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Abstract

Stochastic particle methods for the coagulation-fragmentation Smoluchowski equa-

tion are developed and a general variance reduction technique is suggested. This

method generalizes the mass-�ow approach due to H. Babovsky, and has in focus

the desired band of the size spectrum. Estimations of the variance and bias of the

method are derived. A comparative cost and variance analysis is made for the known

stochastic methods. An applied problem of coagulation-evaporation dynamics in free

molecule regime is solved.

1 Introduction

The coagulation-fragmentation processes in spatially homogeneous �ows are governed by

the Smoluchowski equation (e.g., see [19]):

@ul(t)

@t
=

1

2

X
i+j=l

(Kijuiuj � Fijul)�
X
i�1

(Kliului � Fliul+i) ; l � 1: (1)

Here ul is the number density of the clusters, containing l structural units (flg-cluster);
Kij is the coagulation coe�cient, characterizing the collision frequencies between the fig-
and fjg-clusters; Fij is the fragmentation coe�cient, characterizing the probability of

fragmentation of fi + jg-cluster into fig- and fjg-clusters.
We will use the notation u(t) for the vector (ul(t))l�1.

The existence and uniqueness of a mass-preserving solution to (1) have been established

for rather general assumptions about the coagulation and fragmentation coe�cients (e.g.,

see [3]). In our study these assumptions are accepted. In fact, we will sometimes use even

stronger assumptions.

The Smoluchowski equation is rather di�cult to solve by deterministic numerical meth-

ods. The main point is the high dimension. On the other hand, it has clear physical

and probability structure. That is why the stochastic algorithms based on statistical

simulation of the coagulation-fragmentation processes play a crucial role in the numerical

analysis of the coagulation equations.

Let us descibe the general scheme of stochastic particle algorithm.

A system of N particles is considered, whose initial size distribution is given. Its state at

the time instant t is de�ned by the vector

fl1(t); : : : ; lL(t)g ;

where li is the size of the i-th particle, or flig-cluster. The change of the state happens in
discrete time steps. At each time step the particles collide according to some probabilities,
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which may born particles of larger size, or (and) disintegrate large particles into smaller

particles. To the time t, our system consists of L particles with a certain size distribution.

A random estimator of the solution to (1) is de�ned as follows:

Ul(t; N) =
1

N

LX
i=1

Æl;li(t); l � 1:

For simplicity, we will use the notation UN (t) for the vector (Ul(t; N))l�1, and kUNk is

k k-norm de�ned as kUNk =
P

l�1 jUl(t; N)j.
Stochastic algorithms are all based on the statement that under certain assumptions,

the ensemble average of the random process UN (t) should converge, as N ! 1, to the

solution of Smoluchowski equation (1).

A simple way to model the coagulation is a direct simulation of the coagulation process,

called also a Marcus-Lushnikov process: at each time step the flig- and fljg-clusters
are sampled according to the rate Kli;lj , which results in a new particle of size li + lj.

These models (for pure coagulation case) were introduced in [7, 13, 14]. These algorithms

are analogous to Bird algorithms for Boltzmann equation. Later, some modi�cations of

these algorithms have been developed, improving their e�ciency, such as the �method

of majorant frequencies� (see [9, 16],) and its generalization � the �method of �ctitious

jumps� (see [5]). The convergence of the Marcus-Lushnikov process to the solution to (1)

has been proved under some broad assumptions about the coagulation and fragmentation

coe�cients (see [5]).

Some stochastic algorithms involve an additional parameter, a multiplier of the time step,

thus allowing collisions between several pairs of particles during one time step. These

algorithms are analogous to the Nanbu algorithm for the Boltzmann equation [15]. Their

description are presented in [12, 16]. The convergence of the Nanbu type method to

Smoluchowski equation in pure coagulation case have been studied by us in [11, 17].

There we have shown, that the random estimator converges in probability, as N !1, to

the discretized analogue of (1), generated by the time step parameter �.

Convergence is one of the most important issues in the theory of stochastic numerical

algorithms, along with the error estimation. The following questions always arise, when

dealing with stochastic algorithms:

� Which values of parameters (here: the number of particles N , the time step param-

eter �) should we take to achieve the required level of accuracy?

� How does the value of the error depend on the parameters of the algorithm? How

should we change the values of the parameters to get, say, two times smaller error?

