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Abstract

In this paper, we investigate the decay rate of stabilization of the solu-

tion of the system of partial di�erential equations governing the dynamics of

martensitic phase transitions in shape memory alloys under the presence of a

viscous stress. The corresponding free energy is assumed in Landau-Ginzburg

form and nonconvex as a function of the order parameter. We prove that for

appropriate constants, which appear in the above-mentioned model, we can

decide upon the exponential decrease of the solution to its attractor for time

tending to in�nity.

1 Introduction

In the present paper, we continue the study of the asymptotic behaviour of the

solutions to a system that arises in the thermo-mechanical developments in a one-

dimensional heat-conducting viscous solid of constant mass density � (assumed � =

1). The solid is subjected to heating and loading. We think of metallic solids that

not only respond to a change of the strain � by an elastic stress � = �(�), but also

to a change of the curvature of their metallic lattice by a couple stress � = �(�x).

We assume that the Helmholtz free energy density F is a potential of Landau-

Ginzburg form, i.e.

F = F (�; �x; �); (1.1)

where � denotes the absolute temperature. To cover systems modelling �rst-order,

stress-induced and temperature-induced solid-solid phase transitions accompanied

by hysteresis phenomena, we do not assume that F is a convex function of the order

parameter �.

A particular class of materials, in which both temperature-induced and stress-

induced �rst-order phase transitions leading to a rather spectacular hysteretic be-

haviour occur, are the so-called shape memory alloys. For an account of the physical

properties of shape memory alloys, we refer the reader to Chapter 5 in the mono-

graph [1]. The model we investigate has the following form

utt � 
uxxt �
@

@x
(f1(ux)� + f2(ux)) + Æuxxxx = 0; (1.2)

CV �t � k�xx � f1(ux)�uxt � 
u
2
xt
= 0 (1.3)

for (x; t) 2 (0; 1)� (0;1), with positive physical constants �i, i = 1; 2; 3, k, 
, Æ, �1,

and CV , and where

f1(z) = F
0

1(z); with F1(z) = �1z
2
;

(1.4)

f2(z) = F
0

2(z); with F2(z) = �3z
6 � �2z

4 � �1�1z
2
:
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The system is endowed with the boundary conditions

ujx=0 = uxxjx=0 = 0; uxjx=1 = (
uxt � Æuxxx + �1)jx=1 = 0; (1.5)

with

�1 = f1(ux)� + f2(ux); (1.6)

and

�xjx=0;1 = 0: (1.7)

We prescribe the initial state by the initial data

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x) > 0; x 2 [0; 1]: (1.8)

We can divide the existing literature on the system (1.2)-(1.7) into three parts.

The �rst part covers the case when 
 > 0 and Æ > 0. For the existence of the

solution of the model (1.2)-(1.7), we refer the reader to Ho�mann and Zochowski

[5]. Sprekels, Zheng and Zhu in [10] investigated the asymptotic behaviour of the

solution of the system (1.2)-(1.7). In [9], the existence of the maximal compact

attractor was derived. The second case Æ = 0 and 
 > 0 was studied in Racke and

Zheng [7] from the point of view of the global existence, uniqueness and asymptotic

behaviour of weak solutions if both ends of the rod are insulated and if at least one

end is stress-free. The third part covers the case when Æ > 0 and 
 = 0. For the

global existence and uniqueness, we refer the reader to Sprekels and Zheng [8]. We

also refer to the works [2] and [3].

But one question still unanswered is whether we can obtain additional information

about the decay rate for the model (1.2)-(1.7). The main theorem of this paper

provides an answer for the case Æ > 0 and 
 > 0. But in Section 4, we give suÆcient

conditions that also cover the case Æ = 0. The main result of this paper is the

following.

