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Abstract

Flow and thermal properties associated with semiconductor melt flow in an axisymmetric
crucible container are studied numerically. Axisymmetric and three-dimensional computa-
tional solutions are obtained using a standard-Galerkin, finite-element solver. The crucible and
crystal are optionally rotated, and the influence of gravity (through buoyancy) is accounted for
via a Boussinesq approximation in the controlling Navier-Stokes equations. The results indi-
cate a strong dependence of the flow on both rotation and buoyancy. Results for axisymmetric
flows, computed in both flat and curved geometries, are presented first, and strongly suggest
that rotation of crystal and crucible in the same direction (iso-rotation) is most favourable
for producing a desired convexity for the crystal/melt interface. Three-dimensional results are
then presented for higher Reynolds numbers, and, in particular, reveal that for iso-rotation
under moderate buoyancy, the flow undergoes a switch from a steady, 2D state to an unsteady
3D state, and that the temperature becomes non-trivially advected by the flow beneath the
crystal. Further evidence reveals however, that on a time scale more appropriate to the crystal
growth process, the (time-averaged) flow has a weaker three-dimensionality, in relation to its
axisymmetric mode, and there is only slight distortion to the temperature field beneath the
crystal.

1 Introduction

Semiconductor crystals and their properties are of central importance in the fields of computer
technology and communication. An important application is the production of large crystals with
homogeneous and low defect concentration. A recently-introduced processing technique for this
purpose is the vapour-pressure-controlled Czochralski (VCz) method, which was developed at the
Institute for Crystal Growth (IKZ) in Berlin, Germany (Rudolph et al 1997, Rudolph & Jurich
1999, Rehse et al 2001, Miller & Rehse 2001). It is principally used in the growth of gallium
arsenide (GaAs) crystals. This method is a variant of the so-called liquid encapsulated Czochralski
(LEC) method, wherein melt-free surfaces are covered by a layer of viscous liquid (boron oxide),
whose main purpose is to quell excessive heat loss and evaporation of As from the melt. Due to
its small thermal conductivity however, it can produce high temperature gradients in the growing
crystal, which therefore increases its thermal stress; in the VCz method, this is rectified to some
degree, by placing the crystal, melt and encapsulant in an insulated inner chamber. Subsequent
temperature-gradient reductions however can lead to a reduction of the crystal quality, owing to
sublimation from the hot crystal surface. To combat this, an As source feeds arsenide into the
chamber, and thereby establishes a thermodynamical equilibrium in the growing environment.

An important aspect of crystal growth is to choose the proper growth conditions so that the
crystal /melt interface assumes a desired shape for GaAs it is generally considered most desirable
to have an interface with a slightly convex (outer) shape, which enables the crystal radius to be
maintained at a nearly constant value, as well as ensuring that any dislocations grow outwards.
Since the crystallisation front is identified by the melting temperature of the semiconductor, the
thermal and hydrodynamic properties of the melt clearly play important roles. These can be
artifically induced in part, by rotating the crystal and crucible, either in the same direction (iso-
rotation) or in opposite directions (counter-rotation); alternatively, one or other of the bodies can
be rotated. The relative angular velocity of the crystal and crucible, and the relative sizes of
the rotation and the naturally-occurring buoyancy, would appear to be important factors on the
flow and thermal behaviour in the melt zone, and hence, by implication, on the crystallisation
front development itself. In Rehse et al (2001), it was found that, for sufficiently strong forcing
(such that the temperature is significantly influenced by the hydrodynamic field), zero rotation
(pure buoyancy) and counter-rotation tend to produce ‘wiggly’ (undulating) interfaces, whereas
iso-rotation can produce the desired convexity at the interface. The sample of results presented in
our work here are wholly consistent with these findings.



The aim of the work here is to gain a better understanding of the melt-flow dynamics and its
interplay with associated thermal effects occurring in VCz growth, and the subsequent implications
for some crystal properties, notably the crystal/melt interface shape. This is mainly sought through
full numerical simulation, with a particular focus on unsteadiness and three-dimensionality. Time-
dependent flows are important when some form of thermally induced convection is present, i.e.
buoyancy convection and/or Marangoni (thermocapillary) convection, since these effects are known
causes for inhomogeneous dopant distribution within the crystal (leading to unwanted striations for
the latter form of convection). Although there have been some studies involving three-dimensional
simulations of semiconductor melt flow, we remark that these mostly apply to silicon (see e.g.
Savolainen et al 2001; Vizman, Friedrich & Miiller 2001; Vizman, Grabner & Miiller 2001); however,
the prevalence of three-dimensional motion is evident from experimental work (Grabner et al 2000;
Watanabe et al 1995). In the current work, it is assumed that surface-tension variations with
temperature are negligible at the fluid-fluid interface of the melt/encapsulant layer, and hence
only buoyancy convection is considered in this context. Another simplification here is the absence
of latent heat effects at the crystal/melt interface, although we remark here (and in Section 5
below) that a suitable phase-transition model could later be incorporated in our mathematical
system in a relatively straightforward manner, without affecting the validity and effectiveness
of our current numerical scheme, apart from the likely requirement of locally fine meshes near
the interface. Moreover, there is assumed to be no dynamical interaction between the melt and
encapsulant (typically boron oxide) fluids, so that we can regard our melt-zone model as closed.
In this study, Dirichlet conditions for velocity, based on the rotational speeds and directions of the
crystal and crucible alone, are applied at the melt/encapsulant boundary. This choice contrasts
with other models, where tangential stress conditions have been applied, either in closed form
(Miller, Rehse & Bottcher 1999; Savolainen et al 2001) or as a continuity condition between the
melt and encapsulant flows (Fontaine & Randriamampianina 1989; Fontaine et al 1989; Fontaine,
Randriamampianina & Bontoux 1991) but is a convenient condition to use in this first, simplified
model. We furthermore assume that all interfaces are time-independent. The validity of the
assumption for the crystal/melt interface, is partly dependent on the relative timescales controlling
the melt motion and the crystal growth itself; however, in practice, the latter is typically O(10%)
— 0O(10%) larger, so that any crystal movement would be unnoticeable over the former timescale.
This feature also infers that the time-averaged flow properties are a more appropriate means of
assessing the distortions in the temperature field around the crystallisation front. Hence, time-
averaged results are also presented, where appropriate.

