
� c

2
S

!
= 0: (31)
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Consequently we obtain a relation k = k (!) which yields relations for the so-called

phase speed cph := !=Rek, and for the attenuation Imk of the so-called S-wave.

These are shown in Fig.6 for the following data typical for rocks

cP1 = 2500
m

s
; cP2 = 1000

m

s
; cS = 1500

m

s
; (32)

�
F
0 = 250

kg

m3
(n0 = 0:25); �

S
0 = 2500

kg

m3
;

� = 106; 5� 106; 107; 5� 107; 108
kg

m3s
:

Figure 6: Phase speed (left) and attenuation (right) of S-wave.

The upper curve in the vicinity of ! = 0 corresponds to the lowest value of the

permeablity coeÆcient �

It is easy to see that the phase speeds in the limits ! ! 0 and ! !1 are di�erent.

They can be easily calculated from the dispersion relation and we obtain

lim
!!1

cph = cS =

s
�S

�
S
0

; lim
!!0

cph =: coS =

s
�S

�
S
0 + �

F
0

: (33)

The second result { low frequency limit { is this which is measured in geotechnical

experiments (frequencies 1Hz). The �rst one appears, for instance, in medical

applications (frequencies 1MHz).

Scalar multiplication of equations (29) by the vector n yields the eigenvalue problem

for longitudinal waves. We obtain the following solution of the dispersion relation

k
2 =

1

2

"
1

c2P1

 
!
2 + i

�!

�S0

!
+

1

c2P2

 
!
2 + i

�!

�F0

!
�
p
D

#
; (34)

D : =

"
1

c2P1

 
!
2 + i

�!

�S0

!
�

1

c2P2

 
!
2 + i

�!

�F0

!#
�

4

c2P1c
2
P2

�
2
!
2

�S0 �
F
0

:

Hence we have two solutions. The faster one is called the P1-wave, the slower one {

P2-wave or the Biot's wave. Their phase speeds and attenuations are illustrated in

Fig. 7 and Fig. 8 for the data (32) (e.g. compare [6] and quotations there).
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Figure 7: Phase speeds cph = !=Rek of P1- (left) and P2-wave (right)

for � growing from the upper to lower curve

Figure 8: Attenuation Imk of P1- (left) and P2-wave (right)

for � decaying for large ! from the upper to lower curve

It is seen that the attenuation of P2-waves is two orders of magnitude bigger than

the attenuation of P1-waves. This property makes observations of P2-waves in �eld

experiments very diÆcult indeed. Simultaneously the phase speed of P2-waves goes

to zero as the frequency decays to zero. This mode behaves as the system was

parabolic in low frequency approximation.

Similarly to shear waves we can construct low and high frequency limits of phase

speeds. We obtain after easy calculations

{ high frequency limit

lim
!!1

cph =

8>>><
>>>:
cP1 =

r
�S+2�S

�S
0

�P1� wave;

cP2 =
p
��P2� wave;

(35)
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{ low frequency limit

lim
!!0

cph =

8>>><
>>>:
cP1 =

r
�S+2�S

�S
0
+�F

0

�P1� wave;

cP2 = 0�P2� wave:

(36)

Bearing the relations from micro-macrotransition as well as an empirical formula for

the drained modulus in mind we can construct relations for speeds of propagation

cP1; cS; cP2 as functions of porosity n0. This gives rise to the possibility of estimating

the porosity of soils in situ by measuring the speeds of seismic waves. An example

of the scheme of such an experiment is shown in Fig. 9. It shows the standard

so-called cross-hole test.

Figure 9: Soil in situ experiments: cross-hole seismic test (example)

Data from such an experiment obtained in Pisa site has been used by Foti, Lai

and Lancellotta [7] to estimate the porosity. They used Gassmann relations and

the original Biot's model. The results of this estimate are shown in Fig. 10 in

comparison with in situ measurements of porosity in Laval and Osterberg tests.

Bearing the scattering of such measurements in mind it is clear that the agreement

of those results is very good.

