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Abstract: In this paper we conclude our analysis of Derrida’s Generalized Random Energy
Models (GREM) by identifying the thermodynamic limit with a one-parameter family of
probability measures related to a continuous state branching process introduced by Neveu.
Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of
subordinators related to Neveu’s branching process, we show how the Gibbs geometry of the
limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic
time-change. This construction is fully universal in that all different models (characterized
by the covariance of the underlying Gaussian process) differ only through that time change,
which in turn is expressed in terms of Parisi’s overlap distribution. The proof uses strongly
the Ghirlanda-Guerra identities that impose the structure of Neveu’s process as the only

possible asymptotic random mechanism.

1. Introduction.

In a series of papers [BK1,BK2,BK3| we have recently taken up the analysis of a class of
mean field spin glass models introduced by Derrida and Gardner in the 1980’s[D,DG1,DG2].
In purely mathematical terms, these models can be described as follows. Consider the N
dimensional hypercube Sy = {—1,1}" endowed with the (normalized) ultrametric 1 — dy;,
where dy (0, 7) = N~!(min(i : 0; # 7;) —1). Define a normal Gaussian processes X, indexed

by Snx with covariance function
EX, X, = A(dn(o,T)) (1.1)

for some nondecreasing function A : [0,1] — [0,1]. The principal object of interest is the
analysis of the asymptotic behaviour of the Gibbs measures

eBVYNX,

pp.n(o) = (1.2)

Zg,N

where the partition function Zg n assures that ug n is a probability measure.

Let us note as an aside that the particular formulation of the problem above is related
to its history in the context of spin glasses. The problem can be posed, however, in a
mathematically completely equivalent way in terms of families of Gaussian processes on the
unit interval endowed with a covariance depending on a rescaled dy-adic distance. We will
reformulate this problem in this context in Section 2. The corresponding processes then
induce in a natural way a (Gibbs) probability measure in the unit interval. We will see that

it is very natural to interpret our analysis of the Gibbs measure as an analysis of the fine
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2 Section 1

structure of the limiting singular measure on the unit interval. Note that this point of view
had been put forward already in [B], but was then somehow abandoned in [BK2,BK3].

Let us briefly dwell on the history of this problem. The model was introduced and analysed
by Derrida and Gardner [D,DG1,DG2] in the case when A is a step function with finitely
many steps (the corresponding models are called GREMs, or Derrida’s GREMs) in the sense
that the limit of the free energy

1
F =———1InZ 1.3
B,N aN nZs.N (1.3)

and some further thermodynamics functions were computed. The computation of the free
energy was later done rigorously in [CCP]. Derrida and Gardner then also considered limits
of their results as the number of steps tended to infinity, and interpreted these results as
corresponding to continuous functions A [DG1]. These results were then also compared
to those of the more commonly studied (and more difficult) class of Sherrington-Kirkpatrick
models (which essentially differs from the class studied here in that the covariance is a function

of the Hamming distance rather than our hierarchical distance).

While there were very few further rigorous results on these models (but see [GMP]), Ruelle
in a seminal paper of 1988 [Ru] introduced a new class of models based on Poisson cascades
(to which we will henceforth refer to as “Ruelle’s GREM”) which he apparently understood
to be the appropriate asymptotic models to describe the limiting Gibbs measures of Derrida’s
GREMSs. Ruelle noted a number of remarkable features of these models, and in particular
observed that it was possible to construct limits as the number steps went to infinity in terms
of projective limits. Surprisingly, his paper at no point contains a precise hint on how his

models are to be related to the original spin glass models of Derrida.

Shortly after that, Neveu [Ne] noted a connection between Ruelle’s models and continuous
state branching processes. This paper also outlined a proof of the convergence of the rescaled
partition function of the REM and GREM to a functional of the Poisson process, respec-
tively Poisson cascades of Ruelle. Unfortunately, these observations are only contained in an
internal report that was never published and that contains these ideas only in a somewhat
embryonic form. Following a much later paper by Bolthausen and Sznitman [BoS], where it
was explained how the results of replica theory of spin glasses can be interpreted in terms
of a coalescent process (now known as the Bolthausen-Sznitman coalescent), Bertoin and Le
Gall [BeLG] finally gave a precise and complete form of the relation between continuous state

branching processes, the Ruelle’s GREM, and the Bolthausen-Sznitman coalescent.
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Around the time when these fascinating results appeared, we began to investigate more
closely the link to the original spin glass models with Ruelle’s models. In the REM, this
connection was then made in a paper with M. Lowe [BKL] which was elaborated on in the
lecture notes by one of us [B] (see also [T3,T4]). These results were extended to the GREMs
in the papers [BK1,BK2]|, using essentially elementary methods. We observed, however, that
the use of the so-called Ghirlanda-Guerra identities [GG]| allowed a different approach that
circumvented parts of these explicit computations (this fact was first observed in the REM
by Talagrand [T3] who also exploited these identities heavily in his work on the p-spin SK
models [T1,T2,T3,T4]). In fact, these identities impose structural constraints on any limit
point that allow to prove convergence of the Gibbs measure (in a suitable sense) only on
the basis of the convergence of the free energy, and that, moreover, allow to characterize
the limit. These observations allowed us in [BK3] to extend our convergence results to the
general class of models defined above (which we call CREM in case the function A is not a

step function).

In the present paper we want to conclude this investigation by linking our result up to
the continuous state branching model, i.e. by identifying the limit proven to exist in [BK3]
explicitly in terms of Neveu’s branching process. This requires in fact little more than com-
bining our results from [BK3| with those of Bertoin and Le Gall [BeLG], but we feel that the

emerging complete picture is well worth to be put in evidence.