In Section 2 we present a brief formulation of the problem, followed by the controlling system
of equations acting in the melt flow, along with boundary and initial conditions. Important flow
parameters are identified. The finite-element numerical scheme that we adopt to solve the system
of equations (in variational form) is then addressed in Section 3, where details of a benchmark
test case, used to validate our code, are also included. In Section 4, we present a selection of our
numerical results. To illustrate some fundamental flow and thermal mechanisms, we consider the
role of increasing rotation rate (Reynolds number) on the hydrodynamic/thermal development, for
fixed values of the controlling parameters. Also, we restrict our discussion mainly to those cases
with equal rotation magnitudes for crystal and crucible, and mostly for iso-rotation. A critical
Reynolds number is evident from the numerical results, and the computations indicate that the
flow switches from a steady, axisymmetric state to an unsteady three-dimensional one. Some ex-
planation is offered for the phenomena found, as well as the subsequent impact on the crystal /melt
interface profile. Finally in Section 5 the conclusions, followed by some further comments, including
a brief discussion on extending the present model, are given.



2 The governing system of equations for the melt

We consider a finite volume V of liquid melt contained in an axisymmetric crucible, whose axis is
aligned to the direction of gravity (&,). We further suppose that the liquid is incompressible, with
kinematic viscosity v, thermal diffusivity x and density p. We consider for the moment the crucible
to be cylindrical in form (but see Section 4.2 below for crucibles with curved bases). We assume
a radius of R, and a height AR., where A denotes the aspect ratio of the cylinder. All melt-zone
interfaces are assumed to be planar, with the crystal-melt interface comprising a circular disc of
radius rx R. (0 < r, < 1). (See Figure 1.)

Natural motion in the melt is induced through buoyancy effects, essentially acting vertically within
the melt zone and stemming from the heating of the crucible. Buoyancy here is accounted for in the
augmented version of the incompressible Navier—Stokes equations (where an additional Boussinesq
forcing occurs), which together with the equations of mass conservation and heat transport (plus
the relevant initial and boundary conditions) govern the melt-flow dynamics here. The linearised
approximation in the Boussinesq term is valid provided 6T /Tx <« 1, where §T := T¢ — Tx (> 0),
and T¢,Tx are representative temperatures on the crucible and crystal/melt interface, in turn.
An optional further contribution to the melt dynamics stems from rotating the crucible and/or
crystal with respective angular speeds ¢, 2x. The rotation is responsible for a centrifugal effect
in the domain, which draws motion towards the outer boundary of the crucible.

The scalings Rc, U, Rc/U, pU? and 6T are used to non-dimensionalise the length, velocity, time,
pressure and temperature deviation from Tx, respectively, and lead to the following form for the
governing equations

ou 1 Gr . .
g + (u-V)u — EAH + foWTez =0 in V, (2.1a)
V-u=0 in V, (2.1b)
oT 1
— T — ——AT =0 in V, 2.1
ot +(wV) Re Pr men (2.1c)
where &, = — &g, Re = UR¢ /v and U is defined according to the application: in the case of

rotation, we define U = Qx R, unless Qx| < |Qc¢|, in which case U = Q¢ R is used; for pure
buoyancy forcing, the scaling U = (v/R.)V/Gr is adopted. In the rotational case, the corresponding
Reynolds numbers (Re) are:

O x R? QcR?
Rex = —>"¢  Reg = —2-¢. (2.2a,b)
v v
The other parameters here are the Grashof and Prandtl numbers:
dTgR3
Gr = L’;}C, Pr = Z, (2.3a,b)
v K

where (3 is the thermal expansion coefficient at constant pressure, and g is the acceleration due to
gravity. For the cases involving some form of rotation it is convenient to use the corresponding
thermal Rossby numbers:

Gr Gr

—, Roc = —. 2.4a,b
Re%(’ oc Regc ( a, )

R()X =

Here u, p and T denote the dimensionless velocity, pressure and temperature fields, respectively,
while V represents the dimensionless cavity.

Next we need to choose boundary conditions appropriate to the model. Firstly, no-slip velocity
conditions are applied to the solid boundaries I'x and ', while on the melt/encapsulant layer, we



make the assumption that the angular velocity is a linear function of radius. For the temperature,
we assume this interface is adiabatic, and apply constant-valued Dirichlet conditions on the solid
parts. Hence, for the given Reynolds number Re, we may write the associated boundary conditions
in the following form:

u=wcrég, T =1 on I'g, (2.5a)
oT
u=uwp(r)rég, — =0 on Ip, (2.5b)
on
u=—wxrég, T =0 on Iy, (2.5¢)
where wg := Recg/Re, wx := Rex/Re and wp = we¢ + (wx —we)(1 —7)/(1 — rx) denote

the dimensionless angular speeds on I'¢, I'x, I'g, in turn, and n denotes the outer normal to the
boundary part. For an explanation of other notation please refer to Figure 1.

In the numerical examples of Section 4, the choice Re = Rex is used throughout (except for the
pure buoyancy cases, for which Re = v/Gr), and in this case wg = Q¢ /Qx and wx = 1.

Finally, initial conditions
u=uy, T'=T, nV at t=0 (2.6a,b)

are required to close the system.

L(;D)-

(a) (b)

Figure 1: (a) Sketch of the semiconductor melt zone (V) in VCz growth, enclosed by the solid-liquid
crystal/melt interface I'x, the liquid-liquid melt/encapsulant layer I'z and the crucible I'c. (b) Cylindrical
and Cartesian coordinate systems.



3 Numerical Treatment of the Governing Equations
In this section, we summarise the computational method that was applied to the governing system

of equations.

3.1 Variational Form and Computational Method

For the spatial discretisation, a standard Bubnov—Galerkin finite-element method was applied to
the following variational form of (2.1a-c, 2.5a-c, 2.6a,b):

d 1
E/u-(b dx—l—E/Vu:V(b dx+/[(u-V)u]-¢ dx
v v

v

f/‘pV-(;bdxfﬂ Té, ¢ dx =0, (3.1a)

. Re?

