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ABSTRACT. A uniqueness problem raised in 2001 for critical cyclically catalytic
super-Brownian motions is solved in the simplified space-less case, that is, for
cyclically catalytic branching diffusions X. More precisely, X is characterized
as the unique strong solution of a singular stochastic equation.

1. INTRODUCTION

1.1. Motivation. In Fleischmann and Xiong [FX01], a critical cyclically catalytic
super-Brownian motion X = (X%,..., X¥~1) in R was constructed as a strong
Markov solution to a martingale problem involving K > 2 continuous function-
valued processes t +— XF. But uniqueness in law of solutions is known only in
the special case K = 2 of only two species, that is, for the mutually catalytic
branching process of Dawson and Perkins [DP98] and Mytnik [Myt98]. The main
reason for this is that only in the strongly symmetric case of two species the model
has an exponential self-duality property, and if K > 2, no dual (or approximate
dual) process has been found so far, carrying enough information to characterize the
process. It is true that there are moment dual processes of X, but the moments of
X seem to grow so fast [for the space-less case, see Proposition A2 in the appendix]
that Carleman’s (sufficient) condition for the moment problem to be well-posed is
not satisfied.

In the present paper, we simplify the problem by restricting to the “zero-dimen-
sional” case, that is, we drop the space coordinate in the model. Then, X is a
diffusion in RX [see (1) below] with some local non-Lipschitz coefficients. On the
other hand, in our space-less case, we allow non-criticality terms in the equation
as well as correlations between the noises, the latter in the spirit of Etheridge and
Fleischmann [EF03].

1.2. Model and result. Fix an integer K > 1, and denote by K:= {0,..., K —
1} the cyclic group with addition modulo K. Consider the following stochastic
equation

dx¥ = Y apXlds+ B Xfds + /XS XEAWE, s>0, keK,

(1) LEK\{k}
with initial condition X, = a = (ag,...,ax_1) € Rf

for a diffusion process X = (X*)pck in Rf. Here a = (ouk)ikek, 12k > 0, B =
(Br)rek and ¥ = (x)kek > 0 have constant entries. Moreover, W = (W¥*),ck
denotes a vector of standard Wiener processes in R, where any correlation between
the components is allowed. Note that for K = 1, equation (1) reduces to dX? =
BoX2ds + /v X0 dW?, which is Feller’s branching diffusion with branching rate
70 and non-criticality By € R. In general, X} can be interpreted as the mass
of species k at time ¢ of a continuous-state branching population. Intuitively, the
subpopulation X* of X of species k evolves as Feller’s branching diffusion with
branching rate vy, X*~1 changing with time s, with non-criticality 8, and with
a cross species drift caused by oq,kX.’;, I # k. Hence, the subpopulation X*~!
serves as a catalyst for the branching of X*, for each k € K. But note that by this
cyclic interaction over all the species (also if @ = 0 = @ and if the noises W are
uncorrelated) the basic independence assumption in branching theory is violated, so
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that neither X nor any of its components X* is a superprocess (that is, continuous-
state branching process) according to the usual definition. If @ = 0 = 8 and the
noises W are uncorrelated, we get the cyclically catalytic branching process from
[FX01] in the space-less case, whereas for @« = 0 =3, K = 2, and vy = v; we
have the space-less variant of the symbiotic branching model of [EF03].

The construction of a weak solution X = (X*),ck € C(Ry,R¥X) to (1) can be
provided via a standard tightness argument using a fourth moment estimate, start-
ing from (correlated) catalytic Feller’s branching diffusions with drifts and with
piecewise constant (frozen) catalysts X*~! on small time intervals. These approx-
imating equations have unique strong solutions, for each k € K, (the correlation of
the driving Wiener processes is irrelevant for strong solutions). We skip any further
details to this construction.

If K > 2 and a > 0, the uniqueness seems still to be open. Also,if a =0=0
and W is uncorrelated, the recent uniqueness result [BP03] of Bass and Perkins for
certain degenerate diffusions in Rf does not apply due to the singularity caused
by the fact that the catalysts can hit zero.

Our main result is the strong uniqueness of X, provided that a = 0:

Theorem 1 (Strong uniqueness of X). For fized K > 1, a =0, 3 € RK, ~v>
0, and a € Rf, there is a unique strong solution X € C(Ry, Rf) to (1) satisfying
XO = a.

We call this process X = (X, P,,a € Rf) the cyclically symbiotic branch-
ing diffusion in Rf with interaction vector v and mon-criticality (3. As already
mentioned, main emphasis concerns the case K > 2. In fact, K =1 is the classi-
cal Feller’s branching diffusion, where strong uniqueness is well-known, and K = 2
with B8 = 0 and 9 = 71 can be seen as a zero-dimensional version of the symbiotic
branching model of [EF03], where uniqueness in law follows from an exponential
self-duality in the spirit of [Myt98], except for extreme correlation cases of W.