Let us insist that the main purpose of this and our preceding papers is to show that
meaningful infinite volume limits exist in highly disordered mean field models, contrary to
what is sometimes claimed. Quite on the contrary, there exist as we will see universal limiting
random objects that serve as good approximations of the “large but finite” systems, in the
best spirit of statistical mechanics. The fact that these objects turn out to be random, and
that convergence tends to be in the sense of probability distributions is certainly unfamiliar to
the traditionally trained mathematical statistical physicist, while this will hardly come as a
surprise to probabilists or statisticians. Let us mention that the importance of distributional
limits of random measures in the context of spin glasses was strongly advocated in a series
of papers by Newman and Stein, see e.g. [NS1,NS2,NS3]. When saying that limits are good
approximations, care has to be taken of the topology used when constructing limits. There are
indeed many pitfalls possible, and great care must be taken in order to get meaningful results.
Rather unsurprisingly, the ingenious analysis of this problem introduced in the context of the

replica method [MPV] is largely equivalent to formalism used in [BK3].



4 Section 1

Let us recall the central problem one is faced with when analysing mean field spin glasses.
What we want to do is to describe the geometric structure of a random probability measure
on a set Sy. One expects that this measure will concentrate (at low temperatures) on a
relatively very small subset with rather complicated structure. Since due to randomness
and symmetries there are no external references, we need a way to describe the structural
geometric properties of such measures in an intrinsic, reference-free way. On the other hand,

we need to allow sufficient compactness for limits to exist.

To resolve this problem, we introduced in [BK3] was what we called the empirical distance

distribution function, i.e. the random measure

K:ﬁ’N = Z N,@,N(U)‘Sma(-) (14)
ocESN
where
mq(t) = pg N (o' : dn(o,0') > t) (1.5)

This object describes the probability of a mass distribution around a randomly (according to

the Gibbs measure) drawn point on Sy.

A key object is the mean first moment of this random measure,

/ICﬂ,N(dm)m(t) =1— fan(t) (1.6)

which is nothing but the probability that two configurations, o, o', drawn independently from

the Gibbs sample satisfy dn (o, 0’) > t. The function

fan(t) = pd (dn(o,0') < 1) (1.7)

is now the analogue of Parisi’s order parameter®. In [BK3] we proved that

fon(t) = Efs = min (ﬂ‘1\/2 m2/+/a(), 1) (1.8)

where @ is the right-derivative of the convex hull of the function A. Convergence in (1.8)

holds both in mean and almost surely. We also showed that

Kon 3 Kg. (1.9)

1In the context of the SK models, this function is usually defined with dx replaced by the “overlap
parameter Ry (o,0') = N~ ZZ 0;0}. In [BK2] we have shown that in the GREM, the choice of the distance
used in the definition of fg n does not affect the result in the limit N 1 oco.
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The limit is uniquely determined by Ghirlanda-Guerra relations, which give recursive formulas

to compute all moments of Kz starting from the function fg.

In fact, while the random measures Kz v may look somewhat unfamiliar, their moments
are closely linked and even equivalent to the more conventional n-replica distance distribution

ng}v These are measures on the space [0, 1]*(»~1)/2

QG (A) = By ((dn(o',07)) e, e €4) (1.10).

Note that these measures do of course give full measure to sets that respect the ultrametric
triangle relations. In [BK3] we proved their convergence to a limiting distribution Qg’). The
Ghirlanda-Guerra identities (together with the fact that 1 — dy is an ultrametric distance)
allow to compute Qg"'l in terms of Qfy recursively, while Qf, has distribution function Efg(t).
On the other hand, the full set of distributions Q" determines the limiting random measures

Kp through its moments.

It now remains to interpret these limiting objects in the context of Neveu’s branching
process. It will turn out that both Kz and Q(ﬂ") have natural interpretations. The former
will be interpreted in the language of the continuous state branching process, while the latter

are naturally interpreted in the corresponding coalescent process on integer partitions.

The remainder of the paper is organised as follows. In Section 2 we describe a canonical
construction of the genealogy associated to a flow of probability measures p* on [0,1] in a
general setting. In this process we introduce the empirical distribution K; on the functions
mg(t,-) which describe the dependence of the family size of the individual z as a function of
the degree of relatedness. We also define the genealogical distance between any two points on
[0,1] as the last time they had an ancestor in common. We are mostly interested in the case
when the measures in the flow are random. Consequently, we define the distance on integers
i,j as the distance between independent uniformly distributed random variables U;,U; on
[0, 1] and consider the partitions of integers in blocks whose distance is most s. The family of
these partitions as a process of s form a coalescent process. It turns out that K; is completely
determined by this coalescent, as we give explicit expressions for all its moments in terms of

probabilities of random partitions.

In Section 3 we show how this construction works for a flow of the Gibbs measures pg n
on Sy (identified with [0, 1] via the canonical map (2.1)) of the CREM with an arbitrary
function A. Namely, Kg n of (1.4) is precisely K; defined in Section 1 for this flow. We

also explain how this construction can be reformulated for the Gaussian process on the unit
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interval.

In Section 4 we formulate our main theorem. It identifies the limit as NV 1 oo of Kg n in
terms of the flow of measures corresponding to Neveu’s branching process: X (¢(y),z)/X (t(y), 1),
where X (¢, z) is the size of the population of this process at time ¢, provided that at the initial
moment it was x. Here t(y) is an appropriate time change defined only by Efg(y) of (1.9). In
fact, conceptually we do slightly more: we show that there is a flow of probability measures
ﬂtﬁ’ N constructed via an embedding of Gibbs measures ,utﬂ’ N that converges to a limiting flow
of measures @;ﬂ constructed from a time changed Neveu branching process, in the sense that

the genealogies of the flow converges.

In Sections 5 and 6 we prove this theorem. Since K; is determined by its moments,
or equivalently, by the genealogical distances of integers for the corresponding coalescent,
as was established at the end of Section 2, its suffices to show that the n-replica distance
distribution functions (1.10) of our spin glass model converge to the genealogical distance
distribution function of the Bolthausen-Sznitman coalescent (which corresponds to K1) under
an appropriate time change. One way (short but indirect) to prove this is indicated in Section
5 and relies on the connection between Neveu’s branching process and Ruelle’s probability
cascades established in [BeLG].