Theorem 1.1 Suppose that the solution u of the system (1:2)-(1:7) satis�es the

compatibility conditions utjx=0 = (u0)xxjx=0 = uxtjx=1 = 0. Let the constants �1, Æ,

�i, i = 1; 2; 3, CV , k, 
 be positive. In addition, let there exist constants � > 0 and

K > 1 such that

� +

k�(t)k1

K
+

1

2K
<




2
; �+ �1�1 +

�
2
2

�3

<
Æ

2
(1.9)

and
4�2

2

�3

+
2k�(t)k2

1
�
2
1


�
+ 2k�(t)� �1k1�1 + k�(t)k41

2�2
1

�K
< Æ (1.10)

for a.a. t 2 (0;1). Then

kut(t)k22 + kuxx(t)k
2
2 + k�(t)� �(t)k22 � k1e

�k2t; (1.11)

where the constants k1, k2 > 0 only depend on the initial state.
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Remark 1.2 From the main result in [10] it may be concluded that k�x(t)k2 ! 0

for t ! 1 and k�kL1(0;1;L1(0;1)) � c0. Combining these two facts, we can assert

that

k�(t)k1 � k�x(t)k1 + k�kL1(0;1;L1(0;1)) � c1(t) + c0 � c2; (1.12)

where the constant c0 only depends on the initial state, and where c1(t) ! 0 for

t ! 1. Moreover, the constant c2 is of the form c2 = c(1 + �
2
1), which is a

consequence of Lemma 2.5 in [10].

It is worth pointing out that the method used here also provides similar properties

for the solutions to the 1-D Navier-Stokes equations cf. [11].

In Section 2, we will look more closely at the energy conservation of the equations

(1.2)-(1.7). Section 3 is devoted to the proof of our main result. Section 4 provides

other conditions which lead to an exponential decrease in connection with the paper

[4].

The notation in this paper will be as follows: Lp(0; 1), 1 � p � 1, and Lp(0; T ;Lq(0; 1)),

1 � p; q � 1, 0 < T � 1, respectively, denote the standard Lebesgue and Bochner

spaces. By k � kp and k � kLp(0;T ;Lq(0;1)), we denote the corresponding norms. We also

use the denotation �(t) for the integral
R 1
0 �(x; t) dx.

2 Energy inequalities

In this section, we proceed with the study of the energy identity, and we derive new

forms of the energy inequality for the solution to the system (1.2)-(1.7).

Lemma 2.1 Let the couple (�; u) be the classical solution to the model (1:2)-(1:7).

Then
d

dt

"Z 1

0

 
u
2
t

2
+

Æu
2
xx

2
+ F2(ux) + CV �

!
dx

#
= 0; (2.13)

d

dt

"Z 1

0

 
u
2
t

2
+

Æu
2
xx

2
+ F2(ux)

!
dx

#

�k�(t)k2
1

2�2
1




Z 1

0
u
2
x
dx+




2

Z 1

0
u
2
xt
dx � 0; (2.14)

and

d

dt

"Z 1

0

 
u
2
t

2
+

Æu
2
xx

2
+ F2(ux) +

CV (� � �)2

2K

!
dx

#
+

k

K

Z 1

0
(� � �)2

x
dx

�
1

K

Z 1

0
f1(ux)�(� � �)uxt dx�




K

Z 1

0
u
2
xt
(� � �) dx

�k�(t)k2
1

2�2
1




Z 1

0
u
2
x
dx+




2

Z 1

0
u
2
xt
dx � 0: (2.15)
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P r o o f: To deduce (2.13), take ut as a test function for the equation (1.2). This

gives

d

dt

"Z 1

0

 
u
2
t

2
+

Æu
2
xx

2
+ F2(ux)

!
dx

#
+

Z 1

0
f1(ux)�uxt dx + 


Z 1

0
u
2
xt
dx = 0 (2.16)

because the boundary terms satisfy the identity

�
[uxtut]10 � [f1(ux)�ut + f2(ux)ut]
1
0 + Æ[uxxxut]

1
0 � Æ[uxxuxt]

1
0 = 0:

This is a consequence of (1.5)-(1.8). Integrating (1.3), and adding this equation to

the identity (2.16), we get (2.13).