There is actually a very simple idea behind this uniqueness in the space-less case.
Indeed, away from the zero boundary, uniqueness holds by a local Lipschitz condi-
tion. On the other hand, once a component, say XP*, reaches zero, it is trapped
there (recall that we assumed @ = 0). But after this trapping, the model sim-
plifies drastically. Indeed, let’s restrict for the moment to the case of uncorrelated
noises W. Then, X* is the catalyst for X**1, therefore X*t1 does not fluctuate
anymore, hence it is trapped at its present stage if Ox4+1 = 0, or it drifts determin-
istically, otherwise. In any case, X**! is unique. Now, given X**1, and since the
noises W are uncorrelated in the present consideration, the component X**2 is
the (only one-sided interacting) catalytic Feller’s branching diffusion with branch-
ing rate y,11 X*T!, hence, X**2 is strongly unique. This way one can continue
within the cycle until returning to the trapped X*. Consequently, once a compo-
nent hits the boundary, the true interaction in the cyclically catalytic model brakes
down to only one-sided interactions where strong uniqueness holds. In the general
case, where additionally correlations within W' are allowed, the previous argument
can be modified to get the pathwise uniqueness, see Section 2 below.

Note that this kind of approach is quite natural and has been used in proving
uniqueness for diffusions in a simplex, see Sato [Sat78, Section 4] and Swart [Swa99,
Example 3.1.8]. However, note that in the original spatial case of [FX01], these ideas
do not work, since there, as a rule, a component hits zero (that is, it enters the
singularity region) only in a part of space and is not trapped there by a possible
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migration of mass from other regions of space. So the spatial case remains open
(if K > 3) even in the case of uncorrelated noises. Similarly, if @ > 0 in (1), this
trapping method does not work due to the drift caused by other species.

In an appendix, we add some discussion on the moments of X, mainly restricting
to the case of uncorrelated noises W.

2. PROOF OF THEOREM 1

With ¢ we denote a positive constant which might change from place to place.
Let | -| denote the Euclidean norm.

Without loss of generality, we may assume that K > 2. Fix k € K and a € Rf.
Clearly, from Ito’s formula, ¢ — e P¥* X} is a non-negative martingale (recall we
assumed a = 0), implying that the zero state is a trap for this martingale. Hence,
also X* is trapped at 0 once it reaches it.

Suppose we have two solutions X and Y to (1) with the same W and satisfying
Xo =a=7Y), (and a = 0). We have to show that X =Y. It suffices to do this
on a finite interval [0,7], for any fixed T > 0.

2.1. Pathwise uniqueness in the Lipschitz region. Fix a > 0. Choose any
€ > 0 such that € < a; < e~ !, k € K. Introduce the (possibly infinite) stopping
time

(2) 7 = inf{te [0,7]: 3k € K with X} AYF <e or XFVY} 2571}.

Lemma 2 (Pathwise uniqueness in the Lipschitz region). We have X =Y
on [0,T A 7].

Proof. We start by mentioning the elementary inequality

(3) |Vbe — Vde

(To see this, multiply and divide by vbc + Vde.) For Z := X - Y, k € K, and
t <T, from equation (1) we have

tAT: tAT:
W Zh, = o [ szt [ awk (uxtixe v,
0 0

Hence, combined with (3) we obtain the second moment estimate

1
< — (|b=d
- 25—:2(‘ |+

M | =

c—e|) if e <bede<

1 tAT: B
6) Pz < (271814 g ) P [ s (2122

2+‘Zk

SNATe

%), t<T.

SATe

¢
< c/ ds P, (|Zk71
Jo

Summing over k € K, Gronwall’s inequality gives P, [|ZMTE|2] =0, for t <T.
This proves the claim in the lemma. O

As € | 0, we have the non-decreasing convergence of 7. to some stopping time
T < oo. On {7 = oo}, we clearly got X =Y on the considered interval [0,T].
On the other hand, on {7 < o0}, we have 7 < T, and there exists a k € K such
that X* = 0 = Y*. Indeed, note that X cannot explode on a finite time interval
(for instance, use that X has a finite variance, see Lemma A1l in the appendix).
Consequently, X =Y on [0, 7] under {7 < oo} . It remains to study what happens
after a trapping event.
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2.2. Pathwise uniqueness after a trapping event. By the strong Markov prop-
erty, from now on we may assume that ar_s = 0 for some k € K. Then, since 0
is a trap, X*~2 = 0. This implies that dX*~1 = g, ; X¥~1ds, that is,

(6) XF = gy g Pt t>0.