The second way (more direct) is given in Section 6: it consists in showing that the
Bolthausen-Sznitman coalescent satisfies Ghirlanda-Guerra identities. For that purpose we

use the Chinese restaurant process of J. Pitman [P].

We hope that the results presented in this class of models elucidate in a mathematically
comprehensible context the fundamental and universal role played by Neveu’s continuous
state branching process as a universal random mechanism governing the extremal processes
for a wide class of stochastic processes. If one accepts the common belief of theoretical
physicists, its role goes well beyond the class of models we discuss here. Even on a slightly
less speculative level, Neveu’s process will emerge in any model for which the Ghirlanda-
Guerra relations hold in their strong form, which means in particular that this will be the
case if not for the actual SK model, then at least for models where weak additional fields
have been added to the Hamiltonians (see [GG,Le,T2]). On the other hand, we also hope
that these examples help to explain to a mathematical audience what physicist describe when
they talk about “continuous replica symmetry breaking”, and how such a phenomenon can

actually arise.
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2. Genealogy of a flow of probability measures

In [B] one of us proposed to describe the infinite volume limit of the Gibbs measure in the
Random Energy Model by considering its image on the unit interval through the canonical

map ry : Sy — [0, 1] defined as

22 (1+0;)/ (2.1)

It was shown that the phase transition in the REM manifests itself by the fact that the
resulting image measure converges to Lebesgue measure in the high temperature phase (8 <
M) and towards a dense pure point measure in the low-temperature phase (8 > \/M)
While in the REM this appeared to give a rather nice picture, at first glance it seems to be
difficult to encode the far more complex structure of the Gibbs measures of the GREM
and CREM in such a simple embedding. Our purpose would be to identify a measure on
[0,1] that represents the limiting Gibbs measure. It will be instructive to explain how a
naive approach to do so fails. On the hypercube we are interested in the masses of sets
bs(t) = {0’ : dn(0,0") > t}. If we map such sets on the unit interval via rn, we obtain an

interval of length 2~ [tV]

. In fact there is no difficulty to express e.g. Kg n for N fixed in
terms of quantities defined with respect to the image measure on the hypercube. However,
the construction involves masses of intervals of exponentially small size (in N). So what
should one do in the limit when N is infinite? We cannot analyse the structure by looking

at intervals of the size 27t

What is needed is clearly a construction that does not refer explicitly to masses of intervals
of exponentially small size while still revealing the fine structure of the measure at such a
scale. In this section we show that a canonical construction exists when we consider a family

of probability measures on [0, 1].
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Let {u'};cr+ be a family of probability measures on [0,1]. Denote by ©; their (right-

continuous) probability distribution functions ©;(z) = [ p*(dz). Let us note that we will
0

mostly be interested in cases when the measures u® are getting more and more irregular as ¢
increases. We will consider ©; as a map [0,1] — [0, 1], so that {©;};cg+ represents a flow of

maps on the unit interval. Define for ¢’ < ¢
S8 (z) = 0, (0, (x)) (2.2)
where the inverse of a right-continuous, non-decreasing function © is defined as
©7'(z) = inf{y | O(y) > «}. (2.3)

We will need some elementary properties of the inverse function. We say that © increases at

z, if for any € > 0, O(z) > O(z — ¢).

Lemma 2.1: Let © be a non-decreasing function. Then for any point x at which © is

increasing,
o 1e(z)) == (2.4)

Proof: We have
0~1(0(s)) = inf{y : O(y) > (=)} (2.5)

Since © is non-decreasing, for any y > z, O(y) > O(z) and thus ©~1(0(z)) < z. Assume
that ©~1(0(z)) = y < z. This implies that for some y < z, ©(y) = O(z), contradicting the

assumption that z is a point of increase. <

Lemma 2.2: For a given family of measures ut, let T, denote of the set of points of increase
of the function ©;. Assume that for t" <t' <t, Tyn C Iy. Then

P (z) = §t'st) o S(t”ﬁ')(m) (2.6)
for any z € [0, 1].
Proof: By definition,
St 0 S (2) = ©,(0;1 (0(0;/(2)))) (27)

Note first that since y = ©},'(z) is the smallest value for which ©(y) > =, for any y' < y it
must be true that O (y') < O (y). Thus O, (z) € Tyn.
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But if y is a point of increase of O, by assumption y is also a point of increase of ©y,
hence
S o S (z) = @,(y) = S () (2.8)

which proves the lemma. {

Remark: We see that the construction of the S'**) is best suited in situations where the
distribution functions ©; are everywhere increasing. We will however encounter a more

delicate situation where ©! are step functions with Z,s C Z; for all 0 < ¢’ <t < o0.

Assumption: In the remainder of this section we will assume that ©; satisfies Z;; C Z; for
all0 <t <t < 0.

Tt will be natural to think of ©, and S®*'+*) as mapping subsets of [0, 1] to subsets of [0, 1]
i.e. by abuse of notation if (a,b) = I C [0,1], we will write S® ) (I) = (s(f’#) (a), S¢ ’t)(b)),
etc. We will think of S )(I) as the “offspring” at time ¢ of a population I at time ¢'. For
this to make sense we need of course conditions (2.6) to hold at all times. We now want to
associate a genealogy to this flow. Ideally, we want to introduce the notion of the set m,(t,t')
of points z at time ¢ that have at time ¢’ < ¢ the last time an ancestor in common with z.
To allow some more flexibility it will be useful to have a softer version of this notion, where

the ancestors of £ and z are only required to be “close”. Define now

me(t,¢') = ST (V ((S(t"t))_1 (a:))) (2.9)

where

Vey) =(y—ey+e) (2.10)

mt(t,t') is the offspring at time ¢ of a small neighbourhood of the ancestor of z at time ¢'.
Thus, roughly, |m&(¢,-)| describes the dependence of the family size of the individual z as a
function of the degree of relatedness. We will eventually tend € J 0. In cases when all functions
S®:t) are continuous, this of course produces a trivial answer, i.e. limejo m¢ (¢,t') = {z}; if
on the other hand S®"*) has jumps at the position of the ancestor of x for certain values of

t', lim¢ o mE (¢,t') will be a non-trivial sequence of intervals.
J 1 z\ly

Finally, define the associated empirical distribution of the functions mg(t, -)

