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Abstract

The work presents a novel method for the detection of mutual phase syn-

chronization in non-stationary time series. We show how the application of

a cluster algorithm that considers spatio-temporal structures of data follows

from the general condition of phase-synchronized data. In view of the topology

of phasic data, we re-formulate the K-Means cluster algorithm on a �at torus

and apply a segmentation index derived in an earlier work (Physica D 177,203-

232(2003)). This index is extended by means of averaging in order to re�ect

phase synchronization in ensembles of multivariate time series. The method is

illustrated using simulated multivariate phase dynamics and arrays of chaotic

systems, in which temporal segments of phase-synchronized states are regis-

tered. A comparison with results from an existing bivariate synchronization

index reveals major advantages of our method.

1 Introduction

To gain insight into the underlying dynamical mechanisms, the temporal activity in

spatially-extended systems needs to be measured. Experimental studies aiming for

the extraction of spatio-temporal activity, usually apply sets of spatially-distributed

detectors that yield multivariate time series, as can be appreciated in several studies

in neuroscience [1, 2, 3], chemistry [4], meteorology [5] and solid state physics [6, 7].

Extracting and understanding of the underpinning dynamics in a generality is far

from trivial. For instance, in the case of thermodynamically open systems, empirical

data typically contain various time scales, which complicates the modeling of data,

as many models basically cover rather narrow bands of time scales. However, data

recorded in certain open systems might be split into temporal sequences of fast

transients on the one hand and time windows of narrow-band time scales on the

other. Such phenomena are prominent, for example, in cognitive neuroscience [8],

hydrodynamics [9, 10], lasers physics [11, 12], or in various chaotic systems [13, 14].

A general framework addressing this issue is given by concepts of coherence or syn-

chronization. In recent years, large achievements led to conceptually new approaches

to biological systems [15, 16, 17, 18] or, more generically, in networks of coupled os-

cillatory systems [19, 20, 21, 22, 23]. A system's behavior that alternates in time

as mentioned before, i.e. fast transients vs. narrow-band time scales, can be gen-

eralized to alternations between transients and synchronized states. To detect the

resulting segments in time, several works investigated global amplitude coherence

in non-stationary multivariate time series [8, 24, 25, 26, 27, 28, 29]. Indeed, these

phenomena typically exhibit both a single mutual increase and a mutual decrease of

amplitudes, that is, they do not oscillate in time. With respect to synchronization,

however, this behavior is equivalent to mutual phase synchronization if all ampli-

tudes are in phase. Since phase synchronization plays an important role in complex

systems [30, 18, 17, 4], we put all the previously listed phenomena in this, more

general context and treat the detection of quasi-stationary mutual phase synchro-
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nization (see e.g. [31, 17, 32, 33]).

Starting with time series of amplitudes, corresponding time-dependent phase an-

gles may be obtained from a Wavelet-analysis, via the Gabor transformation, or

via the Hilbert transformation. Widely-used indices for n :m-phase synchroniza-

tion are the circular variance of phases and tests on statistical distributions of

phases [34, 35, 36, 31, 37]. In fact, all these methods apply to bivariate data, whereas

in the present study we treat multivariate data. For this kind of set-ups one can �nd

several studies considering averaged phases [34, 35] but, unfortunately, they com-

monly neglect eventually heterogeneous phase distributions. To our best knowledge

a reliable detection method for mutual phase synchronization in multivariate data

has not been derived, yet. Notice that, in general, phase synchronization may occur

in heterogeneous phase distributions (e.g. [38, 39, 40]). Therefore, we will discuss

a phase synchronization index, which incorporates both the time dependancy and

the distribution of phases. More detailed, we will introduce a clustering method to

detect quasi-stationary phase synchronization. As extension of recent works [29, 28],

this method will allow for the segmentation of multivariate data by considering the

spatio-temporal data structure comprising a novel cluster algorithm for phasic data

as well as an average segmentation index for ensembles of time series. In particular,

we will show in detail that the latter step reveals phase synchronization properties

of systems irrespective speci�c realizations. Applications to non-stationary data ob-

tained from both a stochastic model network and arrays of coupled Lorenz systems

serve to illustrate our method.