% v
/(V-u)z/) dx =0, (3.1b)

v
d/T d+/[( V)T)x dx + ! /VTV dx =0 (3.1c)
TR A X X R Pr X ax="5 e
% % v

where u € X := (Hy(V))3, pe Y := Ly(V)\R, T € Z := H,(V), and the test functions ¢, v, x
are restricted to the spaces (H)(V))3, Y, HY(V), respectively. Also, we require u = ug, and T' = T,
at t = 0, and note that uy should be divergent-free in V' and have continuous normal component
(zero, for the problem in hand) on all Dirichlet boundary portions (p. 513, Gresho & Sani 2000).
Discrete solutions up € Xp, pn € Yu, Th € Z, are sought, such that (3.1a-c) hold for all ¢ €
X9 = {peXnlp=0on 6V}, peV, x€ Z):={xX € Zn|x =0 on §V}. Here Xy, Yy, Zj are
determined by the finite element under consideration. In our applications here, the Taylor—Hood
triangular element has been implemented, and hence, the velocity and temperature spaces comprise
continuous, piecewise-quadratic polynomials, while continuous, piecewise-linear polynomials form
a basis for the discrete pressure space. For this element, the velocity and temperature are of second-
order spatial accuracy, while the pressure is of first-order spatial accuracy (in each case, measured
relative to L2(V) norm). For the axisymmetric computations presented here, a slight variation
to the form in (3.1a) is used, in that the integrand of the second integral there is replaced with
(D(u) : D(¢))/2, where D(v) = Vv + (Vv)T, is a continuously-differentiable, strain-like tensor;
also, an appropriate boundary integral term is added. This form is suitable for accommodating
possible stress boundary conditions (which may feature in later models of the problem), as well as
for assessing the accuracy of the axisymmetric code via a benchmark problem with such conditions
(see Section 3.2 below for details).

To discretise in time, a fractional f-scheme with operator splitting as variant (Bansch 1998, Bris-
teau, Glowinski & Periaux 1987) was applied to the hydrodynamic part coupled with a Crank-
Nicolson scheme for the energy equation. To apply the former, the total timestep is first divided
into three smaller sub-steps, with the first and third using identical forms of discretisation. In
the first and third step, the nonlinear convection term is treated explicitly, but implicitly in the
second step; these roles are exactly reversed for the pressure gradient, while the incompressibil-
ity constraint is relaxed in the second step. In both cases the buoyancy term is treated as a
source term. The general upshot of this form of discretisation is to produce two distinct types of
sub-problem: a self-adjoint, quasi-linear, Stokes system for unknown velocity and pressure; and



an asymmetric, nonlinear system for velocity only. As well as full decoupling of the nonlinear-
ity and incompressibility, the fractional #-scheme is, moreover, virtually non-dissipative and (for
self-adjoint operators) unconditionally stable.

In conjunction with the spatial discretisation, the first subproblem reduces to a Schur-complement
matrix equation for the pressure together with a positive-definite matrix equation for the velocity.
With the former, problems with poor condition number for small time-steps (which are generally
unavoidable for larger values of Reynolds number and/or Grashof number, for reasons of accuracy)
make it necessary to apply a suitable preconditioner. For this purpose, the method of precondi-
tioning described in Bristeau, Glowinski & Periaux (1987) was employed, and it proved sufficient
in obtaining good (iterative) convergence speed and stability, for a wide range of Reynolds and
Grashof numbers. Its application essentially leads to two pressure-related, positive-definite, ma-
trix systems, both of which we solved via the method of conjugated gradients; this same method
was also used to solve the velocity system. The second subproblem (as well as the fully discretised
form of the energy equation) reduces to an asymmetric matrix system for velocity (temperature)
only and is solved via the GMRES scheme (Saad & Schulz 1986).

3.2 Benchmark Test Case

As a means of independently validating results obtained via our solver NAVIER, we ran a series
of test cases concerned with the numerical simulation of crystal melt flow in a cylindrical crucible
and its temperature distribution, as originally proposed by Wheeler (1990).

Referring to the notation introduced in Section 2 above, the test cases have common geometrical
properties (A = 1;rx = 0.4), boundary conditions (see below), and material properties (Pr =
0.05) and are distinguishable by the Grashof and Reynolds number values alone. The controlling
boundary conditions are:

oT
u=wcréy, — =0 on [¢,, (3.2a)

on
u=wcéy, T=1 on Tg,, (3.2b)

du-é, (- & _
(ue):(], u-é&, =0, M:O, =" TX, on I'p, (3.2¢)
on on 1-rx

u=—wxrég, T =0 on I'y. (3.2d)

A fundamental change to the boundary conditions here, in comparison with (2.5a-c) above, is the
application of a free tangential stress condition on the melt/encapsulant layer, as well as a split
form for the temperature boundary condition on the crucible: here, we apply a zero-flux condition
on the base (I'¢, ), but a constant Dirichlet condition on the cylindrical wall (I'¢,). Also of note,
a Dirichlet condition for temperature, based on linear interpolation, is applied on I'g. The liquid
mechanics are again controlled by (2.1a-c).

The computational method described in the subsection above was implemented in our calculations,
with the exception of the ‘stiffness’ integral, which used the strain form, described therein. Also, the
Taylor-Hood finite element for triangles was used, and our meshes comprised 64 x64x2 elements.
Our results are summarised in Table 1 below, and include comparisons with those obtained by
Biickle & Schéafer (1993), who employed a finite-volume scheme on a regular rectangular grid
comprising 64 x64 cells; here the comparisons are for the extreme values of the streamfunction, v,
defined by:



Problem Parameter [Biickle/Schafer(1993)] NAVIER Difference
No Gr | Rea |  Re. min(¢ps) | max(¢ps) min(¢y) | max(ypn) dret
Al 0 102 0 || -2.3447e-1 Y 1.5642e-6 || -2.2966e-1 | 9.8470e-6 2.06e-2
A2 0 10° 0 || -5.3642e+0 1.5257e-4 || -5.1492e+0 | 4.8799e-4 4.01e-2
A3 0 10* 0 || -4.0443e+1 1.9320e-1 || -4.2262e+1 | 1.7701le-1 4.52e-2
B1 0 102 —25 || -5.0203e-2 2 1.1796e-1 || -4.8885e-2 | 1.1887e-1 1.33e-2
B2 0 10° —250 || -1.6835e+0 1.2414e+0 || -1.5304e+0 | 1.2158e+0 6.11e-2
B3 0 10* | —2500 || -8.5415e+0 5.2708e+0 || -8.6893e+0 | 5.5183e+0 2.86e-2
C1 10° 0 0] -1.1936e-3 2.8437e+1 || -1.6067e-3 | 2.8696e+1 9.12e-3
C2 10° 0 0 || -3.9699e-1 9.2100e+1 || -2.7504e-1 | 9.2874e+1 9.69e-3
D1 10° | 10! 0[] -4.7057e-4 2.8420e+1 || -1.5614e-3 | 2.8328e+1 3.28e-3
D2 10° | 10? 0| -4.7092e-4 2.8393e+1 || -1.5617e-3 | 2.8301e+1 3.28e-3
D3 10° | 10° 0 || -6.5631e-1 2.4829e+1 || -6.4850e-1 2.5013e+1 7.53e-3

Table 1: Parameters and results for stationary benchmark test cases defined in Wheeler (1990)

10vy 10y
.“T:—— -Az:———, 2 7b
wee r 0z ue r Or (3.22,b)
and subject to:
1» = 0 on the boundary and axis. (3.2¢)

In Table 1 we have used the following norm to measure the relative difference between our results
and those of Biickle & Schafer for each case:

d., - | max(¢n) — max(¢ps)| + | min(¢n) — min(yps)]

| max(¢ps)| + | min(¢ps)|

(3.3)

Table 1 generally reveals very good agreement between the two sets of results, especially for the
problem classes C and D, where the difference in each case is less than 1%; the larger differences
(up to just over 6% for case B2) occur for the problem classes A and B, which involve some
form of rotation and zero buoyancy convection, but even these are relatively small and, in the
given context, acceptable, we feel. We have assumed that two of the Biickle & Schéfer entries
(superscripted ‘1)’ and ‘2)’ in Table 1) were originally misprinted in the authors’ paper, where the
exponents were quoted as 1 and -1, respectively. This belief is strongly supported by circumstantial
evidence, specifically the close agreement for more extreme parameter values within the classes A
and B. We remark further, that the Biickle & Schéfer results were also used by Barwolff (1995),
to help validate his finite-volume solver, and again close agreement was obtained.

4 Numerical results

Here we present a cross-section of our results to date, starting with axisymmetric computations
in both flat- and curved-based crucibles, and followed by 3D computations in a flat-based crucible
only. We mainly focus on the case of iso-rotation with common angular velocity for crystal and
crucible (wg = wx = 1), and study the flow and thermal responses in the melt for increasingly
higher values of Re, while keeping the thermal Rossby number fixed (and equal to 1.36). We
briefly consider some pure buoyancy and counter-rotation cases, as well. For all flat-based crucible
simulations, the scaled crystal radius and domain aspect ratio were taken as rx = 0.7, A = 0.3,
respectively. These values were also used as a guide to designing the geometry for the curved-based



crucibles (described below). For all simulations, the Prandtl number for GaAs (0.068) is applied.
A selection of quantitative data obtained for the flat-based crucible cases is shown in Table 2.

4.1 2D/2.5D Simulations
4.1.1 Flat-based crucibles

Simulations were made to study the competing effects of buoyancy and crystal/crucible rotation
on the flow and thermal structure and dynamical properties of the melt, starting with flows in
cylindrical crucibles. A number of distinctive forms of behaviour were evident, both according to
the actual sizes of the Grashof and rotational Reynolds numbers, and their size relative to one
another in the scaled system. As an extreme example of the latter, we considered several no-
rotation flow problems, with Gr values ranging from 103 — 107. It was found that for Gr values up
to about 10%, the flow tended to exhibit the same qualitative structure: a single, stationary vortex
and a heat-conduction dominated temperature distribution. The latter effect, we note, is common
not just here, but for all flows where only a moderate maximum velocity is induced, owing to
the large temperature diffusion typical for semiconductor materials. At any point in the domain,
the temperature will be significantly advected, only if a strong enough local velocity profile is
induced; this implies, in particular, that no significant distortion of the temperature contours will
occur below the crystal if the velocity there is too weak, and hence avoids any possible crystal
defects due to distorted phase boundaries. This feature is of central importance in our studies. As
Gr is raised beyond 10%, a stronger interplay between the temperature and hydrodynamic fields
becomes increasingly more evident, notably beneath the crystal where an undulating pattern for
the temperature contours emerges and vortical motion becomes more discernible. This is evident,
for example, with the steady flow solution for Gr = 10¢ (see Figure 2).

Next simulations were performed with some form of rotation present. The results presented here
focus on the case where both crystal and crucible rotate with common angular speed. Very different
flow mechanisms are visible, according to whether the directions of rotation are the same (iso-
rotation) or opposite (counter-rotation). This difference can perhaps best be illustrated by a
couple of examples; for a fixed value of Gr (1.36 x 108), and with Re = Rex = 1000, we consider
the crystal having the same rotation rate magnitude, but for iso- and counter-rotation in turn
(i.e. Rec = tRex). Firstly for iso-rotation (Figure 3), we observe a single stationary vortex,
diagonally stretched, and with negligible flow beneath the crystal; the azimuthal flow component
is non-trivially influenced around where the vortex is located, while the temperature experiences
virtually zero feedback from the velocity, and is diffusion-dominated everywhere. In contrast,
for counter-rotation (Figure 4), we first note the different flow pattern generated: the vortex,
while still stationary, is more horizontally stretched, and significantly, there is stronger motion
beneath the crystal; this is perhaps also intuitive, bearing in mind the relatively stronger forces
generated, when counter-rotation is produced: we might expect a thin shear layer to emerge in
the domain, with rotational speeds varying rapidly from one side to the other: such an effect
appears to be evident from the azimuthal flow component plot, in particular. We note moreover,
that temperature distortion beneath the crystal is also observable; this again reflects the idea
of stronger forces being generated by counter-rotation, leading to stronger localised velocities in
certain places (especially beneath the crystal), and a correspondingly more pronounced feedback
via advection for the temperature.
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Figure 2: Computed solution for pure buoyancy with Gr = 10°. Results show (a) temperature contours,
(b) streamlines (normalised), (c) velocity projection in an arbitrary vertical ‘slice’. In (a) the contours
range in value from 0 (crystal) to 1 (wall/base) and in (b) from —1/9 (left vortex) to 1 (outermost contour
of right vortex); the spacing interval is 1/9 in both cases.