1

K; = /dx6|m;(t,-)| (2.11)
0
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and let
K = leiﬁ)ll(:;. (2.12)

Now we define the (¢)-genealogical “distance” of two points z,y € [0, 1] with respect to u® as

vi(z,y) =sup(t' : y € mE(¢,1')). (2.13)

It would be nice if v; defined an ultrametric. Unfortunately, this is in general not the case.
The reason is simply that if the ancestors of  and y were at a distance ¢ for the last time at
time ¢, they could have been farther apart at some later time. Thus the ancestor of z may
get to a distance € of the ancestor y at a time bigger than ¢, but may not be close to the
ancestor of x after some time strictly less than ¢. However, this is not possible if we use the

strict definition of genealogical distance as
v = lim ¥ (2.14)
In fact, we have:

Lemma 2.3: If the hypothesis of Lemma 2.2 hold for all times t" < t' <t, then 1 — v,

defines an ultrametric distance on the unit interval.

¢ X y z . X y z
\’\( vva J ¥(y.2)
vECy) Y Y= V(02
Vg(z,x)
0 0
Ancestral lines of three points and Ancestral linesin aflow with jumps.
their neighbohoods. Note that the Here the genedlogy is ultrametric
€ genealogies are not ultrametric
Proof: Let us note first off all that
Y€ lif(r)lm; (t,t") V" <t =y(z,y). (2.15)
In fact it suffices to see that
lim §¢(V(S¢9) " () € lim §¢" I V(5" 9) 7 (=) (2.16)
which is by compatibility (2.6) equivalent to
lim V,(S®9)~1(z)) C lim S (V,(S®" D)1 (z)) (2.17)

el0 el0
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This last equality again holds by (2.6). It is indeed trivial if S®"*) is continuous at
(S¢"9)7 ().

It follows from (2.15) that for any z,y,z € [0,1] if v(z,y) # Y(z,2) then v(y,z) =
min{vy(z, z), 7:(z,y)}. In fact, let e.g. v (z,2) > %(z,y). Then z € lim. o mS (¢, v (x,y))
and then v;(y, z) > 7:(z,y). From the other point of view, if v:(y, z) > v:(z,y), then either
(T, 2) > ve(y,2) > ve(w,y) or %(y,2) > v(x,z) > v(x,y). In the first case by (2.15)
z € lim. omS(t,v:(y,2)) and then v:(x,y) > 1(y,2) which is impossible. In the second
y € limeomg(t,v:(z,2)) from where v:(z,y) > v:(x,2), which is again impossible. Thus
(Y, 2) = 1w, y)-

Note also that if y.(z,y) = vi(z, 2), then v (y, 2) > vi(z,y) = y:(z, z). These observations

imply that 1 — 7, is an ultrametric distance on [0,1]. {
Again, 7, is rather trivial if S®'**) are all continuous, for then

t ife=y
limvy(z,y) =4 2.18
imoi(ea) ={ oY (2.18)
and in a strict sense nobody has any relatives. On the other hand, in the discontinuous case,

rather large families exist, and the ultrametric structure of the interval can be very rich.

Note that we will usually be interested in cases where the family of measures pt is random.
In that case K; is a random probability measure. We will now describe a useful way of

characterizing this random measure.

Having defined a distance 1—+; on [0, 1], we can define in a very natural way the analogous
distance on the integers. To do this, consider a family of i.i.d. random variables {U;}ien

distributed according to the uniform law on [0, 1]. Given such a family, we set

pe(i,7) = (Ui, Uj) (2.19)

Due to the ultrametric property of the «; and the independence of the U;, for fixed ¢, the
sets B;(t') = {j : p:(4,7) > t'} form an exchangeable random partition of the integers.

Moreover, the family of these partitions as a function of ¢ — ¢’ is a stochastic process on
the space of integer partitions with the property that for any ¢’ > t”, the partition B;(t")
is a coarsening of the partition B;(t'). Such a process is called a coalescent process (see e.g.
[Bel,Be2,BeL.G,,BePi,BeYo,BoS,P,Pil,PPY]).
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1 1 .
t t
t t
t t
0 0
Genedlogy of aflow of measures Associated partions of random i.i.d. variables (dots).

The key observation for our purposes is the possibility to express m,(t,t') and its moments

in terms of this coalescent [Bel]. Namely, it is plain that

ilTlilo n~? il e,y = my,(t,t'). as. (2.20)
i=
for any ¢ such that i € Bg(t'). This implies, for instance, as shown in [Bel] that
E / dom. (t,¢') = P12 € By(t')] (2.21)
and more generally that
E / dom®(t,¢) = P[2,3,... k+1€ By(t))] (2.22)

Here the expectation E is with respect to the randomness of the family of measures pf, and P
is the law with respect to the random genealogy (depending both on the random measures and
the i.i.d. r.v. U;). We will need slightly more general expressions, namely a family of moments
that determine the law of the random probability measure K;. These can be written as follows.
Let take any positive integer p, collection of positive real numbers 0 < t1,...,t, <, positive

integers £, and non-negative integers ki1,...,kip,k21,...,K2p, ..., Ke1,...,kep. Then we need

M(p,t,k) =E ( / domb (ty) ... mb (tp)> . ( / domba (t,) ... m" (t,,)) (2.23)

By (2.20), we have that

/ demb(t,) .. .mb ()