The article is structured as follows. In section 2, we discuss the topology of mul-

tivariate phasic data and derive major elements of a speci�c form of the K-means

cluster algorithm as it will be used here. Applications to simulated data follow in

section 3. Finally, we contrast our method to an existing bivariate synchronization

index utilizing simulated data (section 3.4).

2 Methods

2.1 Clustering

To begin with, we recast multivariate signals as temporal sequence of data points in

high-dimensional data space, because in this picture quasi-stationary signals exhibit

small variations in data space contrasting large changes during transient behavior.

That is, small data variations result in high data point densities and, consequently,

quasi-stationary signal states become visible as point clusters in data space [29]. In

the context of time series of phases, quasi-stationary segments show bounded phase

relations and, thus, follow from the de�nition of phase synchronization [41].

With this background, quasi-stationary multivariate signal states can be detected

using conventional clustering algorithms. Without loss of generality, we utilize a

K-Means cluster algorithm and reformulate it in order to cope with cyclic data. Re-
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Figure 1: Covering map q and non-uniqueness of geodesics. Points Qi are mapped to

a single point Q0. On the right hand side, two geodesics are drawn, which correspond

to two couples of points (P;Qi). On the left-hand side, the dotted lattice represents

the cuboid of mediatrices, which contains the point couple PQ1 with the smallest

distance on the torus.

call the explicit form of K-Means clustering as been described, e.g., in [42]: major

algorithmic features are the computation of mean values and distances between data

points. For non-periodic data, variants of Euclidean distances, e.g., Mahalanobis or

city-block distances [43], are commonly used for distance computation and mean

values are determined by conventional averaging. These apparently simple compu-

tations can be used as long as the corresponding topological space is a plane and,

accordingly, its metric is �at. In contrast, for cyclic data the topological space is a

torus, whose N -dimensional geometrical realization is its embedding in RN+1, i.e.,

for N = 2 the torus looks like the well-known doughnut. There, the shortest connec-

tion between two points is found on geodesics and distances have to be computed

by solving the corresponding Euler-Lagrange equations. For curved metrics, how-

ever,solving the Euler-Lagrange equations becomes quite di�cult, in particular, for

large N and/or for many point couples.

Looking for alternative approaches, notice that there exists a �at N -torus, whose

geodesics are straight lines. Put di�erently, with a covering map

q : RN !RN
=ZN � T N

geodesics in RN project to geodesics on the N -torus T N [44]. In consequence,

distances on T N can be computed as Euclidean distances in RN at least considering

certain rules as illustrated in Fig. 1 for P;Qi 2 RN and P
0
; Q

0 2 T N with P
0 =

q(P ); Q0 = q(Qi). Speci�cally, we determine the distance between P
0 and Q

0 to

d(P 0
; Q

0) = min
i

h
PQi

i

Next, let fqig be a data set of N phase angles with qi = (�
(i)
1 ; : : : ; �

(i)
N )t; i = 1; : : : ; T ,

where T denotes the number of data points. In fact, the correct Qi is located in

a cuboid of mediatrices around P (dotted line in Fig. 1). Subsequently, distances
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between two arbitrary data points follow as

d(qi; qj) =

vuut NX
k=1

d2k (1)

dk = � �
���� �

�����(i)k � �
(j)
k

�
mod 2�

���
���

Fortunately, means of periodic data can be computed for each phase angle indepen-

dently because the examined data space is �at. Applying circular statistics [45], we

can �nally calculate the mean value in terms of

�q =
�
��1; : : : ;

��N

�t
; tan ��k =

X
i

sin�
(i)
k

X
i

cos�
(i)
k

: (2)

Coming back to our main objective, that is, to the K-Means cluster algorithm,

further we need to determine cluster centers fCkg; k = 1 : : :K within data space,

whose mean distance to a (sub-)set of data points is minimal. Considering (1)

and (2), the modi�ed K-Means clustering subsequently yields K cluster centers of

phases. Here it is important to note that the proper number of clusters is a priorily

unknown. To cope with this uncertainty, we de�ne a quantity [27] being motivated

by the fact that the signals in question represent time series and, thus, all the data

are ordered in time. Consequently, clusters can be considered as temporal segments

as data points are mapped to their nearest cluster centers [29]. In the following,

we associate a large and spatially well-separated data segment with a high cluster

quality, whereas a short segment with overlapping clusters displays a low cluster

quality. In detail, for every number of clusters K, each data point i is associated

with a cluster measure AK(i)