4.1.2 Curved-based crucibles

With a particular interest in the growth of semiconductor crystals, we felt it important to try to
re-generate the above results, but in a crucible of more ‘realistic’ design. Based on information
obtained from IKZ, we constructed an axisymmetric crucible shape based on polynomial fitting,
and used a more realistic temperature distribution on the crucible, based on interpolating some
selected data values, again supplied by IKZ. Figure 5 shows the design of our ‘realistic’ crucible
(plus a typical mesh used in our numerical simulations) and can be formally summarised by the
alternative definitions of the individual boundary parts:

To, :={(r,2)|r? + 22 = 22Rp(z1) =0and 0 < r < 1}, (4.1a)
Te, :={(r,2)[r =1, and z; < z < 25}, (4.1b)
Tp:={(r,2)|z = 23 + (r —r3)? cot(a)/(2(r3 — r4)) and 74 <7 < 73}
U{(r,2)|z = z3, and r3 < r < 1}, (4.1c)
Tx == {(r,2)|r> + (z — 25)> — 2(2z — 25) R (4, 24,25) = 0and 0 < r < ry}. (4.1d)

Clearly, the curves I'¢, and I'x define circular arcs and the respective radii are:

1+ 22 2 4 (24 — 25)?
Ro(z1) = gy RI(T4,Z4725):M_
2(24*25)

4.2a,b
- (4:2a,b)
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Figure 3: Computed solution for iso-rotation with Re = Rex = Rec = 1000; Gr = 10°. Results show
(a) temperature contours, (b) streamlines (normalised), (c) azimuthal velocity component, (d) velocity
projection in an arbitrary vertical ‘slice’. In (a) the contours range in value from from 0 (crystal) to 1
(wall/base), in (b) from 0.1 (innermost contour) to 1 (outermost contour), and in (c) from 0 (axis) to 1
(wall); the spacing interval is 0.1 in all cases. For (a) and (c), the axis is on the right.
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The variables 73,74, 21 to z5 and « precisely define the geometry and are indicated in Figure 5.
Some restrictions naturally apply, namely, z; # 0,74 # r3 and z5 # 24, as well as certain phys-
ical limitations, e.g. 2o > z;. Table 3 shows the values adopted by these variables, as well as
temperature data (explained below) in the computations for the results discussed here.

We remark that the parabolic meniscus part of the melt/encapsulant layer shape assumes a contact
angle a relative to the negative z-axis, at the melt/encapsulant/crystal annulus of intersection.
Secondly, zero gradient is assumed at the lowest point of the curve, i.e. where it meets the
straight-portioned part of the boundary. Alternative forms for the parabola have been considered,
including using a cubic version, but the results shown here are for the described case above.

The boundary conditions applied are unaltered in form, as compared to (2.5a-c) above, with the
exception of the temperature distribution on the crucible. Here, we have replaced the constant-
temperature conditions with:

T=T¢,(r) on Tg,, (4.3a)
T=Tc,(z) on Tg,, (4.3b)

where T¢,, Tc, are sufficiently smooth functions, and T is continuous at the junction. Several
temperature profiles were considered, including the following two:

T, — T¢
TCI (T) = TU + g(r - TO): r e [07 1]7 (44&)

T —To

Ty — T,
Tc,(z) =T + #(z —21), 2 € [21, 22]; (4.4b)

zZ9 — 271

and

Te,(r) =T, "Ty, r € [0,1], (4.5a)
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Figure 4: Computed solution for counter-rotation with Re = Rex = —Rec = 1000; Gr = 10°. Results

show (a) temperature contours, (b) streamlines (normalised), (c) azimuthal velocity component, (d) veloc-
ity projection in an arbitrary vertical ‘slice’. In (a) the contours range in value from from 0 (crystal) to 1
(wall/base), in (b) from —2/9 (middle vortex) to 1 (outermost contour of right vortex), and in (c) (viewed
along the top) from —1 (wall) to 0.7 (crystal/oxide intersection); the spacing intervals are 0.1, 1/9 and
0.17, respectively. For (a) and (c), the axis is on the right.

zp—2z z—2zq

Te,(z) =Ty ' T, 7, 2 € [21, 22 (4.5b)

Here Tq, Ty, T2 denote the temperature values at (r,z) = (0,0), (r,2) = (1, 21) and (r, z) = (1, 22),
in turn. For the results shown here, the values implemented are given in Table 3.

In an attempt to ascertain the qualitative similarity between flow patterns and thermal distri-
butions arising in flat-based and curved-based cylinders, we ran a series of cases for identical
parametric values of Re and Pr; also, we maintained the thermal Rossby number Gr/Re? = 1.36
throughout. Our results indicate similar qualitative structures with the corresponding ‘flat-based’
cases, and help to consolidate the relevance of those results. In particular, it was found that for a
critical value of the Reynolds number, the flow switches from a steady state to an unsteady state.
For Re = 6365, Figures 6 and 7 give some indication of the resulting low behaviour and thermal
distribution in the melt, based on using (4.4a,b) and (4.5a,b), respectively here the time-averaged
values in each case are displayed and show good qualitative agreement with the quasi-stationary
calculations of Rehse et al (2001). A time-history plot for the former case, indicating the tem-
perature development at the point (r,z) = (0.18,0.2) lying beneath the crystal/melt interface, is
displayed in Figure 8; a frequency analysis has revealed that there is no discernibly dominant fre-
quency here (in contrast to using (4.5a,b), where virtually periodic behaviour occurs for the given
Reynolds and Grashof numbers) and tends to suggest the Reynolds number here is significantly
larger than the critical value. Subsequent computations with the flat-based geometry suggest a
critical value Re* = 2200, and we would expect this approximation to be a fair representative for
the curved geometry, also.