= lim p~ 1Rk $° 3 . .
= limn Ljtit, €Bugan () - Tt il €Bigiag) (1)

ntoo i—1 41 -1 -p -p
= Jl""’Jkll ""7]1 7"'7Jk1p

(2.24)
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Let us note first that in these expressions contributions from terms where two indices are

equal can be neglected. Second, since
Bi(i,t,) (tp) C Bi(iyt,_1)(tp—1) C -+ - C Biity)(t1) (2.25)

the summand in (2.24) is the same as

L33 iyl €Breny (1) -+ TP i? € B (1) (2.26)
Then
]\4'(p7 i E) — l#m n—l—ku—-.._klp]E E E . E
- njoo
2 2p 21,1 -1,1 .p,1 :p,1 .1,£ .1,2 .p,L .p,L
CEREUS ,...,]kll,...,]f ,...,jzlp h ,...,Jk“,...,]f ,...,]:lp
1. : . P R 1. . ; .
.711’17"'7.7}1;11s"'7.71p’17'"7.7£i;eBk(il,tl)(tl) .7111[7'"’-7;:;;""’Jf’ly--"JzéieBk(il,tl)(tl)
... oL N S, 1. ,
Jf’la"'v.?zi; GBk:(il,tp)(tP) ]Ip,l’."’]:;i eBk(il,tp)(tP)
= P[Jll S Bl(tl), ceey le S Bl(tp), ...dp € Bz(tl), - ,Jgp S B[(tp)]
(2.27)
where

(i) J11,---,Jep is a partition of {1,..., k11 +--- + kep },
(ii) For all 3,1, Jj,‘ D Jj,‘+1, and
(iii) |Jjil = kji + Kjivr + - + Kjp.

By exchangeability, the choice of the partition and the subsets is irrelevant. Note that
we were forced in the last line to use a somewhat incongruent notations for the sets B: we
enumerate B;(t1) in their oder of appearance, and let B;(t;) be the first block contained in
B;(t;—1) on the level t;.

The probabilities (2.27) can be expressed alternatively in the form
P (pt(17 2) < t1,. .. 7pt(n - 17”) < tn('n—l)/2) . (228)

Thus the random probability measure K; is completely determined by the probabilities (2.27)

or (2.28) of the corresponding coalescent through the family of its moments.

3. Finite N setting.

We will now show that for finite N we can use the general construction from the preceding
section to relate the geometric description of the Gibbs measure on Sy to the genealogical

description of a family of embedded measures on [0, 1].
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(i)

(i)

(iii)

Section 3
Recall that our basic objects are

o € Sy = {—1,1}¥ equipped with dy(0,7) = N~!(min(i: o; # ;) — 1). Due to this
notion, we can think of Sy as being the leaves of a binary tree Tx, obtained by setting
o(t) = (01,02,...,0pn))- It will be convenient to be able to represent o, for given 0 <

t1 <ty <---<t, <1 in the form
o= (o(t1),0(t1,t2),...,0(tn,1)) (3.1)

where

o(ti tiz1) € {—1, 1} N Gra—t)l: (3.2)

For non-decreasing function A : [0,1] — [0, 1], we have a Gaussian process X, with mean
zero and covariance

EX, X, = A(dn(o,T)). (3.3)

We extend this to a Gaussian process indexed by the tree 7y by setting
Xo(t) = Xo(t) (3.4)

where X, (t) was defined in [BK3] as the Gaussian process on Sy with mean zero and
covariance

EX, ()X (') = AE At Ndn(o,T)) (3.5)
Note that the process X, () has independent increments (in %).

Finally, we have the Gibbs measure utﬁy n defined on Sy by

t eﬂ\/ﬁXﬂ (t)
phn(o) = S (3.6)
B,N
Note that pj  induces a natural measure on 7y by setting
wa.n(0(s)) = up n (0 2 0" (s) = o (s)) (3.7)

We can now map the measures ,uf,, n to the unit interval through the map ry defined in
(2.1) via

AhN =D Srmy(o)bhN(0) (3.8)
U'GSN
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We will apply the construction of Section 2 to this family of measures. Let us denote by
Shn(@) = [ Hh(a) (39)

Note that by construction the functions étﬂ n increase on the set r;n1(Sn) and that
TN (Sn) C rin)(Sw), for all 0 < ¢/ <t < oo, thus the assumptions of Lemma 2.2 are

satisfied for all values of ¢,#’,t”. It is also useful to realise that

Oh,n(rin(0)) = > wan (o) (3.10)

a'irny(0')<ren (o)
We set, for t' <,
gl _ - -1
Sox (@) = Of ((Gtﬂ,N) (w)> (3.11)

In explicit notation, this can be expressed as
(t t)
Z .8 OV 1 (o)< (3-12)

Note that S(t N) are non-decreasing functions [0,1] — [0,1]. Note also that Sét ]\f)( ) is
piecewise constant and jumps at the points @57 ~n(rve(a(t'))), o(t') € Spnp; the values
of the increments at the point étﬂ"N(r[Nt:](a(t’))) is pj n(o(t')). Of course most of these

increments will tend to zero while some will be of order one, as N tends to infinity.

It also follows now directly from Lemma 2.2 that for any t” < t' < t, S’gﬁll\;) satisfies
compatibility relations for “bridges” in the sense Bertoin-Le Gall [BeLG]:

Lemma 3.1: Forall0<t'<t' <t<1,
SE N (2) = 8530 0 55 3 () (3.13)
where o denotes composition.
We may define as in (2.9) m,(t,t') = lim.jo mg(¢,t'). In this case

mg(t,t') = inf (gg’]’\f) (y) : §g’1¢)(y) > x) — sup (§g’1’\;) (y) : §ét’]’\;) (y) < .1:) (3.14)

which is nothing but the hight of the jump of the function Sg 3¢ t) which comprises the point

Z.
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From the remark following (3.11) we know that such a jump occurs at points y of the form

Y= (:)tﬁ’,N(r[t:N](a)) and will be by an amount u} y(o(t')) and so

Moy (e (o) (Et) = ma(t'; 1) (3.15)

where m,, is defined in (1.5). This observation allows us to express the measure Kg n de-
fined in (1.4) describing the geometry of the Gibbs measures on the hypercube in terms of
the genealogical distance distribution functions K defined in Section 2, with the family of

measures p’ given by the measures i} . Namely:

Proposition 3.2: Let K¢ be as defined in (2.11) for the family of measures ﬂtﬁ’N, and let
Kg,n be defined in (1.4). Then

lim K = Ko, (3.16)

In particular,
1

fon(t) = 1-limE / da|m (1,2)| (3.17)
€ 0

is expressed in terms of the size biased average gap size in the function gg’:}?

