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Abstract

Problems of nonparametric �ltering arises frequently in engineering and �nancial

economics. Nonparametric �lters often involve some �ltering parameters to choose.

These parameters can be chosen to optimize the performance locally at each time

point or globally over a time interval. In this article, the �ltering parameters are

chosen via minimizing the prediction error for a large class of �lters. Under a general

martingale setting, with mild conditions on the time series structure and virtually

no assumption on �lters, we show that the adaptive �lter with �ltering parameter

chosen by historical data performs nearly as well as the one with the ideal �lter in the

class, in terms of �ltering errors. The theoretical result is also veri�ed via intensive

simulations. Our approach is also useful for choosing the orders of parametric models

such as AR or GARCH processes. It can also be applied to volatility estimation in

�nancial economics. We illustrate the proposed methods by estimating the volatility

of the returns of the S&P500 index and the yields of the three-month Treasury bills.

1 Introduction

Problems of nonparametric �ltering arises frequently in engineering, �nancial economics,

and many other scienti�c disciplines. Given a time series fYtg, the nonparametric �ltering

problem is to dynamically predict Yt based on the observations preceding t. This is a

speci�c problem of the time domain smoothing (see �6.2 of [10]), but allows to use only

historical data at each time. A traditional class of nonparametric �lters is the moving

average �ltering which is the average of last m time periods (see Example 1 below). Other

classes include exponential smoothing (Example 2 below), kernel smoothing (Example

2), autoregressive �ltering (Example 5) and ARCH and GARCH �ltering (see �4.2). All

of these �lters depend on certain parameters, called �ltering parameters in this paper.

An interesting and challenging issue is how to choose these parameters so that they are

adaptive automatically to the data.

There are basically two versions of �ltering parameters, local and global versions. The local

version is that at each time point t, we choose the �ltering parameters b�t, say, to optimize

the performance near t. The global version is to set an in-sample period, [1; T ], say, then to

choose �ltering parameters b� to optimize the performance in the time interval [1; T ], and
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�nally to predict the data in the out-sample period [T + 1; T + n], say, using the �ltering

parameters b�. The local choice of ideal �ltering parameters is more powerful than the global

one. However, owing to stochastic errors, data-driven choices of local �ltering parameters,

while are more �exible, do not necessarily outperform the global choice. However, they are

very useful in the situation where there are structural changes of an underlying series over

time. The situation is very similar to the local bandwidth and global bandwidth selection

in the nonparametric smoothing literature (see e.g. [5] and [7]).

A natural criterion for choosing �ltering parameters is the prediction error, since only

the historical data have been used in the construction of �lters. Because of this, semi-

martingale structures remain valid in the computation of the prediction error. This enables

us to show, with mild conditions on the time series structure and virtually no assumption

on �lters, that the resulting adaptive �lter performs nearly as well as the ideal choice of

�ltering parameters. This property is also veri�ed via intensive numerical computation.

The nice property encourages us to apply the techniques to volatility estimation in �nancial

econometrics.

The concept of volatility is associated with the notation of risks. It is very critical for

portfolio optimization, option pricing and management of �nancial risks. As shown in

Section 4.1, the problem of dynamic prediction of volatility is strongly associated with

a �ltering problem. In fact, a family of power transform can even be accommodated to

estimate volatility (see [15]), with our �ltering techniques. This yields a family of volatility

estimators: some aim at robustness, while others at e�ciency. The family of nonparametric

methods compares favorably with GARCH techniques in volatility estimation, from our

numerical experiments.

The paper is organized as follows. Section 2 outlines various �ltering techniques. Their

�ltering parameters are selected in Section 3 where the properties of the adaptive �lters

are investigated both theoretically and empirically. Problems of volatility estimation and

their associations with nonparametric �ltering are investigated in Section 4.

2 Problems of dynamic �ltering

Consider a time series Y1; : : : ; YT , which is progressively measurable with respect to a

�ltration F = (Ft) and allows a semi-martingale representation:

Yt = ft + vt"t; (1)
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where ft and vt are predictable and the innovations "t form a standardized martingale

di�erence. They satisfy

E["t j Ft�1] = 0; E["2t j Ft�1] = 1:

The function ft is a trend or a drift series and vt is the conditional standard deviation or

the di�usion of the series. In statistical forecasting, one wishes to estimate the conditional

mean ft based on the past data Y1; : : : ; Yt. Such a problem is also referred to as �ltering

or one-step forecasting of the process fYtg.

Depending on the background of applications, as detailed below, �lters or predictors de-

pend on some tuning parameters. Suppose that we are given a family of di�erent �lters

(predictors) bft;� indexed by some parameter �. Each predictor bft;� estimates the unknown

value ft from the `past' observations Y1; : : : ; Yt�1. Our goal is to construct one predictor

which does the job nearly as well as the best �lter in the family f bft;� ; � 2 �g . We use a

few examples to illustrate the versatility of the scope of our study.