AK(i) =
1

NK

X
j2
i

[d(Cs; qj)� d(Cn; qj)]

that is normalized by the factor NK. Here, Cn and Cs denote the nearest and

the second-nearest cluster center of data point i, respectively, and 
i represents the

subset of members of the cluster to which data point i is associated. Averaging over

R�1 di�erent cluster measures yields the cluster quality measure

p(i) =
�A(i)

A
with �A(i) =

1

R� 1

RX
K=2

AK(i)

and A =
PT

i=1
�A(i). Next, to introducing a reference system, we randomize the

examined data set with respect to its temporal order and re-apply the clustering

algorithm (similar to phase randomized surrogate data). The obtained surrogates
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p
(s)(i) do not exhibit any temporal structure (cf. [28]) and can thus be used to de�ne

an e�ective clustering measure peff by means of

peff(i) = max

�
0; p(i)�max

j

h
p
(s)
(j)
i�

Since segment borders show drastic increases and decreases of peff at their initial and

�nal data points, respectively [28, 27], we �nally extend the analysis by computing

di�erences

�peff (i) = max

�
0; jp(i+ 1)� p(i)j �max

j

h
jp(s)(j + 1)� p

(s)(j)j
i�

revealing signi�cant peaks at segment borders.

2.2 De�nition of phase

When studying time series, one typically includes an a priori knowledge or expec-

tation about the underlying dynamical system. Investigating phase synchronization

e�ects, in particular, this a priori knowledge comes into play when de�ning the

phase of interest (see e.g. [41]). In many cases, however, such knowledge is simply

not available so that general phase de�nitions have to be considered. Here, we ap-

ply the Hilbert transform, which de�nes the phase �(t) of a real signal s(t) by its

corresponding analytical signal [46]

~s(t) = s(t) + iH(t) (3)

H(t) =
1

�
PV

Z
1

�1

s(�)

t� �
d�

�(t) = arctan(H(t)=s(t)) :

The integral in (3) refers to the Cauchy principal value. The Hilbert phase is

widely used for studying phase synchronization in both simulated and experimental

data [21, 47, 17, 41, 22, 23], as it provides a phase measure that explicitly and

instantaneously depends on time. Notice, however, that for physical interpretations

this phase de�nition is only adequat for frequency band-limited data [48], i.e. lim-

ited variations of Poincaré return times. For instance, dynamics of chaotic systems

exhibit a wide range of temporal scales. Hence, Hilbert phases of chaotic data are

only valid for chaotic systems, whose parameters guarantee reduced variations of

time scales.
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3 Applications

3.1 Simulated ensemble phase dynamics

First, we illustrate the method in more detail by studying the stochastic dynamical

system

d�k

dt
= � sin�k � � sin 2�k +

q
2Q �k; (4)

where k = 1 : : :N and �k = �k(t) represent phases that evolve along the gradient

of a potential V (�k) = � cos�k � (�=2) cos 2�k (Fig. 2). Obviously, this potential

prescribes a pitchfork bifurcation when changing the control parameter �. Addi-

tionally, the phases are individually subjected to additive Gaussian noise, for which

we assume h�k(t)i = 0 and h�k(t)�l(t
0)i = 2ÆklÆ(t� t

0). For the sake of brevity, we

abstain from a detailed discussion of this dynamics, but rather refer to the literature

listed below. To motivate its use, however, note that this system is one of the min-

imal mathematical forms that allows for non-trivial scenarios of multivariate phase

locking. As such, the potential terms on the right hand side are frequently used

to model bi-stable phase dynamics as being found, for instance, in motor-behavior

tasks [49]. That is, dependent on the relative values of the included parameters �

and Q and dependent on its dimensionality N , this systems shows various forms of

phase locking and/or bifurcation patterns.