Though the calculations show, that the error is inverse proportional to the number of

particles N (see [10, 11]), theoretically this problem is not solved yet.

When tackling the error of stochastic algorithms for the calculation of some function h(u)
of the solution to Smoluchowski equation, we will consider two parts of the error. First,

the bias of the estimator

BN = jjIE[h(UN )]� h(u)jj;
provided N is bounded. Second, the statistical error

StN;M =

s
jjVar[h(UN )]jj

M
;
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where M is the number of samples (or, simply saying, the number of independent algo-

rithm realizations).

It is clear, that the statistical error can be decreased by two ways: (1) diminishing the

variance of the estimator, and (2) enlarging the statistics, i.e., increasing the number of

realizations of the algorithm. A fundamental characteristic of an algorithm is its e�ciency

E� for calculating the function h(u). To de�ne it, note, that the numberM" of the samples,

needed to achieve the desired value of the statistical error

StN;M = "

is equal to

M" =
jjVar[h(UN )]jj

"2

Then, the computational cost of the algorithm is

C" = �M" =
jjVar[h(UN )]jj�

"2
;

where � is the time necessary to run 1 sample. The e�ciency of the algorithm is then

de�ned as

E� =
1

C"

: (2)

In this paper we deal with both parts of the error, for the Bird type algorithm. In Section

2 we present the analytical estimation of the bias. In Section 3 we discuss the methods of

the reduction of the variance and then, present a comparative analysis of the e�ciencies

of di�erent algorithms in Section 4.

One of the main reasons of the large variance is that the number of particles in the model

system decreases with time. To overcome it, a special procedure have been developed

in [16]. Namely, the coagulation processes were simulated independently in di�erent

systems, which were mixed after the number of particles became small, providing new full

systems. Another e�ective way to preserve the number of particles in a model system is

simply to double the number of certain clusters, if this number becomes two times smaller

([12, 11, 16]).

These procedures, however, cannot get over another drawback of the stochastic algorithms:

the relatively small number of large particles, causing the relatively high variance of the

concentration of large particles. The way to reduce this variance have been proposed in

[2] and then studied in [4]. The main idea is to turn from the equation (1), governing the

particle concentrations, to the equation, governing particle masses (mass-�ow equation).

Now, the mass-preserving property of the model system provides the constant number of

particles. The mass-�ow equation is obtained from the original equation via multiplication

of the particle concentration by the particle size. This equation governs then the particle

mass, and his coagulation kernel changes the dynamics of the coagulation process in such

a way that the number of large particles is decreasing much slower than in the process

described by the original Smoluchowski equation.

In the present paper we suggest a generalization of the mass-�ow approach, namely, a

Weight Algorithm, the main idea of which is to turn to the Smoluchowski equation written

for the product ul(t)w(l) where w(l) is a weight function (w(l) = l is the particular case

of mass). We study the e�ciency of the algorithms discussed according to our de�nition

(2).
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2 Bias of the Bird Type Estimator

We will deal with the pure coagulation equation

@ul(t)

@t
=

1

2

X
i+j=l

Kijuiuj �
X
i�1

Kliului; l � 1 (3)

with monodisperse initial conditions

u1(0) = 1; ul(0) = 0; l � 2: (4)

We assume that the coagulation coe�cients are �nite, i.e. there exists kmax < 1 such

that max
i;j

Kij � kmax. Then, as we have already noticed in the Introduction, there exists

a unique solution to problem (3)-(4) conserving its mass.

Let UN (t) be the random estimator, constructed by the direct simulation, or Bird type

method, e.g., see [16]. Then, let us denote by covN(t) the following vector, related to the

estimator: covN(t) =

0
@X
j�1

Cov
h
UN
i (t); UN

j (t)
i1A

i�1

.

The following statement provides the estimation of the bias of the Bird type method.

Theorem 2.1.

For each N and t 2 [0; T ] the following inequality is true:

jjIE[UN (t)]� u(t)jj �
 

3

4N
+ sup

��t
jjcovN(�)jj

!
� exp(4kmaxt)� 1

2
:

Before proving the theorem, we present two simple lemmas.

Lemma 2.1.