4.2 3D Simulations

Motivated by the above axisymmetric findings regarding the switch from steady to unsteady mo-
tion, a first question was to assess the exact nature of the change of state, allowing for the possible
emergence of 3D behaviour. Subsequently, simulations with a full 3D solver were implemented.
To simplify the model, we have first reverted to cylindrical geometry, and constant heating of the

11
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Figure 5: Axisymmetric, curved-based crucible geometry for an arbitrary vertical ‘slice’; a typical mesh
used for computations is also shown.

temperature velocity

Figure 6: Time-averaged computational solution for iso-rotation with Re = Rex = Rec = 6365; Gr =
5.51 x 107, based on applying T = 1 on the crucible. Results show (a) azimuthal velocity component,
(b) velocity projection, (c) temperature contours in an arbitrary vertical plane through the axis. The
temperature contours range from 0 (crystal) to 1 (wall/base) in intervals of 0.1.

crucible. To help validate the accuracy of the 3D code, a number of analytical flows were first
simulated (e.g. simple flow rotation with u = rég, which is a solution for zero buoyancy and com-
mon crystal/crucible angular velocity). Moreover, we made direct quantitative comparisons for
sub-critical flows (i.e. flows for which Re < Re*), between the results obtained with the axisym-
metric solver and those obtained with the 3D solver. The comparison was generally encouraging,
as evidenced for example in Figure 9, where Re = Rex = 1700, Gr = 3.9304 x 10%. The computed
solution is displayed in Figure 10.

Next, we attempted to simulate unsteady flow with the 3D code. In an attempt to gain a better
understand of the flow properties around the critical Reynolds number, we have paid particular
attention to weakly-supercritical flows (i.e. those satisfying 0 < € := (Re — Re.)/Re. < 1).
The subsequent chain of events that occur with such a flow simulation (from an initially two-
dimensional state) can perhaps best be illustrated by an example. For this purpose, we consider
the case Re = 2500 (Gr = 8.5 x 10°%). We refer first to the time-history curve of Figure 11, which
shows the difference of successive velocity solutions, as measured by the Ly norm and applied in
the whole domain. The unsteadiness is obviously apparent, but further information is not really
forthcoming from this curve alone. However, when we consider local snapshot sequences occurring
around certain non-dimensional times, then a more coherent picture forms. It turns out that a very
brief two-dimensional phase gives way to a periodic phase, which is already evident from around
t = 20. Figures 12 (¢t = 7.5) and 13 (¢ ~ 150) illustrate both of these states, and the latter moreover,
gives a clear indication that the 3D linear mode with azimuthal wavenumber 4 is dominant at this

12



temperature velocity

Figure 7: Time-averaged computational solution for iso-rotation with Re = Rex = Rec = 6365; Gr =
5.51 x 107, based on applying the thermal distribution (4.5a,b) on the crucible. Results show (a) azimuthal
velocity component, (b) velocity projection, (c) temperature contours in an arbitrary vertical plane through
the axis. The temperature contours range from 0 (crystal) to 1 (wall/base intersection) in intervals of 0.1.

Temperature at (r,z) = (0.18, 0.2)
0.25 ‘ ‘

0.2

0.15

0.1

0.05

0 20 40 60 80 100
Figure 8: Time-history curve for temperature at the observation point (r,z) = (0.18,0.2).

stage, owing to the 90° symmetry of the midheight plot. We note moreover, that the flow rotates
in an anti-clockwise sense with an approximate period of 18.5 time units. This same periodic state
persist until a time of around ¢ = 350, when the flow starts to lose this symmetry, eventually
becoming fully asymmetric. This is illustrated for ¢ = 535 in Figure 14. It is noticeable from the
‘(a)’ subplots that the azimuthal velocity component is no longer zero along the axis, and this ties in
with the loss of symmetry in the flow solution. We note also that the flow now circulates (still anti-
clockwise) with a higher frequency than during the periodic state, having a period here of 12.6 time
units, approximately. In terms of instability mode development it is apparent from the symmetric
phase that the mode with azimuthal wavenumber 4 is the dominant three-dimensional one. The
later loss of symmetry and stronger overall three-dimensionality is consistent with destabilising,
weakly-nonlinear modulation of the modes’ amplitudes over a relatively slow time scale. A set
of curves indicating the behaviour of flow quantities at certain observation points in the domain
is given in Figure 15. Here we have defined the Nusselt number on the crystal/melt interface
(depicted in Figure 15d) as

Nu(t) = / % ds, (4.6)
I'x

(s denoting arc length), and this provides a measure for the mean heat transfer from the melt to
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Figure 9: Comparison between results obtained by our axisymmetric and 3D solvers, for the sub-critical
case Re = 1700; Gr = 3.93 x 10°, showing (a)radial component, (b) azimuthal component, (c) axial
component of velocity in the plane y = 0.

the crystal.

In terms of the grown crystal, the time scale for the hydrodynamical effects is considerably larger
than that controlling the crystal growth process itself, e.g. the ‘pull speed’ of the crystal is typically
of the order of millimetres per hour, which is considerably smaller than the characteristic speed,
say, in the melt zone, which has a value more of the order of centimeters per second. This accounts
for the fixed-boundary model adopted here, but also demonstrates that, so far as the crystal is
concerned, the hydrodynamic time scale is not completely relevant; of more significance is the
time-averaged melt-flow profile. Figure 16 indicates time-averaged flow profiles (using an ‘end-
time’ of t=900). We note here that these profiles are virtually converged, in the sense that no
visible alteration in their form is evident for larger times; however, there would be nothing to
stop these profiles eventually changing, if the flow were to enter a different phase for a sufficently
long time interval, at some later time (¢ > 900). We believe though that the given time-averaged
profiles are fairly representative from a qualitative viewpoint. An immediate observation is the
significantly-reduced three-dimensional influence; both the velocity and temperature plots reveal
only slight three-dimensionality and this feature holds throughout the domain. A second, crucial
point is the negligible temperature contour distortion beneath the crystal, clearly visible from
Figure 16(c), and which has also been confirmed in other vertical planes containing the axis (not
shown). We can conclude therefore that, for the given time interval at least, the time-averaged
profiles are pre-dominantly axisymmetric, with very weak temperature advection, and that the
three-dimensional effects are operating on shorter time scales.