First, we discuss the univariate case by choosing N = 1. The dynamics reaches the

vicinity of a certain potential minimum depending on the value of �. The width of

the distribution around that minimum is given by the �uctuation strength Q. To

change the location of the minimum, we subsequently vary the (control-)parameter

� inducing a pitchfork bifurcation (cf. Fig. 2 and see e.g. [50, 49]).

In the following, we refer to a simulated solution of Eq. (4) as a trial being ob-

tained by decreasing � from 1 to �1 in 500 equidistant steps. At each step the

system relaxes for 1000 integrations and the �nal one is stored. Hence, the data set

contains only 500 points although the simulation comprises 500 � 1000 iterations.

Put di�erently, we study the stochastic dynamics during a quasi-static variation of

the control parameter �.

In Fig. 3, two simulated trials and the according clustering results are shown for

Q = 0:05 and Q = 0:15, respectively. In both cases, the initial phase angles were

�(0) = �. The top panel displays the simulated data sets with phase switches at

about � = 0:35 (thick line) and � = 0:9 (thin line) to a value around � = 0. The cor-

responding cluster quality measure (second row from top) exhibits rapid decreases

at the corresponding values of �. Up to � � �0:25 the phases remain within the

immediate vicinity of � = 0, which is followed by increasing �uctuations at both

noise levels and subsequent steady states �0 6= 0 (cf. also Fig. 2). Especially for

Q = 0:05, the latter change between � = �0:25 and � = �0:55 is re�ected by rapid

variations of the clustering measure peff(�). The �nal increase marks the border
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Figure 2: Potential V (�) with �@V

@�
= � sin� � � sin 2� (cf. Eq. 4) for di�erent

parameters �. States at � = �� are unstable for � < 0:25, whereas � = 0 is

unstable for � < �0:25
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Figure 3: Trials and clustering results for a single phase variable and two di�erent

noise levels Q. All the data are plotted with respect to the parameter �. The top

panel presents the analyzed data and the middle panel displays the e�ective cluster

quality measure. The two bottom panels contain the absolute value of the e�ective

di�erential cluster quality measure.
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Figure 4: Multidimensional data trial and clustering results for N = 50 and noise

level Q = 0:05. All the data are plotted with respect to the parameter �. The top

panel displays the data of N phase variables. The middle and bottom panels present

the e�ective cluster quality measure and their corresponding di�erentials.

of the last data cluster 1 coinciding with the �nal phase variation. Although for

Q = 0:15 signi�cant jumps in peff (�) do not occur | here because of the large noise

level | a short resting state is detected for the interval � 2 [�0:6;�0:95]. In fact, a

closer look at Fig. 2 helps to explain the �uctuations around � = 0 for � � �0:25:

the potential minimum at � = 0 vanishes and turns into a (local) maximum. These

qualitative changes can also be estimated by the clear peaks in the corresponding

di�erential cluster quality measure �peff that is displayed in the two bottom rows

of Fig. 3.

We extend our analysis to the case of multivariate data. The clustering results for

N = 50 and Q = 0:05 are depicted in Fig. 4. Between � = 1:0 and � = 0:77, all

the phase angles stay close to their initial values � = � followed by �� switches,

i.e. � = � ! � = 0 or � = � ! � = 2�. Transitions occur around � = 0:5, as

can be determined via the cluster quality measure. peff is maximal in the interval

� 2 [1:0; 0:77] and decreases until � reaches 0:3 with a maximal slope at � � 0:5.

In line, the di�erential cluster quality measure �peff(�) (Fig. 4, bottom row) has

peaks in the transition regions.

Actually, for � < 0:25 only a subtle increase of peff can be observed near � = �0:5,

which, however, does not show any non-vanishing di�erential cluster quality measure

�peff (�). Hence, we cannot distinguish this latter case from a random increase as

1With respect to the forthcoming discussion about multivariate signals, we here maintain the

notation for data 'clusters' although for univariate data the phrase 'segment' seems more appro-

priate.
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Figure 5: Averaged clustering results for N = 50, noise level Q = 0:05 and 100 trials.