Example 1 (Moving average �ltering) A traditional approach to estimate the trend of a

time series is the moving average estimator. For every integer m, one de�nes

bft;m =
1

m

t�1X
s=t�m

Ys :

Here the parameter � coincides with the window size m . One may consider a family

of such predictors for di�erent window sizes and the problem of adaptive estimation is to

choose a window size from data.

Example 2 (Exponential smoothing) An improvement of the moving average (MA) �lter-

ing is the exponential smoothing (ES) which weighs down the observed data from the past.

The family of exponential smoothing is de�ned by

bft;� =
1

1� e��

X
s<t

e�(t�s)�Ys; (2)

for a positive parameter �. Formally this estimate bft;� depends on all the past observa-

tions, but this dependence decreases exponentially. Our problem becomes to choose the

parameter � from data such that the resulting adaptive estimator performs nearly as well

as the ideal exponential �ltering among this family.

The MA and ES �ltering are a member of the kernel estimator. See, for example, [8] and

�6.2 of [10]. In fact, the ES corresponds to the kernel regression estimator in time domainbft;h =
X
s<t

Kh(t� s)Ys=
X
s<t

Kh(t� s); Kh(x) = h�1K(x=h)
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with the one-sided kernel K(x) = exp(�x)I(x > 0) and � = 1=h. Further discussion on

this subject, including bandwidth selection and asymptotic theory, can be found in [11].

Example 3 (J.P. Morgan's RiskMetrics) An important measure to gauge the risk of a

portfolio is the Value-at-Risk, which is the worst loss to be expected with certain con�dence

for a given time horizon. See [13]. An important contribution to the calculation of VaR

is the RiskMetrics of J.P. Morgan[16]. The method is to �rst estimate the volatility for

holding a portfolio for one day before converting this into the volatility for multiple days

and to then compute the quantile of standardized return processes through the assumption

that the processes follow a standard normal distribution. Let St be the price of a portfolio

at time t and Rt = log(St=St�1) be the observed return at time t. The J.P. Morgan

estimate of volatility b�2t for one-period return is

b�2t = (1� �0)R
2
t�1 + �0b�2t�1:

By iterating the above formula, it can easily be seen that

b�2t = (1� �0)fR2
t�1 + �0R

2
t�2 + �20R

2
t�3 + � � � g:

This is an alternative form of the ES (2) with �0 = exp(��). Our adaptive dynamic

�ltering is to choose �0 from data to ameliorate the performance. Such an approach has

been introduced by [8]. Our current study gives further theoretical endorsement of their

approach.

The above estimator is basically a discretized approach to estimate the di�usion function

�(t) in the following geometric Brownian motion d log(Su) = �(u)dWu via a local constant

approximation. See [8] for derivations and connections.

Example 4 (Adaptive estimation of volatility) The problem of estimating vt in (1) can

also be regarded as adaptive �ltering problem. Let bRt = Yt� bft be the residual from model

�tting (1). Then, de�ne a family of the �lters for square residuals as

bv2t;h =
X
s<t

Kh(t� s) bR2
s=
X
s<t

Kh(t� s):

As shown in [9] and [17], the errors in estimating bft are usually negligible in estimatingbv2t;h. Hence, our methodology and theory continue to apply.

Example 5 (Autoregression) Suppose that the process fYtg is to be approximated by an

autoregressive (AR) equation

Yt = �1Yt�1 + : : :+ �pYt�p + vt"t
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where "t are conditionally independent innovations, vt is an unknown predictable process,

and �1; : : : ; �p are unknown autoregression coe�cients. Denote by

Xt;p = (Yt�1; : : : ; Yt�p)
> and � = (�1; : : : ; �p)

>:

Then, the above autoregressive equation can be written in the form Yt = X>

t;p�+vt"t. The

least-squares estimate of the parameter � from the observations Ys for t0 � s < t reads

as follows:

b�t;p =
 

t�1X
s=t0

Xs;pX
>

s;p

!
�1 t�1X

t=t0

Xs;pYs

and the corresponding �lter bft;p of Yt is de�ned as bft;p = X>

t;pb�t;p. The problem of adaptive

dynamic �ltering is to choose a p using the available data before time t such that it performs

nearly as well as the ideal choice of p.

Similar idea can be applied to choose the order of GARCH models (see �4.2 of [10] and

[12])

3 Choice of �ltering parameters

There are two possible choices of �ltering parameters. A local choice aims at choosing a

�, which depends on t, such that it optimizes the performance of the �lter at each time

point t. In other words, we use bf
t;b�t

to estimate ft, where b�t is selected based the data

collected up to t� 1. A global choice aims at choosing a �, which is independent of t, such

that it optimizes the performance of the �lter over an interval, [t0; T ]. The local choice of

the �ltering parameters is more �exible than the global one and the resulting �lter is more

capable of adapting to the dynamic change of the underlying time series. On the other

hand, the local choice of �ltering parameters is harder and more variable, since only the

local data are involved in choosing the �ltering parameters. The problem is very analogous

to the local and global bandwidths in nonparametric smoothing, studied, for example, by

[5] and [7].