Now, we can derive the estimate����Z 1

0
f1(ux)�uxt dx

���� = ����Z 1

0
2�1ux�uxt dx

���� � 2k�(t)k1
Z 1

0
j�1uxuxtj dx

� k�(t)k2
1

2�2
1




Z 1

0
u
2
x
dx +




2

Z 1

0
u
2
xt
dx: (2.17)

Combining (2.16) and (2.17), we deduce (2.14).

Using ���

K
as a test function in (1.3) yields the identity

d

dt

Z 1

0

CV (� � �)2

2K
dx+

k

K

Z 1

0
(� � �)2

x
dx�

1

K

Z 1

0
f1(ux)�(� � �)uxt dx

�



K

Z 1

0
u
2
xt
(� � �) dx = 0 (2.18)

for some K. After adding to (2.14) we conclude (2.15). 2

From Lemma 2.1, we obtain the following result.

Consequence 2.1 Under the assumptions of Theorem 1.1, we have

kutk2L1(0;1;L2(0;1)) + k�kL1(0;1;L1(0;1)) � c0; (2.19)

as well as 
Æ

2
� �1�1 �

�
2
2

�3

!
kuxxk2L1(0;1;L2(0;1)) + kF3(ux)kL1(0;1;L1(0;1)) � c0; (2.20)

where the constant c0 only depends on the initial state, and where the function F3(z),

F3(z) � 0, is de�ned by

F3(z) :=

8<: �3z
6 � �2z

4 if jzj �
q

�2

�3

�3z
6 if jzj <

q
�2

�3
:

(2.21)
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P r o o f: This is an obvious consequence of (2.13) and the inequality kuxk2 � kuxxk2,
because we can easily deduce that

F2(zi) = 0 for z1 =

s
�2

�3

; z2 = �
s
�2

�3

; z3 = 0: 2

3 Proof of Theorem 1.1

First we complete the form of the energy inequality. Using u as a test function for

the equation (1.2) we derive the identity

d

dt

"Z 1

0
utu+


u
2
x

2
dx

#
�
Z 1

0
u
2
t
dx

+

Z 1

0
(f1(ux)�ux + f2(ux)ux) dx+ Æ

Z 1

0
u
2
xx

dx = 0; (3.22)

since

�
[uxtu]10 � [f1(ux)�u+ f2(ux)u]
1
0 + Æ[uxxxu]

1
0 � Æ[uxxux]

1
0 = 0:

This is a consequence of the boundary and compatibility conditions.

We multiply the equation (3.22) with �, � > 0, and we add this expression to (2.15).

This leads to the inequality

d

dt
V�(t) +W�(t) � 0; t 2 (0;1); (3.23)

where

V�(t) :=

Z 1

0

 
u
2
t

2
+

Æu
2
xx

2
+ F2(ux) +

CV (� � �)2

2K
+ �utu+ �


u
2
x

2

!
dx; (3.24)

and

W�(t) := �k�(t)k2
1

2�2
1




Z 1

0
u
2
x
dx+




2

Z 1

0
u
2
xt
dx

+
k

K

Z 1

0
(� � �)2

x
dx�

1

K

Z 1

0
f1(ux)�(� � �)uxt dx�




K

Z 1

0
u
2
xt
(� � �) dx

��
Z 1

0
u
2
t
dx+ �

Z 1

0
2�1(� � �1)u

2
x
+ 6�3u

6
x
� 4�2u

4
x
dx+ �Æ

Z 1

0
u
2
xx

dx: (3.25)

The only point remaining concerns the behaviour of the functionals W�(t) and V�(t).

If we can prove that

W�0
(t) � k(�0)V�0(t) � 0 (3.26)

for some constant k(�0) > 0 and all t 2 (0;1), then the inequality (1.11) follows.
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First we estimate the integrals contained in V�(t) one by one. It is easy to check

that

�

Z 1

0
jutuj dx � �

 Z 1

0

u
2
t

2
dx+

Z 1

0

u
2

2
dx

!