Figure 10: Porosity pro�le calculated from measurements of speeds cP1; cS at Pisa

site ([7])
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The above described method of testing soils has one disadvantage. It does not require

measurements of porosity on samples taken on the site but it is still destructive and

expensive. Namely one has to prepare boreholes for sending and receiving waves.

This is not the case if we use surface waves rather than bulk waves. We proceed to

present some features of this latter problem.

5.2 Surface waves

Surface and interfacial waves are created by a superposition of bulk waves inter-

acting with a boundary. This interaction results from boundary conditions. The

best known surface wave is the wave discovered by Rayleigh. It appears on the

free boundary of the semiin�nite linear elastic and homogeneous medium. It is

schematically shown in Fig. 11.

Figure 11: Rayleigh wave - the motion of particles and the direction of

propagation

In this wave motion trajectories of particles are elliptic, particles move in the an-

ticlockwise direction for the wave progressing to the right on the boundary. The

amplitude of particles decays exponentially with the depth and this is the reason for

calling this motion the surface wave. The speed of propagation cR of the classical

Rayleigh wave is determined by the following dispersion relation

PR :=

 
2�

c
2
R

c2T

!2

� 4

vuut1�
c2R

c2T

vuut1�
c2R

c2L

= 0; cR < cT < cL; (37)

where cL; cT are the speeds of the longitudinal and transversal bulk waves. The

speed cR is independent of frequency (no dispersion!) and there is no attenuation.

The situation becomes much more complicated when a medium is heterogeneous

or if it possesses a layered structure. Even in the simplest case of a single elastic

layer on a semiin�nite foundation the surface wave possesses in�nitely many modes

(compare classical Love waves, e.g. [6]). This property of surface waves has a

particular bearing in applications to soil mechanics (see: [8]). We do not present

any of those problems in the present lecture.

In order to construct surface waves in poroelastic materials we have to formulated

boundary conditions.
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Figure12 :Boundary of the semiin�nite medium

The boundary of the two-component porous material free of loading and permeable

is characterized by the following conditions

Txzjz=0 = T
S
xz

���
z=0

= �
S
0 c

2
S

 
@u

S
x

@z
+
@u

S
z

@x

!�����
z=0

= 0;

Tzzjz=0 =
�
T
S
zz � p

F
����
z=0

= �
S
0 c

2
P1

 
@u

S
x

@x
+
@u

S
z

@z

!�����
z=0

� (38)

�2�S0 c
2
S

@u
S
x

@x

�����
z=0

� c
2
P2

�
�
F � �

F
0

����
z=0

= 0;

�
F
0

@

@t

�
u
F
z � u

S
z

������
z=0

� �
0

 
p
F�

n�
�
p
F+

n+

!
= 0; (39)

where the axis x points to the right of the boundary and the axis z downwarts (see:

Fig. 12). uSx ; u
S
z are components of the vector of displacement of the skeleton and

u
F
z is the component of displacement of the 
uid, i.e.

e
S
xx =

@u
S
x

@x
; e

S
xz =

1

2

 
@u

S
x

@z
+
@u

S
z

@x

!
; e

S
zz =

@u
S
z

@z
; (40)

v
S
x =

@u
S
x

@t
; v

S
z =

@u
S
z

@t
; v

F
z =

@u
F
z

@t
:

The condition (39) describes the 
ow of the 
uid through the permeable boundary.

The �rst term is the amount of 
uid which 
ows per unit surface and time through

the surface z = 0 and the second term is the driving force of this 
ow. It is

proportional to the di�erence of true pressures of the 
uid p�

n�
;
p+

n+
on both sides of

the surface and by the material coeÆcient �0 { surface permeability coeÆcient. If

�
0 = 0 the boundary is impermeable.