The data are plotted with respect to the parameter �. The top panel displays the

e�ective cluster quality measure and the bottom panel presents the corresponding

di�erentials.

might also be explained by the large noise strength, the small slope of the underlying

potential or the small distance between its minima. Notice, that the �gures of

clustering results illustrate the spatio-temporal dynamics of data: quasi-stationary

data with a large point density in data space reveal large values of peff , whereas

transient and widely-distributed data show low values. Only fast transitions between

quasi-stationary data segments exhibit large peaks of �peff implying that �peff
represents a transition likelihood to phase synchronized states.

Underscoring its statistical relevance, we further examine an ensemble of 100 trials,

each of which computed with the aforementioned parameters. A subsequent appli-

cation of the clustering method yields 100 time series of cluster quality measures

and corresponding di�erentials, that will be averaged. Figure 5 displays plateaus

of this mean cluster quality measure at segments S1; S2, and S3 (top panel) and

peaks of �peff (bottom panel) re�ect transition regions S1 � S2 and S2 � S3. We

would like to point out that the non-vanishing peak widths re�ect the duration of

the transition regions and, at the same token, the uncertainty of segment borders.

In more detail, we �nd S1 = [1:0; 0:6]; S2 = [0:4;�0:4] and S3 = [�0:6;�1:0]. The

exact statistical assessment of our results, e.g., the estimation of peak variances, is

beyond the scope of the present article but will be addressed in future work.
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3.2 Weakly-coupled Lorenz systems with external driving force

Evaluating our method with more irregular multivariate data, we continue with

studying phase signals being obtained from chaotic data. Note that phase syn-

chronization always occurs with respect to a phase reference. In general, however,

multivariate signals do not serve a unique reference and, therefore, we examine data

sets including all couples of phase di�erences (this section) and phase di�erences of

nearest neighbors (section 3.3).

The system to study is a ring of 5 di�usion-coupled Lorenz systems

_xi = �10xi + 10yi

_yi = 28xi � yi � xizi + C(yi+1 + yi�1 � 2yi) (5)

_zi = xiyi �
8

3
zi + F (t) ; i = 1; : : : ; 5

driven by an external force F (t) = 10 � sin(8:3t). This system yields so-called imper-

fect phase synchronization for vanishing coupling [13], i.e. the phase of every single

attractor drifts in short segments by multiples of 2� relative to the external force

F (t). This drifting is caused by the broad range of intrinsic scales of the Lorenz

system.

Numerical solutions of Eqs.(5) were obtain by applying an Euler-forward algorithm

with step size 0:01, where uniformly distributed initial values (xi(0); yi(0); zi(0)) =

(8:4 + �x; 8:4 + �y; 40 + �z) with �x;y;z 2 [�0:5; 0:5] guaranteed a stable integration

of T = 15000 time steps.

Figure 6, top panel, displays time series of 10 Hilbert phase pairs ��ij = �i � �j

of amplitudes fyig in the case of vanishing coupling (C = 0) showing the aforemen-

tioned characteristic phase slips. Since the individual phases drift at random points

in time, no mutual phase synchronization is present. This is re�ected by the absence

of any prominent structure of the corresponding cluster quality measure (Figure 6,

bottom panel). Because of similar initial values, the 5 Lorenz systems synchronize

brie�y at the beginning of the simulation, after which the cluster quality measure

drops rapidly (cf. inset in Figure 6, bottom panel).

Further, to examine the in�uence of coupling strength C, we computed averages

of 15 trials (Fig. 7) for various values of C. By increasing the coupling strength,

phase synchronization increases and spreads in time. Hence, increased coupling

stabilizes the phase relation of attractors, at least for a �nite time, and the averaged

di�erential cluster quality measures (Fig. 7, right hand side) show sharp peaks and

gaps.

Indeed, more detailed investigations of single trials show that phase drifts relative

to the external stimulus appear to remain present for C 6= 0. That is, within a �nite

time window, phases of the attractors still appear to climb a staircase of phases by

multiples of 2�. However, they align only for a certain time, after which this mutual

phase synchronization disappears.
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3.3 Strongly-coupled Lorenz systems with strong external

noise

As already mentioned in the previous section, we further examine phase di�erences

to the nearest neighbors | now, we consider the case of chaotic system de�ned as a

ring of 8 di�usion-coupled Lorenz-systems

_xi = �10xi + 10yi + �x

_yi = 28xi � yi � xizi

+3:0 � (yi+1 + yi�1 � 2yi) + �y (6)

_zi = xiyi �
8

3
zi + �z ; i = 1; : : : ; 8

with strong external noise �x;y;z 2 [�4:0; 4:0] subject to a uniform distribution.

