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Abstract

The dynamo properties of square patterns in Boussinesq Rayleigh-B�enard

convection in a plane horizontal layer are studied numerically. Cases without

rotation and with weak rotation about a vertical axis are considered, par-

ticular attention being paid to the relation between dynamo action and the

kinetic helicity of the ow. While the uid layer is symmetric with respect to

up-down reections, the square-pattern solutions may or may not possess this

vertical symmetry. Vertically symmetric solutions, appearing in the form of

checkerboard patterns, do not possess a net kinetic helicity and we �nd them

to be incapable of dynamo action at least up to magnetic Reynolds numbers of

� 12000. Vertically asymmetric squares, a secondary convection pattern ap-

pearing via the skewed varicose instability of rolls and being characterized by

rising (descending) motion in the centers and descending (rising) motion near

the boundaries, can in turn be devided into such that possess full horizontal

square symmetry and others lacking also this symmetry. The ows lacking

both the vertical and horizontal symmetries are particularly interesting in that

they possess kinetic helicity and show kinematic dynamo action even without

rotation. The generated magnetic �elds are concentrated in vertically oriented

�lamentary structures near cell boundaries. The dynamos found in the non-

rotating case are, however, always only kinematic, never nonlinear dynamos.

Nonlinearly the back-reaction of the magnetic �eld then forces the ow into

the basin of attraction of a roll-pattern solution incapable of dynamo action.

But with rotation added parameter regions are found where a subtle balance

between the Coriolis and Lorentz forces enables nonlinear dynamo action of

stationary asymmetric squares. In some parameter regions this balance leads

to nonlinear dynamos with ows in the form of oscillating squares or station-

ary modulated rolls.

Introduction

Studies of convection-driven dynamos have concentrated either on turbulent con-

vection [1] or on convection near onset, where simple steady ows can be obtained

[2, 3, 4, 5]. In this paper we report on the dynamo properties of convection in the

simple form of squares (see also [6, 7, 8]).

The typical convective patterns are di�erent for convection with up-down reection

symmetry and such lacking this symmetry, where symmetry of the convection means

symmetry of the governing equations and boundary conditions for the deviations

of the physical quantities from their values in the nonconvective state. Rayleigh-

B�enard Boussinesq convection with symmetric top and bottom boundary conditions
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possesses the up-down reection symmetry, and its preferred convection pattern

near onset is rolls, i.e. the convective pattern is also up-down symmetric. However,

recently it was found both experimentally and theoretically that other, vertically

asymmetric states, namely convection in the form of squares or hexagons, can coexist

with the roll states in a parameter range where only rolls were previously known to

be stable [6, 9, 10, 11]. These asymmetric squares and hexagons, with rising or with

descending motion in the center (and descending or rising motion near the boundary)

are usually observed in convection lacking up-down reection symmetry, namely

in compressible convection [12, 13], in uids with strongly temperature dependent

viscosity [14] or in B�enard-Marangoni convection [15, 16]. The vertically asymmetric

square pattern represents the dominating pattern over a wide range of the control

parameters both in vertically symmetric and nonsymmetric convection. Details

about this type of convection are found in [6, 11, 17]. In the present paper we

deal with squares in Boussinesq, i.e. vertically symmetric convection. Here besides

the vertically asymmtric square patterns also vertically symmetric ones are found,

which appear in the form of checkerboard patterns. However, with respect to the

dynamo e�ect the asymmetric squares turn out to be much more interesting than

the symmetric ones.

It is well known that a nonvanishing kinetic helicity, for a given volume V de�ned

by H =
R
V
v �r�vd3x, where v denotes the uid velocity and h = v �r�v is the

helicity density, is favorable at least for the large-scale dynamo action of small-scale

velocity �elds [18]. We pay particular attention to the relation between dynamo

action and the kinetic helicity of the underlying ows.