Consequently, X*~2 and X*~! are pathwise uniquely determined. If K = 2, the
proof is finished.
Assume now that K > 3. Then

i i
(7) X = a +,6’k/ds XFds +/dWs’“ fs/ XE, t>0,
0 0

with the random continuous function

(8) fo = (m XS s>,

and X*~! from (6). For € > 0, introduce the stopping time

€

(9) h o= inf{tG 0,T]: Xf <e or Xf 2571}‘

On [0,T A7F] we again get pathwise uniqueness of X* by the Lipschitz property.
Letting € | 0, implying 7% 1 some 7F
[0,7 A 7F]. Now 7% < oo implies ka = 0, and X* is trapped from there on.
Altogether, X* is pathwise unique on [0, 7.

Finally, if K > 4, we repeat the previous argument for k£ + 1 instead of k&
[without having an explicit representation of X* as we had with (6) for X*~1].
This way the argument can be repeated until the cycle is closed. This completes
the proof of the theorem. O

, we obtain pathwise uniqueness of X* on

APPENDIX: ON THE MOMENTS OF X

A.1. Finite moments of all orders. Our uniqueness proof was based on the
finiteness of variances which is a special case of the following lemma.

Lemma A1 (Finite moments of all orders). Each solution X of (1) has finite
moments of all orders.

Proof. Fix a € Rf and n > 1. Clearly, from It6’s formula, for &£ € K and ¢ > 0,

(A1) Pa[(X/)"] = af + nza,,k/ ds Pa[XL(XH" ]
14k 0

+ nB /tds Pa[(Xsk)"] + (;)Wk /tds P, [Xskfl(Xsk)nfl].

Summing over k € K, using that max; < )", < K maxy, that
A2 Xixh ) < XE"
(A2) max (X,(X;)") < (maxX.),

and abbreviating g; := Pa[(maxkeK Xt’“)”], we obtain

t
(A3) g < Kgo + {n[{2|a| + nK |8 + (;‘)K\'ﬂ] / ds g,, t>0.
Jo

Now the claim follows from Gronwall’s inequality. O
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A.2. Failure of Carleman’s Condition. From now on, we assume that W isa
vector of uncorrelated noises (otherwise the situation is much more complicated),
and suppose B > 0. Consequently, we restrict our attention to a cyclically catalytic
branching diffusion X in Rf with interaction vector <, super-criticality 8 > 0,
and cross species drift matrix a > 0.

The moments grow so fast that Carleman’s condition for the moment problem
for X to be well-posed is not satisfied (see Remark A3 below). Similar claims
are without proof in several papers on mutually catalytic, cyclically catalytic, or
symbiotic branching. In the present case, this follows from the following result.

Proposition A2 (Growth of Moments). Let W be a vector of uncorrelated
noises. Consider a € Rf such that amin = mingek ar > 0, and B > 0. Then
there is a constant ¢ = c(a,v) > 0 such that for all n > 1,

(A4) m = P [(X)] > ()" (n)?,  t>0, kekK

Proof. From Ito’s formula, for n > 1,

i
(A49) (e 2 ap o [ aw (k) xE
J0

i
+ (@ [ s xEOXh
0

Switching to n — 1 > 1, and then multiplying by thfl, we obtain (by dropping
the first term)

t
(A0) XX > -0 XET [awk (et xd
0

t
() [ ds X xE e
J0

Using the conditional expectation formula P, {th \Xsk} = X* ePe(t=5)  taking
expectation in (A5) and (A6) amounts to

i
(A7) m™ > (1) Yo / ds P, [XFY(XH™ Y], n>1,
J0

s

and

t
(A8)  Pa[X7 (X" 2 (";1)vmin/ ds MU P [(XET1)2 (X0,
0
for n > 2, respectively. In fact, the stochastic integral term in (A6) vanishes if
t =0 and it is driven by W*, whereas the factor X*~! is a martingale driven by
W 1. But W* and W*~! are uncorrelated by assumption, hence the expectation
of the product of both martingales vanishes.
Applying (A5) to (XF~1)? and dropping the last term there, from (A8) we get

2 s ’

t
(A9)  Pa[XE' XD ] 2 (") Yok i / ds S, >,
J0

Inserting (A9) into (A7) results to

i s
() (2") e [ s [ dr P ),

v

(A10) m{™
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n > 2. Now ePe(s—r) > 1, Therefore,

t
(A11) mﬁ") > cnt / dr m{"=2) (t —r), t>0, n>2
Jo
with ¢ =c(a,v) > 0. Setting g,g") = mﬁz"), n >0, (All) reads as
t
(A12) gin) > cn4/ dr (t—71) gﬁ"fl), t>0, n>1,
0
with ggo) =1 (and changing c¢). This recursive system implies that
th
(A13) gf(n) > " (n)! —, t>0, n>1
i (2n)!
Indeed, this follows by induction employing the identity
i T2n t2('n,+1)
Al14 dr (t—r = , n > 0.
(A1) [y = @ 2