Initial conditions and integration procedure are identical to the previous study. Re-

call, that we examine phase di�erences to the nearest neighbors, that yields an

8-dimensional time series of phases.

Focusing on the phases from amplitudes fyig, Fig. 8 shows three single time series of

phase di�erences ��ij . In trials 2 and 3, we �nd early transitions to fairly stationary

phase relations, contrasting trial 20, which exhibits several switches of multiples of

2�. This di�erential behavior is caused by both di�erent initial conditions and

external noise. The corresponding cluster quality measures for all trials con�rms

these �ndings by transients and plateaus in the according time segments. We point

out that the low values of peff indicate either large intersecting clusters or clusters

of only few aggregated data both re�ecting weak phase synchronization.

In order to decide whether there is coincidental phase synchronization in trials, we

computed an average cluster quality measure over 20 trials (Fig. 8, bottom panel)

that exhibits several peaks and troughs. For instance, both from t = 80 to t = 90

and for t > 90, the plateaus indicate coincidental mutual phase synchronization

across trials.

Next, we examined the phase-synchronized state in more detail. Figure 9 shows

signal amplitudes of all trials from Fig. 8 as space-time plots, which reveal alter-

nations between phase synchronization and desynchronization. For instance, in

trial 2, one can �nd �nal steady-state oscillations with vanishing phase lags be-

tween couples 1 � 8; 2 � 7; 3 � 6. and 4 � 5 symmetric to points between 4; 5

and 1; 8. The noise-free variant of system (6) possesses an invariant linear mani-

fold fx5+i = x4�i; y5+i = y4�i; z5+i = z4�i; i = 1; : : : ; 4g, and three rotated copies

thereof corresponding to the sucessive pairs of nodes (cf. [39]) and containing locally

asymptotic stable limit cycles. A similar spatio-temporal symmetry occurs in trial

3, however, shifted by one element. In trial 20, quasi-stationary phases constant in

space alternate with stripe patterns, whereas no symmetric pattern is present similar

to the ones in trials 2 and 3. In all the trials, plateaus of peff show good accordance

in time to segments of quasi-stationary phase synchronization (cf. insets in Fig. 8).
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Figure 8: Time series of phase di�erences obtained from amplitudes fyig and cor-

responding cluster quality measures in the case of strongly-coupled Lorenz systems.

Plot insets in the right column focus to time windows from Fig. 9 to reveal more

details. The bottom panel shows averaged cluster quality measures obtained from

further 20 trials.
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Figure 10: Single amplitudes fyig and corresponding phases of trial 2 in Fig. 8. For

instance, plots of amplitudes marked by dots and squares in the left panel correspond

to curves with approximately zero phase lag shown in the right panel.

Figure 10 depicts amplitudes and their corresponding phase di�erences ��(i+1)i of

the phase-synchronized state and illustrates the observed mirror-symmetry. Here,

the plots indicate the well-known non-sinusoidal behavior in amplitudes fyig yield-

ing large �uctuations of the corresponding phases and, subsequently, weak phase

synchronization.

Di�erent results are obtained when considering amplitudes fzig from (6). Figure 11

shows time series of corresponding phases in two trials (left panels), that reveal

transients on di�erent time scales and �nal stationary phase di�erences. Apparently,

these di�erences in time scales result from di�erent initial conditions and the applied

external noise.

Finally, we computed the cluster quality measures for both trials (right panels) and

the average over 20 further trials (bottom panels). For the single trials, the cluster

quality measures reveal transients and plateaus in accordance with the time series

of phase di�erences. The average cluster quality measure increases from low values

of peff and saturates at about t = 30 (bottom panel, left hand side). Interestingly,

these clear structures contrast with the alternating ones from the amplitudes fyig.