3.1 Global adaptation via minimal prediction error

The performance of any �lter can be measured by the sum of squared �ltering errors:

R(�) =
TX

t=t0

�
ft � bft;��2 ;
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where T is the length of a time series and t0 is a prede�ned time point large enough to

avoid the boundary e�ect. An ideal choice of the parameter � can be de�ned as the one

that minimizes the global loss:

�II = arginf
�2�

TX
t=t0

�
ft � bft;��2 : (3)

This choice is ideal since it relies on the unknown target function.

An empirical analog of the �ltering error is the prediction error de�ned as:

�(�) =

TX
t=t0

�
Yt � bft;��2 :

This criterion leads to the following data-driven selection rule:

b� = arginf
�2�

�(�) = arginf
�2�

TX
t=t0

�
Yt � bft;��2 : (4)

The resulting adaptive �lter is given by bft = bf
t;b�
. The �ltering error of this estimator is

given by

R(b�) = TX
t=t0

�
ft � bft�2 = TX

t=t0

�
ft � bf

t;b�

�2
:

An interesting question is how the the quality (�ltering error) of the data-driven selector

from (4) is compared with the �ideal� selector from (3). We attempt to answer this question

in the next section.

3.2 Properties of the adaptive selector

For every � 2 � , it holds that

�(�) =
TX

t=t0

�
Yt � bft;��2 = R(�) + 2

TX
t=t0

�
ft � bft;�� vt"t + TX

t=t0

v2t "
2
t :

The last sum in the above decomposition does not depend on � and hence does not a�ect the

minimization in (4). Hence, minimizing the prediction error �(�) corresponds to minimizing

the �ltering error R(�) plus the cross term

Scross;� = 2
TX

t=t0

�
ft � bft;�� vt"t:
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If one could show that this cross term is relatively small, then these two minimization

procedures would be nearly equivalent.

To bound the cross term Scross;�, we apply a result for martingales from [14]. De�ne

Mt;� =
tX

s=t0

�
fs � bfs;�� vs"s; and V 2

t;� =
tX

s=t0

�
fs � bfs;��2 v2s :

Note that for homoscedastic error vs � v, V 2
T;� = v2R2(�). In general, VT;� is of the same

order as R2(�) as long as vs is bounded from below and above. Since both the drift ft and

the estimator bft;� are predictable processes with respect to the �ltration Ft�1, Mt;� is a

square integrable martingale with the quadratic variation V 2
t;�.

Lemma 1 Let the innovations "t ful�ll Eeu"t � expfu2=(2a)g for some positive a and all

u � 0. Then, for all 
 � 1

P (MT;� > 
VT;� ; A�) � ��(
)

where A� =
n
# � V 2

T;� � #B
o
with some deterministic values #;B and ��(
) = 4

p
e(1+

logB)
e�

2=(2a).

Note that the constants #;B may also depend on � . We suppress this dependence to

facilitate the notation. As a corollary of Lemma 1:

X
�2�

P (Scross;� > 2
VT;� ; A�) �
X
�2�

��(
): (5)

As noted above, V 2
T;� � v2R(�) when vt � v. It follows that Scross;� � 2
v

p
R(�);8� 2 �

with a probability at least 1�P�2� �(
). This yields the following results.

Theorem 1 It holds for every 
 � 0 and every v > 0

P

�q
R(b�) �pR(�II) + 3v
; A

�
�
X
�2�

��(
)

with A =
T
�2�A� \ fV 2

T;� � v2R(�)g.

Proof. In view of (5) it su�ces to show that the inequalities

Scross;� � 2
VT;� � 2
v
p
R(�) 8� 2 � (6)
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imply thatq
R(b�) �pR(�II) + 3v
=2:

To this end, de�ne ��� = R(�)+Scross;� and denote by R� = R(�). Then b� is the minimizer

of ��� , while �II is the minimizer of R� . The condition ��� � R� + 2
v
p
R� impliesp

��
�
� p

R�+
v. Similarly, (6) implies ��� � R�� 2
v
p
R�. Since

p
x� y � p

x� y=
p
x

for every positive numbers x; y , it follows that for each � 2 � :

p
R� � 2
v � p

�� �
p
R� + 
v :

Since b� is the minimizer of �� , �b� � ��II . Therefore,q
R
b�
� p

�
b�
+ 2
v � p

�II + 2
v �
p
RII + 3
v (7)

as required.