Next we use that (2n)! <2-2-4-4 ... 2n-2n = 227 (n!)2. Therefore, changing
the constant ¢ = c¢(a, <), from (A13) we obtain

(A15) g > (n)?(et?)",
which finishes the proof. O

Remark A3 (Failure of Carleman’s Condition). The moment estimate (A4)
implies that the Carleman (sufficient) condition for the well-posedness of the mo-
ment problem (see, for instance, [Chu74, Section 4.5]), namely

(A16) 3 (mP) VP = s, £>0,

n>1

does not hold. o

A.3. Moment equation system. For simplicity, assume in addition that a = 0.
As in related models, for a fixed order, the moments are uniquely determined by a
closed system of linear ordinary differential equations:

Proposition A4 (Moment equation system). Let W be a vector of uncorre-
lated noises, and suppose that a = 0. Fiz an initial condition a € Rf and n > 1.
Then the n*® moments

(A17) m*(s) = m¥(s) = P.XX, k= (ki,...,k,) € K", >0,

a

of the cyclically catalytic branching diffusion X, where we set XX := XFi1... xkn
solve uniquely

d - - ; K
amk(s) = mk(s) Z'Bk’ + Z 6"’1‘,/4]- ’y;"z mZi (k,k; —1) (S),
(A]S) i=1 z,'_]#:‘l
177

with initial condition mX(0) = a,

k = (k1,...,kn) € K", s > 0, where 6, denotes the Kronecker symbol, and
where by definition, o;(k,l) € K® arises from k = (k1,...,kn) by replacing the
j* component k; of k by l € K.
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Proof. By Ité’s formula,

axt o xty = S0 (TLxl)axt + 050 (T X2 )agxs, xy,

i g i) ' F T

em 1 L ] k.
(Alg) :t XIS(Zﬂkz ds + §§5ki,kj’ykiX§l lel"];:[ ‘Xs] d37
g a) J 2]

where “2° means equality except a martingale term, starting from zero. Taking
expectations gives claim (A18), finishing the proof. O

A 4. Particle system moment dual. Suppose additionally that a« = 0 = 3.
Another tool is a particle system moment dual process N, we want to introduce
now. For the case K =2 and 79 = 7, it follows from [EF03].

Let N: denote the set of all vectors m = [ng,...,ng_1] with entries n; > 0,
describing a finite system of nj particles of species k, etc. Then N will be an
Ni-valued Markov jump process with cadlag paths. The generator G of N is
given by

(A20) Gf(n) == Y (%) [fe*n) — f(n)], meAN,

keK

where o*n (provided that mnj > 2) denotes that element of A; which is obtained

from n by switching the species of one of the nj particles of species k to species
k — 1. Consequently, each pair of particles of species k& may experience a jump
with rate 4, and upon a jump, exactly one of the particles gets the species k — 1.
Write P, for the law of N starting from Ny = n € N;.

Next we want to introduce a duality function 9 of the generating function type.
For a € Rf and n € N;, set

(A21) N(a,n) = a" = []ap*.
keK
In the duality relation (A23) below, we will use the following notation:
(A22) Inf= = > w(y).
kekK
Thus, ||n||= is the weighted number of pairs of particles in n having the same

species.

Proposition A5 (Particle system moment duality relation). Assume W
is a vector of uncorrelated noises and a = 0 = B. Fix a € Rf and n € N;.
Consider the cyclically catalytic branching process (X, Pa) and the particle system
moment dual (N, Py) in Z%. Then, for all t >0,

t
(A23) BXP = Eaa™ exp| [ ds N,
0
Proof. The generator G of X is given by
Y &
(A24) Gf(a) := Z o Bk—10k B—a,%f (a),

k
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where f is a twice continuously differentiable function on a = (aq,...,ax—_1) €
Rf. Hence,

(A25)

GN(-,m)(a) = 7> 7(%)a” ™
k

[with o* defined after (A20)]. On the other hand, by (A20),

(A26) GN(a, ) () = Y 7(y)a” ™ — |nf_a™
k

Therefore,

(A27) GN(-,n)(a) = GN(a, -) (n) + [nll-N(a,n).

The claimed duality relation (A23) now follows by standard arguments; see [EK86,
Corollary 4.4.13]. O
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