5 Conclusions and Further Comments

The main focus of this work has been to investigate, under conditions of moderate buoyancy, the
influence of crystal and crucible rotation on the flow and thermal fields in the melt zone in vapour-
pressure-controlled Czochralski crystal growth. Both axisymmetric and fully three-dimensional
simulations have been performed in cylindrical domains, as well as in ‘realistic’ crucibles for the
former case.

We first remark on the significantly different qualitative flow patterns found between iso- and
counter-rotation of the crucible and crystal. Our results have tended to indicate that for common
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Figure 10: Computed solution for iso-rotation with Re = Rex = Rec = 1700; Gr = 3.93 x 10°. Results
show (a) azimuthal velocity component, (b) velocity projection, (c) temperature contours, all in the plane
y = 0, and (d) temperature contours in the midheight plane z = 0.15. In (a) the contours range from 0
(axis) to 1 (wall), in (c) from 0 (crystal) to 1 (wall/base), and in (d) inwards from wall (value 1), in each
case in intervals of 0.1.

flow parameters the latter effect generally provokes a more widespread flow distribution within
the whole domain. The most likely reason for this is the presence of relatively stronger forces
within the melt zone; counter-rotation directly induces a thin shear layer in the crucible, within
which the angular velocity has to adjust rapidly from one side to the other the forces generated
here are not localised however, and the flow is strongly influenced outside this layer, including
(crucially) beneath the crystal. Subsequently, the temperature there is more strongly influenced
by advection than in the former case, and moreover, the temperature contours tend to be ‘wiggly’
beneath the crystal; such an effect is adverse, we note, since it can severely hinder control over
the crystal radius, and possible dislocations may not grow outwards. For iso-rotation, in contrast,
our simulations have tended to indicate that, for small to moderate Reynolds numbers, the flow
is effectively localised as a single vortex towards the crucible wall owing to centrifugal effects,
but that the vortex is diagonally stretched, due to the additional influence of buoyancy. Subse-
quently, weaker temperature distortion is generally observed beneath the crystal. The (steady,
axisymmetric) examples for iso- and counter-rotation for Re = 1000 given in Section 4 illustrate
the aforementioned effects, and more generally we remark that, for all iso-rotation cases tested,
where the crystal and crucible have common rotation rates, the temperature profile has been ob-
served to be conduction-dominated throughout the domain for all steady-state flows, including
those computed with the curved-based geometry of Section 4.2. It is important however to note
here that, despite the apparent advantages of iso-rotation to counter-rotation as mentioned, the
former process tends to induce a less homogeneous distribution of dislocations in the crystal, which
irreversibly damages parts of the crystal, rendering them useless. Hence, for economical reasons,
counter-rotation is often preferred in practice.

Further to the point of steadiness of iso-rotation flows, and viewed from the point of increasing
Reynolds number (crystal/crucible rotation rate), the flow is initially steady and axisymmetric
until a critical value of Re (= Re*) is attained, at which stage the flow switches to an unsteady
state. For the case where the crystal and crucible rotation rates are equal, our computations in
a flat cylinder (aspect ratio 0.3) suggest a value Re* = 2200, for a fixed thermal Rossby number
of 1.36 and Prandtl number 0.068 (GaAs). Three-dimensional results suggest a dominant linear
azimuthal mode number of 4, for weakly-supercritical flows; the subsequent loss of symmetry in
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Figure 11: Difference of successive velocity solutions for iso-rotation with Re = Rex = Rec = 2500; Gr =
8.5 x 10°. The (stationary, axisymmetric) solution for Re = 1700, Gr = 3.9304 x 10° is used as the input
solution.

the flow solution at much later times is consistent with the dominant wave amplitude growing
nonlinearly on a slow time scale, eventually causing a fully three-dimensional flow to be induced.

Two interesting features arise from the unsteady simulations. Firstly, both axisymmetric and
3D simulations reveal that, while high temperature distortion is evident over the fundamental
hydrodynamic time scale, on longer time scales these distortions are mostly cancelled out, leaving
only slight wiggles. This feature has been directly observed for Reynolds numbers as high as 6500,
albeit mainly from axisymmetric computational results. Secondly, in the 3D simulations the time-
averaged solution profiles have been observed to be pre-dominantly two-dimensional. These two
features are appropriate to the crystal growth process itself, which develops over a much slower
time scale, and suggests that only minimal distortion to the crystallisation front will be induced,
leading to approximate convexity there. This is perhaps best demonstrated by the results using
the curved-based crucible for Re = 6365 (Figures 6,7).

Regarding pure buoyancy, our results have indicated that the flow remains axisymmetric and
steady for Grashof numbers up to Gr = 10° at least, with significant temperature/velocity coupling
beneath the crystal first evident from around Gr = 2 x 105. As with counter-rotation though, the
resulting temperature field distribution there is adverse, i.e. undulating in form. Hence, overall,
iso-rotation appears to be most favourable in preserving a wiggle-free temperature field beneath the
crystal. This finding, we note, is wholly consistent with the global melt/encapsulant/crystal heat-
transfer simulations of Rehse et al (2001), although we remark that a quasi-stationary, convection-
free model was employed there.

The number of possible parameter regimes is fairly large, and hence, there is a wide range of
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Figure 12: Snapshots at t = 7.5 for iso-rotation with Re = Rex = Rec = 2500; Gr = 8.5 x 10°. Results
show (a) azimuthal velocity component, (b) velocity projection, (c) temperature contours, all in the plane
y = 0, and (d) temperature contours in the midheight plane z = 0.15. In (a) the contours range from 0
(axis) to 1 (wall), in (c) from 0 (crystal) to 1 (wall/base), and in (d) decrease in value inwards from wall
(value 1); the spacing intervals are 0.125, 0.1 and 0.1, respectively.

problems which could be addressed. Until now, we have mostly been concerned with moderate
buoyancy; there is clearly scope however to test other cases for different relative sizes of the
Grashof and Reynolds numbers, e.g. to analyse the effects of iso- and counter-rotation under
stronger conditions of buoyancy (i.e. larger thermal Rossby numbers). Also, iso-rotation with
differing rotation rates for crystal and crucible is another area that has not yet been thoroughly
investigated by us. Further possibilities include domains of different aspect ratio (A) and domains
with different crystal radius (rx).