Proposition 3.2 is obtained in a purely algebraic manner and simply shows that the general
formalism introduced in Section 2 allows, in the case of the finite volume Gibbs measures,
to express the measures Kg n in terms of the genealogy of the embedded family of measures
ﬁg’ n- This opens the way to express the thermodynamic limit of Kg n in terms of the

genealogy of a suitable family of measures on [0, 1].

An alternative setting.

Before turning to this question, let us note that the above setting of Gaussian processes on
{—1,1}" can be completely reformulated in terms of Gaussian processes on the unit interval,
respectively unit square. To see this, let d; denote the standard dyadic valuation on [0,1], i.e.
ife =731 ;27" then dy(z,2') = inf (i : &; # 2}) — 1. Set dy(z) = N~ 'dy(z). Then
let Xn(t,z) be the centered Gaussian process on R, x [0, 1] such that

EXy (t,z)Xn(t',z') = A (t At A JN(m,m')) (3.18)

where A is as in (ii). Observe that, for fixed ¢, Xy(t,z) = Xn(t,2') whenever dy(z,z') > t,

i.e. Xy(t,x) is piecewise constant as a function of z on blocks of size 27 [V,
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While it is plain that the process X does not converge to a sensible limit, it is a sensible
question to ask for the extremal properties of the process Xn(t,z) as N 1 oo. To this end
one may introduce the measures

eﬂ\/NXN (tym)dx
f()l dyeﬁ\/ﬁXN (t,'y)

i n(dz) = (3.19)

While these measures are absolutely continuous with respect to Lebesgue measure, they may

converge to singular measures as N tends to infinity.

We can naturally apply the construction of Section 2 to the family of measures ﬂf,y N and
define in particular the corresponding measures Kj  ,, for € > 0. Of course, for N fixed, the
limits as € tends to zero will be trivial since the corresponding functions St'st are continuous.
But keeping € > 0 fixed, letting IV tend to infinity, and taking then € to zero, we get a
non-trivial answer that coincides with the one we will obtain from the construction described

in the first part of this section.

4. Continuous state branching, bridges, and all that.

We will now give a brief summary of the constructions in [BeLG] related to continuous
state branching processes. The basic object here is a continuous state branching process
characterized by its Laplace functional u;(\). The process started in a > 0 will be denoted
X(-,a). This can be extended to a genuine two parameter process using the fundamental
branching property that state that if X'(-,b) and X (-, a) are independent copies, then X (-, a+
b) has the same law as X'(-,b) + X(-,a). Thus they construct their process by demanding
that for any a,b > 0, X(-,a+b) — X (-, a) is independent of the processes X (-, ¢), for all ¢ < a,
and its law is the same as that of X(-,b). The right continuous version of X (¢,-) is then a
subordinator. The Markov property of the branching process leads to the following extended
construction, due to Bertoin and Le Gall [BeLG]:

Proposition 4.1:There exists a process S (a),0 < s <t,a >0, such that
(i) For any 0 < s <t, S©t) is a subordinator with Laplace exponent us_4(\).

(ii) For any integerp > 2 and0 < t; <ty < -+- < t,, the subordinators S(ti-t2) S(tasts)  Gltp—1.tp)

are independent and

Stitn) () = §ltste) o §ltasta) ... o S(tf’*l’tp)(a),vazg, a.s. (4.1)

(ii) The processes SOV (a) and X (t,a) have the same finite dimensional marginals.
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It is plain that the §("%) constructed in [BeLG] are closely related the the S('%) of Section

2. In fact, we can first associate to the increasing process X (¢, a) the probability distribution

function ¥
o'(x) = Xgi ‘3 (4.2)
for z € [0,1]. Then the normalized versions of the process S(*)(a)
50 (a) = (1, 500X (s, 1)2) (4.3)
can be represented as
S(9(a) = ©* (0"} ()) (4.4

as in Section 2. Note that the hypothesis of Lemma 2.2 are always satisfied in this case with
probability one, since the subordinators S(**) increase is dense. The associated genealogy
of this family of probability measures is then directly equivalent to the genealogy of the
underlying branching process. We denote by K: empirical genealogical process associated to

this measure.

Now let us consider the above construction for the special case of Neveu’s branching

process. This is the process with Laplace functional ¥(u) = ulnu.

Bertoin and Le Gall [BeLG] showed that the coalescent process on the integers induced
by Neveu’s process (as explained in Section 2) K. coincides with the coalescent process con-
structed by Bolthausen and Sznitman [BoS]. They also proved the following remarkable result
connecting the collection of subordinators to Ruelle’s model. Let us state this result for our
convenience. Take the parameters 0 < z; <--- <z, <land 0 <ty <--- <t, linked by the
identities

tr =Inzry; — Inzy (4.5)
for k=0,...,p—1,and t, = —Inz;. Then the law of the family of jumps of the normalised

subordinators S(+-t») for k = 0,...,p — 1, is the same as the law of Ruelle’s probability

cascades with parameters z;, i =1,...,p.