In �gure 12 we show the amplitudes and the corresponding phase pairs of the

phase-synchronized state. The phase relations change periodically within a narrow

phase band implying that the data cover a bounded region in data space and, hence,
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Figure 11: Time series of phase di�erences obtained from amplitudes fzig and cor-

responding cluster quality measure in case of strongly-coupled Lorenz systems. The

bottom panel shows averaged cluster quality measures obtained from further 20

trials.

represent (by de�nition) a phase-synchronized state [41].

3.4 Comparison to bivariate synchronization index

At last, we compare our method with a synchronization index being discussed by

Rosenblum et al. [36]. In case of 1:1 phase-locking, Rosenblum and co-workers pro-

posed an index, that represents the circular standard deviation of phase di�erences

f��ij(t)g and that reads

ij(t) =

q
hcos��ij(t)i2 + hsin��ij(t)i2; (7)

where i; j = 1 : : : N and h: : :i denotes an average over a time window [t��T=2; t+

�T=2]. Due to de�nition (7), large values of ij(t) indicate a narrow-peaked uni-

modal distribution of phase di�erences, whereas ij(t)! 0 re�ects a uniform distri-

bution. Notice that, since this synchronization index only applies to bivariate data,

that is, to single phase di�erences, we extend it by computing the simple mean

synchronization index over all the phase di�erences of nearest neighbors

0(t) =
1

N

NX
i=1

(i+1)i(t) ; (N+1)N = 1N :

Applying this form to phases of amplitudes fyig from the previous study yields
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8 time series of synchronization indices, shown in Figure 13 for two di�erent trials

and two di�erent time spans �T , respectively. We �nd large values and troughs of

0(t) in time segments similar to our results, while single indices ij(t) diverge from

each other. For instance, in trial 2 we observe 54; 18 � 1 (Fig. 13, left panels),

whereas values of 87 reaches a minimum of 0:6 at about t = 13. In contrast, our

method (Fig. 9) reveals mutual phase synchronization beyond t > 7:3 .

Since the bivariate synchronization index does account for mutual increases and de-

creases of the single circular standard deviations that also represents phase-locked

behavior, it entirely neglects the spatio-temporal structure of the data and, thus,

fails in detecting mutual phase synchronization.

Allowing for a direct comparision with our studies, we �nally computed synchro-

nization indices averaged over trials. Figure 14 shows results for two values of �T

indicating strong synchronization at all times. These �ndings contrast our afore-

mentioned results, which show peaks and distinct borders of phase-synchronized

segments.

4 Discussion and conclusion

With our method we examine the structure of phasic data in a high-dimensional

space. In general, data clusters represent phase-synchronized states so that mem-

bers of clusters build time segments of phase synchronized states. The method

accounts for the spatio-temporal structure of data and is invariant towards constant
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o�sets. Due to these properties, it seems reasonable to average clustering results

over trials. In the case of small trial numbers, the average cluster quality measure

re�ects coinciding phase synchronization across the trial ensemble and, therefore, it

allows for qualitative investigations of sets of chaotic systems. For large numbers

of realizations, the di�erential cluster quality measure can be used to determine the

distribution of transients between phase-synchronized segments.

Classically, bivariate synchronization indices facilitate the detection of phase syn-

chronization between single phase couples and help to estimate properties of their

statistical distribution in time. The corresponding time series of indices reveal

smooth transients subject to the applied time window. With these indices one

extracts temporal segments of quasi-stationary phase synchronization solely based

on individual phase di�erences. In contrast, our method does not resolve phase

synchronization in single phase couples, but rather detects mutual phase synchro-

nization across all phase. This aspect is particularly important in spatially-extended

systems, which exhibit strong correlation in space, i.e. with huge sets of recorded

time series. In addition, our method yields sharp borders of segments, and, hence, it

allows for extracting initial and �nal time points of mutual phase synchronization.

In sum, the present work describes a novel segmentation index for mutual phase

synchronization in multivariate non-stationary signals. We yhis segmentation index

we are able to detect both the time segments and the duration of transients irrespec-

tive the speci�c type of spatial synchronization patterns. Applications to stochastic

phasic data and time series from coupled chaotic systems reveal the proposed index

being able to capture the spatio-temporal structure of data.
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