Note that ��(
) = o(T�b), when 
 > (2ab log T )1=2 for a given positive b. Thus, when the

number of elements in � is of order O(T b),
P

�2� ��(
) ! 0. Thus, the extra term 3v


required for adaptation in Theorem 1 is not excessive and is only of order Of(log T )1=2g.
For example, for a parametric model such as an AR(p) model, the �ltering error jft� bft;�j2
is typically of order t�1 so that R�;T is of order

P
t�T t

�1 � log T . The extra term

3v
 = Of(log T )1=2g is negligible. For nonparametric �lters like moving average with

window size m, the �ltering errors are of order O(T�2=5) for m = T 1=5, which are much

larger than those of parameter models. Hence, the extra term of order Of(log T )1=2g is

also negligible, comparing with R(�II). In summary, with probability tending to one, the

data-driven �lters perform as well as �lters with an ideal choice of �ltering parameter.

3.3 Local choice

The aforementioned global procedure chooses one �lter parameter to �t the whole observed

path. Such a method can be e�cient in many situations where there are virtually no

structural breaks in the observed time series. However, it has a serious drawback of being

slow in reacting to spontaneous changes in the structure of the observed process. We

illustrate this issue using the moving average �lter with window size m. See also Example

6. For a large m, the accuracy of estimation is very good provided that the underlying

process ft is nearly constant within this window. However, if the value ft changes abruptly

at some time point, then the �lter with a large m will react to this change with a long
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delay of order m. On the other hand, a �lter with a small m allows for a fast reaction to

the sudden changes in structure, but is not as precise and stable as a �lter with larger m

over stationary regions.

To enhance the �exibility of the family of �lters f bft;�g to adapt to possible structural

changes over time, the parameter � should be allowed to vary over time. For each given

time t, �t should be chosen so that it optimizes the performance near the time point t.

Following (4), we choose

b�t = arginf
�2�

tX
t=t�M+1

�
Yt � bft;��2 ; (8)

where M is the size of the neighborhood preceding the time point t, over which we wish

to optimize the performance. One can also regard M as another �ltering parameter and

wishes to choose �t and M simultaneously. But, simultaneous choices of M and � face the

challenges of instability and computational cost.

In the local bandwidth selection setting, [7] employed a similar idea. However, the resulting

parameters fb�tg are smoothed further to enhance the smoothness of the resulting estimatebf
t;b�t

. In our time domain smoothing, such a step can be avoided, since the smoothness ofbf
t;b�t

in time domain is not a critical visual requirement.

Applying Theorem 1 to the local choice of the �lter parameters, we can obtain a similar

result on the bound of the �ltering errors around the time t. Again, as long as the number

of elements in � is not excessively large, the performance of the data-driven choice of local

�ltering parameters is nearly as good as their ideal choice.

3.4 Numerical Results

We illustrate the performance of the global and local choices of �ltering parameters via two

di�erent classes of underlying processes: piecewise constant processes and autoregressive

processes. For the �rst class, an application of moving average or exponential smoothers

is quite reasonable, while the second class is oriented towards autoregressive �ltering in

Example 5. The e�ectiveness of each �lter can be assessed by the Mean Absolute Filtering

Error (MAFE) or the Mean Squared Filtering Error (MSFE):

MAFE =
1

n

T+nX
t=T+1

jft � bftj; MSFE =
1

n

T+nX
t=T+1

jft � bftj2;
for a post sample of size n. The in-sample period is taken to be t = 1; � � � ; T . Since the

results are similar by using MAFE and MSFE, we only report the MAFE.
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(a)

100 200 300 400 500 600
-2

0
2

A simulated series for Example 6

(b)

100 200 300 400 500 600

-2
0

2

Global choice of filtering parameter

(c)

100 200 300 400 500 600

-2
0

2

Local choice of filtering parameter

Figure 1: (a) A simulated series from Example 6. (b) Filtered series with global choices

of �ltering parameters. True ft � long-dashed curve; MA � solid curve; ES � dotted

curve. (c) Filtered series with local choices of �ltering parameters. MA � dotted curve;

MA ideal � dot-and-dash curve; ES � solid; ES ideal � dashed.

Example 6 Let the process ft take only two values f�1; 1g, with transitions between

these two states at random stopping times �1 < �2 < : : : < �m < : : :. These stopping times

were generated from a Poisson process with rate 1=�, namely, the intervals �k� �k�1 were

generated from the exponential with mean � = 150. The observed process is

Yt = ft + �"t; "t � N(0; 1):

Figure 1(a) depicts a simulated series of length 500.

To estimate the function ft, we apply the moving average (MA) and exponential smoothing

(ES) methods to estimate the time trend. We �rst apply the global method to choose the

�ltering parameters, the window sizem in MA and the decay parameter � in ES. The initial

value t0 = 101 is taken. The �ltering parameters are chosen to minimize (4) among 15

geometric grids. Figure 1(b) shows the resulting estimates for the realization in Figure 1(a).

Both the adaptive MA and ES methods recover reasonably well the mean process ft and

detect the jumps in ft. The jumps in the process ft force the methods to choose small

values ofm and �. As a result, the estimates are somewhat undersmoothed and have rough
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(a)

100 200 300 400 500 600
-1

.5
0.