Now consider a GREM with finitely many hierarchies and parameters such that the points
yo = 0 and y;, i = 1,...,p are the extremal points of the convex hull of A. Let us remind
that limy_,o0 Efs. n (y) = Efg(y) can be computed by (1.8) for any y € [0,1]. Now set

Efg(ys) = (4.6)



CREM and CSB 19

where all of the z; < 1. In Theorem 1.5 of [BK2] we proved that the point process
Yo g (0" 1dn (0,07 )>u1)sene sipn (o' id (0,07 )>y,) 1D [0, 1]P converge to Ruelle’s probability cas-

cades with parameters z;, i = 1,... ,p.
Combining these two results yields

Proposition 4.2: Let pg n be the Gibbs measure associated to a GREM with finitely many
hierarchies satisfying (4.6) at the extremal points y;, i = 1,...,k of the convez hull of the
function A. Then the family of functions S’g}“\,’y"), k=0,1,...,p — 1 defined according to
(8.11) with respect to ppg,n converges in law, and the limit has the same distribution as the
family of normalized subordinators (4.8) or (4.4) S¢t») k = 0,1,...,p — 1 in the sense

that the joint distribution of their jumps has the same law, provided ti is chosen according

to (4.6), (4.5).

We can actually prove a more general result. From the preceding theorem we expect that
Neveu’s process will provide the universal limit for all of our models; the dependence on the
particular model (i.e. the function A) and on the temperature must come from a rescaling of
time. Set z(y) = Efs(y), where Efg(y) is defined by the function A through (1.8). Set also
T = —1Inz(0), and for y > 0

t(y) =T + Inz(y). (4.7)

Define the family of distribution functions

X(t(y), )
X(t(y),1)

where X is Neveu’s process. Construct the genealogical process I@{;ﬂ = lim¢ o 165‘* *“ associated

oY (x) = (4.8)

to this family of measures. Then

Theorem 4.3: Consider a Derrida model with general function A such that A does not

touch its convex hull A in the interior of any interval where A is linear. Then

Ksn 3 KJ? (4.9)

Theorem 4.3 is the main result of this paper. The basis of the proof are the Ghirlanda-
Guerra identities. In fact we will give two proofs. In Section 5 we will use a somewhat
indirect argument that use Proposition 4.2 to show in a somewhat contorted way that the
same Ghirlanda-Guerra identities hold for the limit of Xg n and for IC{" . In Section 6 we give

a direct proof of the Ghirlanda-Guerra identities for the Bolthausen-Sznitman coalescent.
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5. Coalescence and Ghirlanda-Guerra identities.

In this section we will prove Theorem 4.3. As it was remarked in Section 2 K, asso-
ciated with a flow of measures is completely determined by its moments (2.23) which can
be expressed via genealogical distance distributions of the corresponding coalescent. So, we
will prove that the moments of K n, which are the n-replica distance distributions in our
spin glass model (1.10) converge to the genealogical distance distributions on the integers
constructed from the family of measures @?ﬁ based on the time-changed Neveu branching

process.

It will be done by showing that the Ghirlanda-Guerra relations, which we have established
in [BK3] to hold for the family of limiting measures and which determine them completely,

are satisfied for the proposed limit.

In addition, it gives us the connection between the n-replica distance distribution function
of the CREM with the genealogical distance distribution function of the Bolthausen-Sznitman

coalescent.

Theorem 5.1: Under the same assumptions as in Theorem 4.3, for any n € N,

]}[1%](;10 Eﬂﬂz}eifn (dN(Uli 02) < Y1yy--- 7dN(an_17 Un) < yn(n—l)/?)

(5.1)
=P (pl(la 2) S t(y1)7 -e P (’I’L - 17 n) S t(yn(n—l)/2))

where t(y) is defined in Theorem 4.3. The distance pi is the distance on integers for the
Bolthausen-Sznitman coalescent, induced through (2.19) by the genealogical distance v, of the
flow of measures X (t,z)/X(t,1) of Neveu’s branching process.

Proof: The proof of this theorem, and in fact the entire identifications of the limiting
processes with objects constructed from Neveu’s branching process relies on the Ghirlanda-
Guerra identities [GG]| that were derived for the models considered here in [BK3]. We restate
this result in a slightly modified form. Let us remind that the family of measures Qf y
is determined on the space [0,1]*(»~1)/2 a5 Eu%"’ﬂ (dny € ) where dy denotes the vector of
replica distances dny(o®, '), 1 < k < I < n. Denote by By the vector of the first k(k — 1)/2

coordinates.

Theorem 5.2: [BK3|The family of measures Q(ﬁ"])\, converge to limiting measures Q(ﬁ") for

all finite n, as N 1T co. Moreover, these measures are uniquely determined by the distance
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distribution functions fg. They satisfy, for any y € [0,1], n € N and k <n,

QD (dlk,n + 1) < ylBa) = - faly) + - QY (dlk, ) < y|B,) (5.2)
1#£k

Let us recall that due to the ultrametric property of dy, these identities determine the

(n)
B

measures uniquely. Thus, we must show that the right-hand side of (5.1) satisfies, for

t<1,
1,, 1
Ploi(k,n+1) <t Ba) = ™" +

> Ppa(k,0) <t|By) (5.3)

1<n,l#k

There are two ways to verify that (5.3) holds for the Bolthausen-Sznitman coalescent.

The first one is to observe that relation (5.3) involves only the marginals of the coalescent
at a finite set of times ¢;. By Theorem 5 of Bertoin-Le Gall [BeLG], these can be expressed
in terms of Ruelle’s cascades modulo the appropriate time change. Thus, by Theorem 1.5 of
[BK2] these probabilities can be expressed as limits of a suitably constructed GREM (with
finitely many hierarchies) for which the Ghirlanda-Guerra relations do hold by Proposition
1.8 of [BK2]. Thus (5.3) is satisfied. ¢

The second way is to verify directly that Ghirlanda-Guerra relations (5.3) hold for the

Bolthausen-Sznitman coalescent. This is the subject of the next Section 5.