1 Equations and parameters

We consider buoyancy-driven rotating convection in an electrically conducting plane

uid layer heated from below. Using the Oberbeck-Boussinesq approximation, the

governing system of partial di�erential equations reads as follows:

r � v = 0 (1)

@v

@t
+ (v � r)v = �rp+ P r2

v+ PR �ez

+(r�B)�B+ P
p
T v � ez (2)

r �B = 0 (3)

@B

@t
+ (v � r)B = PP�1m r2

B+ (B � r)v (4)

@�

@t
+ v � r� = vz +r2� : (5)

Equations (1){(5) are given in usual dimensionless form. B is the magnetic �eld and

p and � represent the deviations of pressure and temperature from their values in the

pure conduction state. We use Cartesian coordinates x, y and z with the z axis in
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the vertical direction antiparallel to the gravitational force. ez is the unit vector in

the vertical direction. There are four dimensionless parameters, the Prandtl number

P , the magnetic Prandtl number Pm, the Rayleigh numberR and the Taylor number

T , de�ned by

P =
�

�
; Pm =

�

�
; R =

�gd3

��
ÆT; T =

�
2
d2

�

�2

; (6)

where � is the kinematic viscosity, � the thermal di�usivity, � the magnetic dif-

fusivity, � the volumetric expansion coeÆcient, g the gravitational acceleration, d

the thickness of the uid layer, ÆT the temperature di�erence between the upper

and lower boundaries and 
 the angular velocity of the rotation. R measures the

strength of the buoyancy forces and T the rotation rate. We apply periodic bound-

ary conditions with spatial period L in the horizontal directions x and y. The top

and bottom planes are assumed to be stress-free, isothermal and impenetrable for

matter and electromagnetic energy:

@vx

@z
=

@vy

@z
= vz = � =

@Bx

@z
=

@By

@z
= Bz = 0 at z = 0; 1 (7)

As in [6, 19, 20] we restrict ourselves to the case of a vanishing mean horizontal ow

since such a ow can be removed by a Galilean transformation. In our numerics we

used a pseudospectral method with a spatial resolution of 323 points for simulations

and 163 points for non-simulative eigenvalue and eigenvector calculations. The main

results were checked by additional simulations at a resolution of 64 � 64 � 16. The

aspect ratio is kept �xed at L = 4 for the dynamo calculations; but in preceding

purely hydrodynamic calculations of the underlying convective patterns also L was

varied. The Prandtl number is 6:8 and the Taylor number is restricted to values

below the critical one for the K�uppers-Lortz [21] instability, i.e. the instability of

convection rolls with respect to other rolls rotated by a certain angle relative to the

original rolls, which results in a dynamics dominated by heteroclinic cycles formed

by unstable roll states and connections between them [20, 22]); dynamo action in

rapidly rotating convection is studied in [23, 24].

2 Convection in the form of squares

Without rotation, ows in the form of vertically symmetric squares or checkerboard

patterns could only be observed as transient phenomena (but see Sec. 3.1 for the

case with rotation). By contrast, vertically asymmetric squares were found as stable

stationary attractors. Examples of convection in the form of vertically symmetric

and asymmetric squares in the absence of rotation are shown in Fig. 1. The asym-

metric squares [Fig. 1(b)] are a secondary convection pattern and appear via the

skewed-varicose instability [25] of primary convection rolls. Results of a stability

analysis are shown in Fig. 2; for more details we refer to [6].
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(a) (b)

Figure 1: Shadowgraph images of the vertical velocity component vz in the horizontal

midplane for T = 0. Bright areas refer to positive values where the motion of

the uid is upwards. (a) Unstable checkerboard pattern for R = 1000, (b) stable

asymmetric square pattern for R = 7000.

Figure 2: The region of stable squares in the L-R plane. The dashed line speci�es the

skewed varicose instability for rolls and indicates the transition from a roll pattern

to a square pattern for increasing Rayleigh number. The back transition from the

squares to the rolls for decreasing R is shown by the solid line, with + signs marking

the calculated points. The dashed-dotted line indicates instability of the squares for

increasing R, diamonds denoting a double Hopf bifurcation and triangles a single

Hopf bifurcation. For reference, the linear stability boundary of the nonconvective

ground state to rolls is shown by the dotted line.
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Depending on the initial conditions, cells with rising or descending motion in the

center appear. The spectrum of the excited Fourier modes shows that the vertically

asymmetric squares can be represented to lowest order by

�
A1e

ik1x +A2e
ik2x

�
+
�
B1e

i(k1+k2)x +B2e
i(k1�k2)x

�
+ c:c: (8)

where k1 and k2 are horizontal wave vectors given by k1 = (0; k) and k2 = (k; 0).