0

A simulated series for Example 7

(b)

100 200 300 400 500 600

-1
.5

0.
0

Global choice of filtering parameter

Figure 2: (a) A simulated series from Example 7. (b) Filtered series with global choices of

�ltering parameters. True ft � solid curve; �ltered series � dotted curve.

appearance in the constant regions.

For the signal function ft in this example, it is reasonable to expect that a large smoothing

parameter is used in the �rst part of the data and a smaller one is applied to the last piece of

series. To achieve such a scheme adaptively, we appeal to (8) with M = 40. The resulting

estimates by using the MA and ES with local choice of �ltering parameters are shown in

Figure 1(c). To compare with their performance with the ideal choices of the local �ltering

parameters, which minimize the corresponding local version of (3), Figure 1(c) also depicts

the MA and ES estimates using the ideal local �ltering parameters. The four estimates are

hard to di�erentiate, which in turn endorses the performance of our adaptive local version

of selecting �ltering parameters.

Comparing the estimates with the local choices of �ltering parameters to those with the

global ones, the local version tends to choose larger smoothing parameters for the �rst

part of the series. At the point of the structure break, smaller smoothing parameters are

chosen so that �leakages� (biases around the change point) have been reduced by the local

methods, but at the expenses of increasing variability.

The simulation results in terms of MAFE are reported in Table 1. The post-sample size is

n = 500 and the in-sample period is [1,1000].

Next, we consider an application of the proposed methods to selecting the order of autore-

gressive processes.
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(a)

200 300 400 500 600 700
-1

0
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A simulated series for Example 8

(b)

200 300 400 500 600 700

-1
0

1
2

3

Local choice of filtering parameter

Figure 3: (a) A simulated series from Example 7. (b) Filtered series with global choices of

�ltering parameters. True ft � solid curve; �ltered series � dotted curve.

Example 7 We generate a series from the following AR(2) model:

Yt = 0:4Yt�1 + 0:32Yt�2 + "t; "t � N(0; 0:52):

Figure 2(a) depicted a realization of length 600. As in Example 5, the aim is to choose an

order p to best predict the series.

Recall the �lter bft;p de�ned in Example 5 is based on an autoregressive model of order

p. For the global choice, we choose p to minimize
P600

t=101

�
Yt � bft;p�2, among the set

P = f1; 2; 4; 8g. For this realization, the above order selection rule yields bp = 2, which

is the same as the true value of p. The resulting �lter is depicted in Figure 2(b). The

estimate is very well in accordance with the mean process ft.

The simulation results in terms of MAFE are reported in Table 1.

The next example deals with the situation where the dynamic of an underlying process

changes over time. This re�ects some extent in the real world, where stochastic dynamics

such as stock markets can change over time.

Example 8 We simulated a process from the AR(2) process Yt = 0:3Yt�1+0:4Yt�2+0:3"t

till the time point t = 450 and then from the AR(1)-process Yt = 0:7Yt�1 + 0:3 "t after

t = 450. Here, "t is a standard Gaussian noise. Figure 3(a) depicts a realization from the

model. This model is similar to the thresholding autoregressive model (see [10] and [18]),

but the structure change occurs in the time domain rather than the state domain.
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To accommodate the possible structural break over time, it is natural to use only a local

stretch of data around the time t. Similarly to Example 5, we consider the family of �lters

bft;p;m = X>

t;p

 
t�1X

s=t�m

Xs;pX
>

s;p

!
�1 t�1X

s=t�m

Xs;pYs:

At each time point, a local selection procedure is applied to choose both p and m to mini-

mize
Pt

s=t�M+1

�
Ys� bfs;p;m�2. We searched p in P = f1; 2; 4; 8g andm in f 20; 40; 80; 160 g

and tookM = 20. The result �lter is plotted in Figure 3(b). The result illustrates how this

procedure works in the stationary region before the change and immediately after it. In

particular, the delay between the change and the �rst moment when the procedure starts

to selects a small m can be interpreted as the sensitivity to changes.

We now brie�y summarize the simulation results using MAFE. The relative performance

of a �lter to another one is measured by the ratio of the MAFE of the former �lter to the

latter. This ratio is independent of the scale of a simulated data. Table 1 summarizes the

distributions of these ratios over 500 simulations by computing their mean, SD, the �rst,

second and third quartiles. From the right block of Table 1, one can see easily that the

relative performance between the �lters with their parameters chosen by data and those

using the ideal ones is nearly the same. This is consistent with the theoretical result given

by Theorem 1. For each realization, we computed the relative MAFE of the �lters with

�ltering parameters chosen by data to that with ideal �ltering parameters. The in-sample

period is set to be [1, 1000] and the post-sample period is [1001, 1500].