� �

Z 1

0

u
2
t

2
dx + �

Z 1

0

u
2
xx

2
dx (3.27)

and

�



2

Z 1

0
u
2
x
dx � �




2

Z 1

0
u
2
xx

dx: (3.28)

This follows immediately from the Young inequality and from the fact that kuk2 �
kuxk2 � kuxxk2. Hence, we have thatZ 1

0

 
(1� �)

u
2
t

2
+ (Æ � �)

u
2
xx

2
+ F2(ux) +

CV (� � �)2

2K

!
dx � V�(t)

�
Z 1

0

 
(1 + �)

u
2
t

2
+ (Æ + � + 
�)

u
2
xx

2
+ F3(ux) +

CV (� � �)2

2K

!
dx: (3.29)

In the next step, we investigate the functional W�(t). We conclude from the com-

patibility conditions that

�

Z 1

0
u
2
t
dx � �

Z 1

0
u
2
xt
dx: (3.30)

It is obvious that the inequality

2��1

Z 1

0
u
2
x
(� � �1) dx � 2�k�(t)� �1k1�1

Z 1

0
u
2
xx

dx (3.31)

is ful�lled. It is also easy to check that

f2(z)z = 6�3z
6 � 4�2z

4 � 4(�3z
6 � �2z

4) + 2�3z
6

� 4F3(z)�
4�2

2

�3

F4(z) + 2�3z
6
; (3.32)

with

F4(z) :=

8<: z
2 if z �

q
�2

�3

0 if z >
q

�2

�3
:

(3.33)

According to the inequality above, we have

�

Z 1

0
f2(ux)ux dx � 4�

Z 1

0
F3(ux) dx� �

4�2
2

�3

Z 1

0
u
2
xx

dx: (3.34)

We easily deduce that the estimate

k�(t)k2
1

2�2
1




Z 1

0
u
2
x
dx � k�(t)k2

1

2�2
1




Z 1

0
u
2
xx

dx (3.35)
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holds.

The Poincare inequality provides that

k

K

Z 1

0
(� � �)2

x
dx �

k

K

Z 1

0
(� � �)2 dx: (3.36)

Applying the Young inequality, we obtain the estimate

1

K

Z 1

0
jf1(ux)�(� � �)uxtj � k�(t)k2

1

2�1

K

Z 1

0
juxuxtj dx

� k�(t)k4
1

2�2
1

K

Z 1

0
u
2
xx

dx+
1

2K

Z 1

0
u
2
xt
dx: (3.37)

In the same manner, we can derive that




K

Z 1

0
u
2
xt
j� � �j dx �


k�(t)k1
K

Z 1

0
u
2
xt
dx: (3.38)

Combining the above estimates, we have

W�(t) �
 



2
� ��


k�(t)k1
K

�
1

2K

!Z 1

0
u
2
xt
dx +

k

K

Z 1

0
(� � �)2 dx

+�

 
Æ �

4�2
2

�3

�
2k�(t)k2

1
�
2
1


�
� 2k�(t)� �1k1�1 � k�(t)k41

2�2
1

�K

!
�

Z 1

0
u
2
xx

dx+ 4�

Z 1

0
F3(ux) dx: (3.39)

We conclude from (3.29) and (3.39) that there exists a constant k(�0) such that

(3.26) is ful�lled, and therefore

d

dt
V�(t) + k(�0)V�(t) � 0: (3.40)

An easy computation shows that V�(t) � 0, and this �nishes the proof. 2

Consequence 3.1 Suppose that the constants from Theorem 1.1 satisfy

�+

k�(t)k1

K
+

1

2K
<




2
; �+ �1�1 +

�
2
2

�3

<

�

2
(3.41)

and
4�2

2

�3

+
2k�(t)k2

1
�
2
1


�
+ 2k�(t)� �1k1�1 + k�(t)k41

2�2
1

�K
< Æ (3.42)

for a.a. t 2 (0;1). Then

kut(t)k22 + kuxx(t)k
2
2 + k�(t)� �(t)k22 � k3e

�k4t; (3.43)

where the constants k3, k4 > 0 depend only on the initial state.
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P r o o f: We can use the term �


2

R 1
0 u

2
x
dx, which appears in the functional V�(t),

to verify (3.43). 2

Consequence 3.2 If the relations

� <



2
; �+ �1�1 +

�
2
2

�3

<
Æ

2
(3.44)

and
4�2

2

�3

+
2k�(t)k2

1
�
2
1


�
+ 2k�(t)� �1k1�1 < Æ (3.45)

hold for a.a. t 2 (0;1), then

kut(t)k22 + kuxx(t)k
2
2 � k5e

�k6t; (3.46)

where the constants k5, k6 > 0 depend only on the initial state.

P r o o f: We can easily construct the functionals eV�(t) and f
W�(t) adding (2.14) to

(3.22). The rest of the proof proceeds in a similar way as above. 2

4 Remarks

Now, we show possible modi�cations of the proof, which lead to simpler forms of

(1.9) and (1.10). We recommend the reader to compare these new results with [4].

There it was proved that the only solution to the steady state equation is u = 0 if

inequality (4.49) bellow holds.

Lemma 4.1 Suppose positive constants Æ, 
, �i, i = 1; 2; 3, �1, and constants � > 0

and K > 1 are given such that

�+

k�(t)k1

K
+

1

2K
<




2
; �+

�
2
2

�3

<
Æ

2
: (4.47)

If, in addition, the inequalities

2k�(t)k2
1
�
2
1


�
+ k�(t)k4

1

2�2
1

�K
< Æ (4.48)

and

�(x; t) > �1 +
�
2
2

3�3�1

(4.49)

hold for all x 2 [0; 1] and all t � t0, then

kut(t)k22 + kuxx(t)k
2
2 + k�(t)� �(t)k22 � k7e

�k8t (4.50)

for t � t0, where the constants k7, k8 > 0 depend only on the initial state.
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P r o o f: We rewrite (3.31) and (3.32) as

6�3z
6 � 4�2z

4 + 2(�(x; t)� �1)�1z
2 � 4F3(z) + F5(z); (4.51)

where

F5(z) :=

8<: 6�3z
6 � 4�2z

4 + 2(�(x; t)� �1)�1z
2 if jzj �

q
�2

�3

0 if jzj >
q

�2

�3

It is easily seen that

4�2z
4 = 4�2

p
12�3

4�2

z
3 4�2p

12�3

z � 6�3z
6 +

2�2
2

3�3

z
2
: 2

Remark 4.2 If we look more closely at the functional

F1(�1; ux; uxx) :=

Z 1

0
F6(�1; ux; uxx) dx;

where

F6(�1; ux; uxx) := ��1�1u
2
x
� 4�2u

4
x
+ 6�3u

2
x
+ Æu

2
xx
;

we can see that, using the condition (1.9) and the inequality kuxk22 � kuxxk22, we
can assert that the functional F1 has only global minimum for ux = uxx = 0.

Remark 4.3 If we de�ne the function

F8(�; ux; uxx) := �1(� � �1)u
2
x
� �2u

2
x
+ �3u

6
x
+ Æu

2
xx

and the functional

F2(�; ux; uxx) :=

Z 1

0
F8(�; ux; uxx) dx;

then the conditions (4.47)-(4.49) imply that this functional has only one global

minimum for ux = uxx = 0 using the estimate kuxk22 � kuxxk22.

Lemma 4.4 Suppose that there exist constants 
 and K such that that the estimates

(3.41) and

�(x; t) > max

(
�1 +

2�2
2

3�3�1

;
2k�(t)k2

1
�1


�
+ k�(t)k4

1

2�1

�K

)
(4.52)

hold for all x 2 [0; 1] and all t � t0. Then

kut(t)k22 + kux(t)k
2
2 + k�(t)� �(t)k22 � k9e

�k10t: (4.53)

This result also holds for the case Æ = 0.

P r o o f: It is easy to check the assertion of this remark using (3.35), (3.37) and a

modi�cation of the estimate (4.51). 2
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