k is the fundamental wave number of the asymmetric squares. A1 exp(ik1x) and

A2 exp(ik2x) represent two rolls with the same wave number k, one parallel to the

x axis and the other parallel to the y axis, while the two terms with coeÆcients B1

and B2, respectively, correspond to rolls parallel to the diagonals of the periodicity

square, perpendicular to each other and with the same wave number q = jk1+k2j =p
2k, which is the wave number of the skewed-varicose unstable rolls (the instability

thus leads to a pattern with a smaller wave number). For asymmetric squares

as shown in Fig. 1(b) to appear it is essential that all four wave vectors k1, k2,

k1 + k2 and k1 � k2 are excited [i.e. all four coeÆcients A1, A2, B1 and B2 in

Eq. (8) must be di�erent from zero]. The wave numbers k and q are in resonance

through triadic interactions of these wave vectors [26]. A representation like Eq.

(8) was used in [17] to study square cells in non-Boussinesq convection near onset

and is contained in a more general Galerkin ansatz used in [11] to study asymmetric

squares in Boussinesq convection. Asymmetric squares were also found numerically

in compressible magnetoconvection near onset [12]. A major di�erence between

the checkerboard and vertically asymmetric square solutions is that the latter ones

require the excitation of two di�erent wave numbers (k and q) and their nonlinear

resonance, while the checkerboards are \linear" squares with only one wave number

excited.

Without rotation, the checkerboard-pattern solutions are symmetric to reections in

vertical planes parallel to one of the sides or diagonals of a square. The symmetry to

reections in vertical planes implies zero net helicity (since helicity is a pseudoscalar

and thus changes sign under reections). We �nd the checkerboard-pattern solutions

to be always unstable in the nonrotating case. In the same case, i.e. for T =

0, the vertically asymmetric square solutions may or may not possess horizontal

D4 symmetry; the dihedral group D4 contains all rotations and reections which

transform a square in a plane into itself. We �nd that these symmetries are either

all present (for the D4 symmetric solutions) or all broken (for the solutions without

the D4 symmetry). For the D4 symmetric solutions one has A1 = A2 and B1 = B2

in Eq. (8). Like for the checkerboard-pattern solutions, the symmetry to reections

in vertical planes then implies zero net helicity.

For the vertically asymmetric solutions lacking the horizontalD4 symmetry at T = 0,

there is no reection symmetry that would prohibit a nonzero net helicity, and

such a net helicity is indeed found: Fig. 3(a) shows the helicity of a nonrotating

upow square as a function of the Rayleigh number in the range where the ow is

stationary. The solutions possess a net helicity even in the absence of rotation. If

rotation at low rates about the vertical axis is added, the pattern is modi�ed but

still corresponds to asymmetric squares. Compared to the case without rotation, the
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(a) (b)

Figure 3: The helicity of an upow square as a function of the Rayleigh number for

(a) T = 0 and (b) T = 100.

stability boundary towards higher values of R, where the pattern loses stability to

oscillatory solutions [6], is shifted upwards. In Fig. 3(b) the helicity as a function of

the Rayleigh number for a case with rotation (T = 100) is shown. The helicity due

to rotation is signi�cantly larger than the \self-helicity" of the nonrotating squares

already for very low rotation rates. In addition, stable rotating squares can be traced

to higher values of the Rayleigh number where the helicity is by several orders of

magnitude larger than for the nonrotating squares.