The results in the left block of Table 1 summarize the relative performance among 4

di�erent �lters: ES global (using b�), ES local (using b�t), AR global (using bp) and AR local

(using bpt and bmt). All �lters are compared with the AR global �lter. This avoids the scale

problems, which vary from one simulation to another. For Example 6, the best procedure

among 4 competitors is ES local, followed by ES global and AR global. This is consistent

with our intuition, since the data were not generated from an AR model, but a piecewise

AR model. For Example 7, since the data were generated from an AR(2) model, AR global

performs the best, followed by AR local. The performance of the AR local �lter can be

much better than what we presented here, if we allow the upper bound of m to take a

larger value. ES global outperforms the ES local, since the data are stationary. The AR

local performs the best for Example 8, since the model is a piecewise AR model. The ES

local performs outstandingly, thanks to its �exibility.
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Table 1: Relative MAFE performance. Empirical mean (�rst row), sample standard devi-

ation (second row), �rst quartile (third row), median (fourth row), and third quartile (�fth

row) of MAFE ratios.

Relative to bft;bp Relative to ideal counterparts

ES global ES local AR local ES global ES local AR global AR local

0.931 0.743 1.228 1.000 1.076 0.100 1.104

0.065 0.138 0.069 0.034 0.057 0.0197 0.041

Ex. 6 0.901 0.655 1.177 0.996 1.036 1.000 1.075

0.936 0.745 1.226 1.000 1.065 1.000 1.101

0.967 0.845 1.268 1.000 1.111 1.000 1.131

10.789 14.254 8.200 1.003 1.290 1.089 2.559

6.534 8.619 4.940 0.010 0.103 0.608 0.449

Ex. 7 6.191 8.450 4.785 1.000 1.217 1.000 2.252

8.988 11.790 6.912 1.000 1.280 1.000 2.499

13.453 17.695 10.039 1.004 1.352 1.000 2.810

1.001 0.952 0.759 1.014 1.149 1.001 1.320

0.086 0.083 0.081 0.049 0.068 0.010 0.093

Ex. 8 0.941 0.899 0.705 1.000 1.097 1.000 1.251

0.993 0.945 0.753 1.000 1.138 1.000 1.312

1.057 1.009 0.809 1.000 1.194 1.000 1.381

4 Applications to volatility estimation

Let S1; : : : ; ST be the prices of an asset or yields of a bond. The return of such an asset

or bond process is usually described via the conditional heteroscedastic model:

Rt = �t"t (9)

where Rt = log(St=St�1), �t is the predictable volatility process and "0ts are the standard-

ized innovations.

4.1 Connections with �ltering problems

The volatility is associated with the notion of risks. For many purposes in �nancial practice,

such as portfolio optimization, option pricing and prediction of Value-at-Risk, one would

be interested in predicting the volatility �t based on the past observations S1; : : : ; St�1 of

the asset process. The distribution of the innovation process can be skewed or have heavy

tails. To produce a robust procedure, following [15], we consider the power transformation

Yt = jRtj
 for some 
. Then, the model (9) can be written in the following semi-martingale
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form:

Yt = C
�


t +D
�



t �t � ft + vt�t (10)

with C
 = Ej"tj
 , D2

 = Var j"tj
 and �t = D�1


 (j"tj
 � C
) : Mercurio and Spokoiny [15]

argued that the choice 
 = 1=2 leads to a nearly Gaussian distribution of the `innovations'

�t , when "t � N(0; 1). In particular, Eeu�t � eu
2=(2a) with a � 1:005, a condition in

Lemma 1.

Now the original problem is clearly equivalent to estimating the drift coe�cient ft = C
�


t

from the `observations' Ys = jRsj
 , s = 1; : : : ; t� 1 . The semi-martingale representation

(10) is a speci�c case of the model (1) with vt = D
�


t . Hence, the techniques introduced

in Section 3 are still applicable.

There is a large literature on the estimation of volatility. In addition to the famous para-

metric models such as ARCH and GARCH (see [10] and [12]), stochastic volatility models

have also received a lot of attention (see, for example, [1], [2] and [4] and references therein).

We here consider only the ARCH and GARCH models in addition to the nonparametric

methods (MA and ES) in Section 3.

4.2 Choice of orders of ARCH and GARCH

Commonly used parametric techniques for modeling volatility are ARCH [6] and GARCH

[3] models. See [10] and [12] for an overview of the �eld. In the current context, ARCH

model assumes the following autoregressive structure:

E [Yt j Ft�1] = �1Yt�1 + : : :+ �pYt�p

The coe�cients � = (�1; : : : ; �p)
> can be estimated by using the least-squares approach:

b�p =
 

t�1X
s=t0

Xs;pX
>

s;p

!
�1 t�1X

s=t0

Xs;pYs

with Xs;p = (Ys�1; : : : ; Ys�p)
> . The estimate bft;p is then de�ned by bft;p = X>

t;p
b�p. As in

Section 3, the order p can be chosen by minimizing the prediction error:

bp = arginf
p�p�

tX
s=t0

(Ys � bfs;p)2 (11)

The upper bound p� should be su�ciently large to reduce possible approximation errors.