Now we construct the solution of �eld equations which describes a surface wave. We

make the following ansatz

u
S
x =

@'
S

@x
+
@ 

S

@z
; u

S
z =

@'
S

@z
�
@ 

S

@x
; (41)

u
F
x =

@'
F

@x
+
@ 

F

@z
; u

F
z =

@'
F

@z
�
@ 

F

@x
;

16



with scalar potentials 'S; 'F , vector potentials  S;  F and remaining unknown �elds

of this two-dimensional problem given by

'
S = A

S (z) E ; '
F = A

F (z) E ; E := e
i(kx�!t)

;

 
S = B

S (z) E ;  
F = B

F (z) E ; (42)

�
S � �

S
0 = A

S
� (z) E ; �

F � �
F
0 = A

F
� (z) E :

Substitution in �eld equations yields a di�erential eigenvalue problem with respect

to the variable z. It can be shown [9] that this problem possesses solutions decaying

exponentially with z, i.e. there may exist surface waves. The propagation conditions

follow then by means of boundary conditions.

Here we present brie
y �nal results for the impermeable boundary �0 = 0 refering

to the works [9], [6] where one can �nd details.

In the range of high frequencies the dispersion relation has the following form

PR

vuut1�
c2P1

c
2
P2

c2R +
�
F
0 c

4
R

�
S
0 c

4
S

vuut1�
c2R

c
2
P1

= 0; (43)

where PR is the classical Rayleigh dispersion function given by (37) with cT ; cL

replaced by cS; cP1, respectively. Obviously for �F0 = 0 this relation possesses solely

the classical solution for the speed of the surface wave cR. Otherwise there exist two

modes:

{ the leaky Raylegh wave with the speed cR smaller than cS but larger

than cP2,

{ the so-called Stoneley wave with the speed cR smaller than cP2.

The existence of these two modes is possible because there are three bulk waves

which may combine on the boundary to two independent modes of propagation.

In the range of low frequencies the speed of the P2-wave becomes zero and we expect

only one surface mode to exist. This is indeed the case. The dispersion relation in

this approximation has the following form

c
2
R

c2P1

2
664
0
B@2 +

�F
0

�S
0

+ 1

c2S

c
2
R

1
CA
2

� 4

vuuut1�
�F
0

�S
0

+ 1

c2S

c
2
R

vuuuut1�
�F
0

�S
0

+ 1

�F
0

�S
0

c2
P2

c2
P1

+ 1

c2R

c2P1

3
775 = 0: (44)

This is approximately the renormalized Rayleigh equation whose solution di�ers

from the classical solution by the following factor

cR !
cP1

coP1
cR �

vuut �S0

�S0 + �F0

cR: (45)

Solely this mode is observed in situ experiments on soils. This Spectral Analysis of

Surface Waves (SASW) is usually performed in the so-called multistation arrange-

ment shown in Fig. 13 ([10]).
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Figure13 : The scheme of

multistation configuration for SASW

In contrast to measurements of bulk waves the analysis of morphology of soils by

surface waves is nondestructive and, consequently, very advantageous from the eco-

nomical point of view.

6 Final remarks

The overview of the multicomponent modeling of porous and granular materials

presented in this lecture makes clear that the subject { even within a linear limit

for poroelastic materials { is still in the very early stage of research. Let us list just

a few problems which must be investigated in the near future.

1) Results for wave analysis should be extended on heterogeneous and strati�ed

media. In particular, existence of additional modes should be included into the

linear two-component model of heterogeneous poroelastic media.

2) A model of unsaturated poroelastic materials should be developed in which a

coupling of phase transformation (evaporation/condensation) with acoustic waves

should be incorporated.

3) Properties of surface and bulk waves near interfaces between two porous materials

should be investigated. The model seems to be already given but the wave analysis

is missing.

4) A selfconsistent method of micro-macrotransition must be developed in order to

avoid large discrepancies between geometrically and dynamically consistent models

(Voigt vs. Reuss models, other averaging methods).

5) Nonlinear e�ects such as a dependence on equilibrium porosity or on con�ning

pressure (dilatancy) in granular materials must be included in the wave analysis.

This leads to nonlinear waves (e.g. soliton-like or nonlinear surface waves).

6) As estimations of porosity are inverse problems they require a mathematical

analysis of solutions which is entirely missing.
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This key lecture of the Congress Cancam 2003 is availabe in its original form (pdf-�le) on my

personal hompage.
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