3 Dynamo action in square convection

3.1 Kinematic dynamo

Our primary convection solutions are stationary and correspond either to rolls or

to checkerboard patterns. Checkerboard patterns are observed for Taylor numbers

around 225 [20]. The primary roll and checkerboard-pattern solutions were checked

for kinematic dynamo action in the (small) Rayleigh number interval close to the

onset of convection where they are stable (R � 1000 : : : 2000). The checkerboard-

pattern solutions were additionally checked in the regions close to the onset of con-

vection where they are unstable but the roll solutions are stable | they were then

constructed as superpositions of two solutions corresponding to rolls with the same

wave number and axes perpendicular to each other. The net helicity in the periodic

box vanishes for both types of solutions, even if T 6= 0 [although for T 6= 0 each

single roll or square (vertical upow or downow column with square cross section)

has a nonvanishing helicity]. We always �nd the two primary convection states to be
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Figure 4: Stability boundary for the kinematic dynamo instability in the Pm-R

plane. The dashed line corresponds to the nonrotating case and the continuous line

to T = 100.

incapable of kinematic dynamo action. The kinematic dynamo properties of the two

ows were determined up to magnetic Prandtl numbers Pm = 5000; the associated

magnetic Reynolds numbers then increase to values Rm � 12000. No kinematic

dynamo action was found. Similarly, we �nd the vertically asymmetric-square so-

lutions with horizontal D4 symmetry (existing only in the absence of rotation) to

be incapable of kinematic dynamo action. This was tested for magnetic Reynolds

numbers up to Rm � 13000 (at R = 8000 we have a ow for which Rm � 13000 if

Pm � 100).

The convection ows in the form of vertically asymmetric squares without horizontal

D4 symmetry, however, can act as kinematic dynamos even without rotation. In Fig.

4 results for the nonrotating case and for T = 100 are given. The two curves in the

Pm-R plane are stability boundaries where a single real eigenvalue becomes positive

and the kinematic dynamo starts. The magnitude of the helicity does not seem to be

the most crucial factor for the onset of the kinematic dynamo, though after onset the

dynamo growth rates increase much faster with R if rotation is present. For small

Rayleigh numbers, R <� 5000, the dynamo sets in at lower values for the magnetic

Prandtl number without rotation than with rotation. This can be explained by the

fact that with rotation the convection is still very weak here since rotation increases

the critical Rayleigh number for the onset of convection.

An example of the magnetic �eld generated by kinematic dynamo action is depicted

in Fig. 5. The �eld is concentrated in �lamentary structures which are aligned along

the vertical axis and situated close to cell boundaries of the velocity �eld.

3.2 Nonlinear dynamo

Fig. 6(a) shows the time evolutions of magnetic and kinetic energies starting from
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(a) (b)

Figure 5: Unstable magnetic eigenmode for the velocity �eld shown in Fig. 1(b) and

Pm = 5:5. (a) Isosurface of the magnetic �eld strength at 50% of the peak �eld.

(b) Shadowgraph image of the vertical component Bz in the horizontal midplane,

bright areas indicating positive values; in addition the null line of the vertical velocity

component vz in the midplane is shown.

(a) (b)

Figure 6: Time evolutions of kinetic and magnetic energies for (a) T = 0, R = 5000

and Pm = 6 and (b) T = 10, R = 7000 and Pm = 4:65. Time is measured in units

of the thermal di�usion time.
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a square pattern velocity �eld and a small seed magnetic �eld for the case without

rotation. Initially the magnetic �eld grows exponentially with a well de�ned growth

rate. In this kinematic phase the Lorentz force is negligible and the square pat-

tern remains undisturbed. However, after the magnetic perturbation has reached

a strength su�cient to inuence the ow, it forces the solution into the basin of

attraction of the two-dimensional roll state with wave number k. The roll solution

is incapable of dynamo action and the magnetic �eld decays to zero. This e�ect

of self-extinguishing of the dynamo by the back-reaction of the magnetic �eld was

recently also observed for ow in triply periodic Cartesian geometry driven by an

explicit forcing [27], spherical dynamo models with rotation and explicit forcing [28]

and two-dimensional convection rolls in a plane layer rotating about an oblique axis

[5].