To facilitate computation, t in (11) can be replaced by T , the length of the time series in

the in-sample period. The approach is a global choice of the order of an ARCH model.
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The volatility process �t in GARCH(p; q) is modeled as

�2t = c0 + �1�
2
t�1 + : : : + �p�

2
t�p + �1R

2
t�1 + : : :+ �qR

2
t�q:

The coe�cients �j ; �k can be estimated by using the maximum likelihood method. See

for example Fan and Yao [10]. The estimates b�j and b�k are then used to construct the

�lter

bft;p;q = C


0@ pX
j=1

b�j�2t�j + qX
k=1

b�kR2
t�k

1A
=2

:

The order (p; q) can be chosen to minimize a quantity that is similar to (11).

GARCH(1,1) is one of most frequently used models in volatility estimation in �nancial time

series. It has been observed to �t well many �nancial time series. To simplify the compu-

tation e�orts, we mainly focus on the GARCH(1,1) rather than general GARCH(p; q) in

our simulation studies.

4.3 Simulated �nancial time series

We simulated time series from the volatility model

GARCH(1,1): �2t = 0:00005 + 0:85�2t�1 + 0:1R2
t�1

GARCH(1,3): �2t = 0:00002 + 0:8�2t�1 + 0:02R2
t�1 + 0:05R2

t�2 + 0:11R2
t�3:

ARCH(2): �2t = 0:00085 + 0:1R2
t�1 + 0:05R2

t�2:

As shown in (10), the problem of volatility estimation is closely related to the �ltering

problems in Section 3. Therefore, the measure of e�ectiveness of each method can be

gauged by MAFE and MSFE in Section 3.4. Tables 2 and 3 summarize the result for


 = 0:5 and 
 = 2 in a similar format to Table 1. Table 4 summarizes the results using

�rankäs a measure. For example, for the GARCH(1,3) model (second block), using un-

transformed data transformation (right block), in terms of MAFE, among 500 simulations,

the GARCH(1,1), ES and AR methods ranked respectively, 334, 162 and 4 times in the

�rst place, 159, 309 and 32 times in the second place and 7, 29 and 464 times in the third

place.

First of all, from Tables 2 and 3, the ES and AR with their parameters chosen from

data perform nearly as well as their corresponding estimators using the ideal �ltering

parameters. This is consistent with our theoretical result, which is the theme of our

16



study. The GARCH(1,1) and ES estimation methods are quite robust. When the true

model is GARCH(1,1), the GARCH(1,1) method performs the best, as expected, fol-

lowed by ES global and then AR global. When the true model is the GARCH(1,3),

which can still reasonably be well approximated by a GARCH(1,1) model, the perfor-

mance of the GARCH(1,1) method and the ES method is nearly the same, though the

GARCH(1,1) method performs somewhat better. It is clear that the relative perfor-

mance of the GARCH(1,1) method gets deteriorated from the GARCH(1,1) model to

the GARCH(1,3) model. When the series comes from the ARCH(2) model, the AR �lter

performs the best, as expected.

Table 2: Relative MAFE performance. ES and AR �ltering of Yt = jRtj1=2. Empirical

mean (�rst row), sample standard deviation (second row), �rst quartile (third row), median

(fourth row), and third quartile (�fth row) of MAFE ratios.

Relative to GARCH(1,1) Relative to ideal counterparts

Model ES global AR global ES global AR global

2.898 3.078 1.026 1.095

1.747 2.045 0.060 0.164

GARCH(1,1) 1.816 1.900 0.998 1.000

2.464 2.544 1.006 1.060

3.381 3.564 1.050 1.187

1.485 1.610 1.034 1.063

0.246 0.304 0.070 0.122

GARCH(1,3) 1.314 1.401 1.000 1.000

1.482 1.571 1.000 1.034

1.639 1.794 1.051 1.120

2.914 1.330 1.000 1.061

1.448 0.731 0.000 0.131

ARCH(2) 1.899 0.797 1.000 1.000

2.575 1.139 1.000 1.000

3.473 1.626 1.000 1.111

4.4 Applications

We apply the GARCH(1,1) approach bft;1;1, the adaptive global ES smoothing bf
t;b�
, and

the global AR smoothing bft;bp to estimate the volatility of the log-returns of the S&P500

index and the three-month Treasury Bills. For the ES and AR approaches, we consider

the square root transformation Yt = jRtj1=2, which yields more stable estimates than the

square transformation Yt = R2
t . The order of the AR �ltering was searched among the
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Table 3: Relative MAFE performance. ES and AR �ltering of Yt = R2
t . Empirical mean

(�rst row), sample standard deviation (second row), �rst quartile (third row), median

(fourth row), and third quartile (�fth row) of MAFE ratios.