6. Ghirlanda-Guerra identities and Chinese restaurant processes

The Ghirlanda-Guerra identities appear naturally if one considers exchangeable random
partitions II on N, introduced by J. Pitman under the name of Chinese restaurant processes.
For each parameter 0 < z < 1 this partition can be constructed as follows. Let II,, denote the
restriction of IT to the first n positive integers. Then, conditionally given II,, = {44,..., Ax}
for any particular partition of {1,2,...,n} into k subsets (tables) A; of sizes n;, i =1,...,k,
the partition I, ; is an extension of II, such that the number n + 1 (new customer) is
attached to the class (table) A; with probability (n; — x)/n, and forms a new class (sits
at a new table) with probability kz/n. Let us denote by p(ni,...,nk) the probability of
partitions II with II,, a particular partition of k classes of sizes n1, ..., ns respectively. Then

nT —x
p(niU1l,na,...,np) = ln p(n1,...,m) (6.1)
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Let g(ni,...,nk) be the probability of all coarser partitions than that, i.e.

g(ni,...,ng) :p(nl,ng,...,nk)+Zp(n1,...,n,-_1,n,- Unj, M1, =1, M1, - - -, Tok)
i<j
+ Z p(n1,...,msUnjUn,,...,ng) +---+pnyUng U---Unyg)
i<j<r
(6.2)

Then by (6.1)

(1—=)

g(n1Ul,ng,...,ng) = n q(n1,mz,. .., ng)
1k
+ —an’Q(nl Uni, N, ooy M1, Mg 1y - - - 5 TUR) (6.3)
n =2
1
+ ;(nl — 1)g(n1,na,...,nk)

These formulas have been noticed by Pitman [P], Ch.10.6, and these are precisely Ghirlanda-
Guerra identities for Ruelle’s REM.

One way to see this, is to combine the results of [Pil] and [PPY]. It should be said first that
IT is a partially exchangeable random partition in the sense of [Pil]. Then, given the sequence
of its a.s. limiting relative frequencies of classes F; in order of appearance, the conditional
distribution of II given the whole sequence (P;) is as follows: for each n conditionally given
P; and II,, = {A1,..., Ar} where A; are in order of appearance, II,; is an extension of II,
in which n + 1 attaches to class A; with probability P;, 1 <4 < k and forms a new class with
probability 1 — Zle P;. In other words

%

p(n1, ook :E[ﬁPf"‘llﬁ (1—21?]-)] (6.4)

Jj=1

In the case of the Chinese restaurant process

k
rX2rX---Xkx

p(ny,.yng) = [[a-2)@2-2) - (ni—2) (6.5)

n!
i=1

The function p(ng, ..., nx) being symmetric, II is an exchangeable random partition according
to [Pil]. Furthermore, again due to [Pil], computing the moments from (6.4) and (6.5) one
checks that the limiting relative frequencies in order of appearance in the Chinese restaurant
process are P; = (1 — Wq)(1 — Ws)--- (1 — W;_1)W; with W; independent beta (1 — z,iz).
From the other point of view it has been shown in [PPY] that if T = ) . A; has a stable
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distribution with index z, with Ay > Ay > ... being points of the Poisson point process
on (0,00), then the sequence A(;)/T in size-biased order (this means, that given the whole
sequence A;/T, and U; independent random variables uniform on [0,1], then Uy € A(y)/T,
Umin{j:U;¢A0/T} € D(2) /T etc) has the same distribution of products of independent beta
random variables. Thus the limiting frequencies of the Chinese restaurant process II ranked
by size are distributed as A; /T, i.e. they have Poisson-Dirichlet distribution with parameter
z. Then the partition IT of the Chinese restaurant process obeys the classical Kingman’s
construction: given the sequence of normalised jumps of the stable subordinator (A;/T)
with index = and given U; independent uniform random variables on [0, 1], II is distributed
as a partition of blocks of indices of U; belonging to the same intervals A; /T € [0,1]. We call

partitions distributed as a Chinese restaurant process with parameter z by (z,0)—partitions.

To generalise this construction to the Bolthausen-Sznitman coalescent, let us introduce an
operation of coagulation, see [Pil]: for a partition # = (A1, 4s,...,) and II = (By, Bs,...),
the Il-coagulation of m consists of blocks of the form (J;.p, 4;. Then by [BS] the Markov

kernels (e, 0)-coagulation, t > 0, on partitions of N form a semi-group. The Markov process
P™(TI(t+) € -) = (e!~T,0) — coagulation of 7

1s distributed as the Bolthausen-Sznitman coalescent. 1t starts from a partition of singletons at
time T" and finishes by a partition of one block N at time —oc. (The semi-group property can
be also seen from the fact that the limiting frequencies of (e~*, 0)-partitions are distributed as
normalised jumps of stable subordinators and from their matching condition (4.1).) Then the
marginals of TI(t) at times 0 = ¢y < t; < -+ < t,_1 <t, =T can be constructed as follows.
Let z; = €i-17% 0 <z <@y <--- <z, <1. Then II(¢,_1+) is distributed as the Chinese
restaurant process with parameter z,. Next, we define the partition II(¢,_2+) as the Chinese
restaurant process on the classes of partition II(¢,_1+) with parameter z,_1/z, = e’»-2"tr-1:
this means that given already the classes AZ7%, ... ,AZ_I obtained from A%, ..., A7, where
Af_l consists of I; blocks of TI?, 4 = 1,... ,k, Iy +--- + Iy =, the block A7, , joins Af_l
with probability (""" —z,_1/x,)/l and forms a new class with probability kz,_1/(zpl). One
iterates this procedure with parameters z,_s/z,_1,...,21/z2 to construct the partitions
II(t,—3+),... ,I(to+). Then by the semi-group property II(¢;+) is distributed as a Chinese
restaurant process with parameter x;,; = e*i~% for alli =0,1,...,p — 1. It follows from all

said above and from (6.3) that for all ¢ < ¢,

l—ett 1
P (o, (kyn+1) >t Ba) = ——+ = 3 P(py, (k1) > 1| By) (6.6)

1<n,l#k
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which is equivalent to (5.3).

Recently Ph. Marchal found another beautiful way to identify the limiting frequencies of
the Chinese restaurant process with Ruelle’s REM (or, equivalently, the range of the stable
subordinator) and also the iterated Chinese restaurant process with the Bolthausen-Sznitman

coalescent, see [M].
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