That is to say, in the nonrotating case the asymmetric squares are only kinematic,

not nonlinear dynamos. Nonlinear dynamo action is only possible if additional e�ects

are included that counteract the self-extinguishing of the dynamo by the Lorentz

force. We add background rotation at very low rates, namely 0 � T � 150. For

these small Taylor numbers the asymmetric square solutions are hydrodynamically

stable, that is to say, the nonrotating squares can be continued on a stable solution

branch towards higher Taylor numbers. Although the mechanism behind the self-

extinguishing is still acting, there are parameter ranges where a nonlinear dynamo is

found. Time evolutions of kinetic and magnetic energies in such a case, with T = 10,

R = 7000 and Pm = 4:65, are given in Fig. 6(b). After the initial kinematic phase, a

back reaction of the magnetic �eld is clearly visible. But though the velocity �eld is

modi�ed, it still corresponds to an asymmetric square pattern. The magnetic �eld

saturates and is maintained for all time.

It seems that for our system and in the parameter range studied, nonlinear dynamo

action requires a subtle balance between the Coriolis and Lorentz forces. A similar

balance between these two forces characterizes the weak-�eld limit of the Childress-

Soward dynamo [2, 29], which however works in a rapidly rotating convective layer.

Plus symbols (+) in Fig. 7 mark the parameter range in the T -Pm plane where we

observe nonlinear dynamos with underlying stationary asymmetric square patterns.

The Rayleigh number is �xed at R = 7000. By simultaneously varying T (i.e the

strength of the Coriolis force) and Pm (i.e. the strength of the Lorentz force) we also

�nd magnetic attractors which di�er from the stationary squares. The additional

types of magnetic attractors are oscillating squares [indicated by diamonds (�) in

Fig. 7] and stationary rolls [indicated by triangles (4) in Fig. 7]. The stationary

magnetic rolls show a modulation along the roll axis and disappear if the magnetic

�eld is switched o�. The solution then falls back on the simple roll state (without

modulation) with wave number k, which is not capable of kinematic dynamo action.

In the non-marked regions of the Pm-T plane self-extinguishing leads to nonmagnetic

�nal states.

Our investigations were focused on small Taylor numbers T < 150. For higher

Taylor numbers the convection is governed by alternating rolls [20] and we observe
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Figure 7: Parameter range of nonlinear dynamo action in the T -Pm plane for R =

7000. Plus symbols (+) refer to dynamos with ows in the form of stationary

asymmetric squares. Dynamos in oscillating squares are denoted by diamonds (�)

and such in stationary rolls by triangles (4).

dynamo properties similar to those found in [24].

An interesting question is whether there exist nonvanishing horizontal averages Bh

of the dynamo-generated magnetic �elds since these correspond to large-scale �elds.

We �nd that always

Bh(z) =

Z
periodicity box

Bdxdy 6= 0 : (9)

This indicates that our small-scale dynamos are mean-�eld or large-scale dynamos

as well.

4 Conclusion

We have studied the dynamo properties of square patterns in nonrotating and weakly

rotating Boussinesq Rayleigh-Benard convection in a plane horizontal layer. Verti-

cally symmetric solutions appear in the form of checkerboard patterns. They do not

possess a net kinetic helicity and we �nd them to be incabable of dynamo action

(at least up to magnetic Reynolds numbers of � 12000). Square-pattern solutions

lacking the vertical symmetry are characterized by rising (descending) motions in

the centers and descending (rising) motion near the boundaries of the squares. As a

secondary convection pattern they appear via the skewed varicose instability of rolls

and can in turn be divided into solutions with the full horizontal D4 symmetry of
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a square and others lacking also this symmetry (with rotation added the horizontal

D4 symmetry is always broken). The solutions lacking both the vertical and the D4

symmetries possess kinetic helicity and show kinematic dynamo action even with-

out rotation. The generated magnetic �elds are concentrated in vertically oriented

�lamentary structures near cell boundaries. The dynamos found in the nonrotating

case are, however, always only kinematic, never nonlinear dynamos. Nonlinearly the

back-reaction of the magnetic �eld then forces the ow into the basin of attraction

of a roll-pattern solution incapable of dynamo action. But with rotation added pa-

rameter regions are found where stationary asymmetric squares are also nonlinear

dynamos. These nonlinear dynamos are seemingly characterized by a subtle balance

between the Coriolis and Lorentz forces. In some parameter regions this balance also

leads to nonlinear dynamos with ows in the form of oscillating squares or stationary

modulated rolls.
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