Relative to GARCH(1,1) Relative to ideal counterparts

Model ES global AR global ES global AR global

2.119 2.789 1.115 1.171

1.413 1.823 0.152 0.249

GARCH(1,1) 1.283 1.655 1.010 1.000

1.815 2.340 1.055 1.101

2.449 3.318 1.165 1.308

1.111 2.147 1.132 1.179

0.222 2.381 0.181 0.291

GARCH(1,3) 0.971 1.448 1.000 1.000

1.092 1.778 1.070 1.108

1.220 1.171 1.181 1.325

2.484 0.964 1.002 1.152

1.229 0.562 0.032 0.353

ARCH(2) 1.632 0.565 1.000 1.000

2.166 0.816 1.000 1.000

2.939 1.237 1.000 1.213

Table 4: Rank performance of GARCH(1,1), ES global, and AR global.

Filtering Yt = jRtj
1=2 Filtering Yt = R2

t

Model GARCH(1,1) ES AR GARCH(1,1) ES AR

487 9 4 451 42 7

GARCH(1,1) 11 286 203 40 383 77

2 205 293 9 75 416

491 7 2 334 162 4

GARCH(1,3) 8 347 145 159 309 32

1 146 353 7 29 464

299 0 201 183 0 317

ARCH(2) 197 4 299 310 8 182

4 496 0 7 492 1

candidate set P = f1; � � � ; 15g and the collection of grids of ES smoothing parameters

was taken to be � = f [5 � 1:2k]; k = 0; 1; � � � ; 15g. For the real data, we don't know

the true volatility. Hence, we use the Average of Prediction Errors (APE) as a measure of
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e�ectiveness:

APE1 =
1

T � t0 + 1

TX
t=t0

�jRtj � C1b�t�2 and APE2 =
1

T � t0 + 1

TX
t=t0

��R2
t � b�2t ��:

As noted in [8], the prediction errors consist of stochastic errors and estimation (�ltering)

errors. The former is independent of estimation methods and dominates the latter. There-

fore, a small percentage of improvement in prediction errors implies a large improvement

in the �ltering error.

Table 5: Relative prediction performance for yields of three-month Treasury Bills over four

di�erent periods

ES bf
t;b�

relative to GARCH(1,1) AR bft;bp relative to GARCH(1,1)

Time period APE1 APE2 APE1 APE2

12/09/55�07/02/65 1.012 1.038 1.051 0.979

06/09/67�12/31/76 0.956 0.889 0.983 0.858

12/08/78�07/01/88 0.772 0.696 0.840 0.724

06/08/90�12/31/99 1.004 0.879 0.989 0.948

The three-month Treasury bills data consist of weekly observations (Fridays' closing) of

interest rates of the three-month Treasury bills, from August 1954 to December 1999. The

rates are based on quotes at the o�cial close of the U.S. government securities market

on a discount basis. To attenuate the time e�ects, we divided the entire series into four

sub-series. The gaps between the time periods are the length t0 used for the subsequent

series. The volatility is computed based on the di�erence of the yields series. The relative

performance of global ES and global AR smoothing and GARCH(1,1) is given in Table 5.

The values are smaller than one most of the time and are sometimes as small as 0.696. This

implies that with the adaptive choice of �ltering parameters, the exponential smoothing

and the autoregressive model outperform the GARCH(1,1) model for the periods studied.

Figure 4 depicts �rst one hundred lags of the autocorrelation of the absolute returns and

the absolute returns divided by the standard deviations estimated by the three methods.

The horizontal lines indicate the 95% con�dence limits. All of the three estimation methods

explain well the volatility: the standardized returns rarely exhibit signi�cant correlations.

The S&P500 data consist of the daily closing of the Standard and Poor 500 index. The

volatility estimation methods are applied to the data in the time periods 03/08/90�

18/07/94 and 08/12/94�20/11/98. Again the AR and ES methods with our adaptive

choice of �ltering parameters provide satisfactory estimate of the underlying volatility.

The ACF plots of the standardized log-returns (not shown here, similar to Figure 4) in-

dicate success of the three methods. The relative performance against GARCH(1,1) is
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Figure 4: First one hundred lags of the autocorrelation function (ACF). Left to right: ACF

of the absolute log-returns, ACF of the absolute log-returns divided by volatility estimated

by GARCH(1,1) model, global ES, and global AR. From top to bottom: time periods

12/09/55�07/02/65, 06/09/67�12/31/76, 12/08/78�07/01/88, and 06/08/90�12/31/99.

Table 6: Relative prediction performance for the Standard and Poor 500 index over two

time periods.

ES bf
t;b�

relative to GARCH(1,1) AR bft;bp relative to GARCH(1,1)

Time period APE1 APE2 APE1 APE2

03/08/90�18/07/94 0.950 0.883 1.002 0.983

08/12/94�20/11/98 0.993 0.952 1.031 0.898

shown in Table 6. Again, the ES and AR �lters with �ltering parameters chosen by data

outperform the GARCH(1,1).
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The adaptive local ES �lter and local AR �lter were also applied to the above two data

sets. We do not report the details here to save space. They both perform reasonably well.

However, the local ES method does not perform as well as global one. The local AR �lter

performs quite well and is often better than the global AR �lter, for the two �nancial series

data that we examined.
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