The model at the phase boundary is naturally simplified here. A follow-up investigation is therefore
planned, which will incorporate an appropriate phase-transition model and also allow the position of
the crystal/melt interface to move. Typically here we can expect some high temperature gradients
across the phase boundary, on account of latent heat release there, and hence, adaptive, fine
meshes are likely to be required, owing to the property of globally-continuous temperature for the
Taylor-Hood element. Again, axisymmetric and 3D simulations are planned, with the addition of
3D simulations in curved, axisymmetric crucibles with data-interpolated Dirichlet conditions for
temperature on the crucible (based on the construction for the 2.5D case, described in Section
4.1 above). A further consideration is the influence of the encapsulant on the melt; it may be
more appropriate to replace the present Dirichlet conditions on tangential velocity there, with
a continuous shear stress condition, linking the melt and encapsulant flows Such an approach
was used for example in Fontaine & Randriamampianina (1989); Fontaine et al (1989); Fontaine,
Randriamampianina & Bontoux (1991); as an intermediate step though, it may be beneficial first
to implement the non-interactive boundary condition of free shear stress on the interface.

The application of magnetic fields (especially axially directed) has also been a popular recent
area in crystal growth generally, since they can help to suppress fluctuations in the melt. In
the Czochralski setting, numerical simulations have been made by Hicks, Organ & Riley (1989);
Riley (1989); Sabhapathy & Salcudean (1990); Abritska & Gorbunov (1992); Oh & Kang (1996);
Talmage et al (2000); Vizman et al (2000) among others.
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Parameter (r,2,0) = (0.75,0.2,0) r=0,z=0.15 (r,z,0) = (0.125,0.25, 3m/4) Nusselt no.

Gr | Re, | Re, Uy | Uy | Uy | T Uy U, | ug | T Uy | U, | Uy | T Nu
10° 0 0 —0.2023 | —0.0235 0 0.7799 0 —0.0706 0 0.4715 —0.0256 | —0.0071 0 0.1746 —4.6697
1.36
%108 103 103 0.0050 0.0088 0.7842 0.6551 0 0.0007 0 0.5002 0.0002 0.0003 0.1236 | 0.1670 —4.2757
1.36 3 3
%106 10 —10 —0.2305 0.0062 —0.4228 | 0.7905 0 0.0630 0 0.4957 0.0179 0.0007 0.0711 | 0.1536 —4.7647
3.9304 1.7 1.7
%106 «10® | x10° —0.0027 0.0068 0.8003 0.6551 0 —0.0002 0 0.5003 0.0005 0.0001 0.1294 | 0.1667 —4.4038
8.5 2.5 2.5
0.0117 —0.0023 0.8035 0.6643 0 —0.0017 0 0.4991 —0.0012 | —0.0018 | 0.1267 | 0.1720 —4.9427

x10° | x10% | x10°

Table 2: Selected quantitative data for each of the flat-based crucible test cases; all cases yield axisymmetric steady motion except the last, where the
flow is unsteady and 3D for this case the arithmetic mean value is given for each measurement. The quantities u,,u,,ug denote the radial, axial
and azimuthal velocity components, in turn.
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0.2267

0.3067

0.2533

15°
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Table 3: Geometric and data values

Figure 13: Snapshots at (i) ¢ = 144; (ii) £ = 149; (iii) £ = 154 for iso-rotation with Re = Rex = Rec =
2500; Gr = 8.5x10°. For each time, results show (a) azimuthal velocity component, (b) velocity projection,
(c) temperature contours, all in the plane y = 0, and (d) temperature contours in the midheight plane
z = 0.15. In (a) the contours range from 0 (axis) to 1 (wall), in (c) from 0 (crystal) to 1 (wall/base), and in
(d) decrease in value inwards from wall (value 1), in each case in intervals of 0.1. The point ‘A’ is used as a
marker. (mpeg video at http://www.wias-berlin.de/publications/preprints/852/wias_preprints_852-a.mpg)
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applied to numerical simuations




Figure 14: Snapshots at (i) ¢ = 530; (ii) ¢ = 535; (iii) ¢ = 540 for iso-rotation with Re =

Rex = Rec = 2500; Gr = 8.5 x 10°. For each time, results show (a) azimuthal velocity compo-
nent, (b) velocity projection, (c) temperature contours, all in the plane y = 0, and (d) tempera-
ture contours in the midheight plane z = 0.15. In (a) the contours decrease in value from 1 (wall),

in (c) they range from 0 (crystal) to 1 (wall/base), and in (d) they decrease in value inwards from
wall (value 1), in each case in intervals of 0.1. The point ‘A’ is used as a marker. (mpeg video at
http://www.wias-berlin.de/publications/preprints /852 /wias_preprints_852-b.mpg)
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Figure 15: Time-history behaviour of various quantities in a cylindrical crucible with Re = Rex = Rec =
2500; Gr = 8.5 x 10%: upper left — radial velocity component at r = 0.75,z = 0.2, = 0; upper right —
axial velocity component at r = 0,z = 0.15; lower left azimuthal velocity component at r = 0.125,z =
0.25, 6 = 37 /4; lower right — Nusselt number on the crystal/melt interface I'x.
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Figure 16: Time-averaged computational solution for iso-rotation with Re = Rex = Rec = 2500; Gr =
8.5 x 10°. Results show (a) azimuthal velocity component, (b) velocity projection, (¢) temperature contours,
all in the plane y = 0 and (d) temperature contours in the midheight plane z = 0.15. In (a) the contours
range from 0 (axis) to 1 (wall), in (c) from 0 (crystal) to 1 (wall/base), and in (d) decrease in value inwards

from wall (value 1); the spacing intervals are 1/11, 0.1 and 0.1, respectively.
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