Let K(x) = (Kl(x))l�1 be the following operator on X:

Kl(x) =
1

2

X
i+j=l

Kijxixj � xl
X
i�1

Klixi:

The following inequalities are true:

1) jjK(x)� K(y)jj � 4kmaxjjx� yjj for each x; y 2 X (5)

2) jj IE
h
K
�
UN (t)

�i
� K

�
IE
h
UN (t)

i�
jj � 2kmaxjjcovN(t)jj: (6)

Lemma 2.2.

Let �(t) be a function, continuous on [0; T ] and suppose that for each t 2 [0; T ] the

following inequality is true: �(t) �
tZ

0

(��(�) + �) d�; where � and � are constants.

Then, for each t 2 [0; T ] the following inequality is true:

�(t) � �

�
(exp(�t)� 1) : (7)
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Proof of Statement.

Let us denote pN(l1; : : : ; lN ; t) the probability density function (pdf) of the states of the

model system in Bird's method, and let

p
(2)

N (li; lj; t) =
X
l1�0

: : :
X

li�1�0

X
li+1�0

: : :
X

lj�1�0

X
lj+1�0

: : :
X
lN�0

pN (l1; : : : ; lN ; t);

p
(1)

N (li; t) =
X
l1�0

: : :
X

li�1�0

X
li+1�0

: : :
X
lN�0

pN(l1; : : : ; lN ; t):

It has been shown in [16] that the following equation is true for p
(1)

N (l; t):

@

@t
p
(1)

N (l; t) =
N � 1

N

0
@1

2

X
i+j=l

Kijp
(2)

N (i; j; t)�
X
i�1

Kilp
(2)

N (l; i; t)

1
A ; l � 1: (8)

Note, that

IE
h
UN
m (t)UN

n (t)
i
=

1

N2

X
l1�0

: : :
X
lN�0

0
@ NX
i=1

NX
j=1

ÆmliÆnljpN(l1; : : : ; lN ; t)

1
A =

=
1

N2

X
l1�0

: : :
X
lN�0

0
@
0
@ NX
i=1

NX
j=1;j 6=i

+
NX
i=1

X
j=i

1
A ÆmliÆnljpN(l1; : : : ; lN ; t)

1
A =

1

N2
(S1 + S2) (9)

where

S1 =
NX
i=1

NX
j=1;j 6=i

X
li�0

X
lj�0

ÆmliÆnljp
(2)

N (li; lj; t) = N(N � 1)p
(2)

N (m;n; t);

S2 =
NX
i=1

X
li�0

ÆmliÆnlip
(1)

N (li; t) = NÆmnp
(1)

N (m; t):

Finally,

IE
h
UN
m (t)UN

n (t)
i
=

N � 1

N
p
(2)

N (m;n; t) +
1

N
Æmnp

(1)

N (m; t): (10)

Analogously, IE
h
UN
l (t))

i
= p

(1)

N (l; t).

Then, (10) yields

N � 1

N
p
(2)

N (i; j; t) = IE
h
UN
i (t)UN

j (t)
i
� 1

N
Æmnp

(1)

N (m; t);

and equations (8) can be written as follows:

@

@t
IE[UN

l (t)] =
1

2

X
i+j=l

KijIE[U
N
i ]IE[UN

j ]� IE[UN
l ]
X
i�1

KilIE[U
N
i ]+

+
1

2

X
i+j=l

KijCov[U
N
i ; U

N
j ]�

X
i�1

KilCov[U
N
i ; U

N
l ]� 1

N
(R1l(t) +R2l(t)) ; l � 1 (11)

where

R1l(t) =
1

2

X
i+j=l

KijÆij �
X
i�1

KilIE[U
N
i U

N
l ] ;
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R2l(t) =
1

2

X
i+j=l

KijÆijp
(1)

N (i; t)�
X
i�1

KilÆilp
(1)

N (i; t)

=
1

2
I(odd(l))K l

2

l
2

p
(1)

N

 
l

2
; t

!
�Kllp

(1)

N (l; t):

Note that

jjR1(t)jj � 2
X
i�1

X
j�1

KijIE[U
N
i U

N
j ] � 2kmax;

jjR2(t)jj �
1

2
kmax

X
l�1

I(odd(l))p
(1)

N

 
l

2
; t

!
+ kmax

X
l�1

p
(1)

N (l; t) � 3kmax

2
: (12)

Using (3), (11), (12) and inequalities of lemma 2.1, we get

@

@t
jjIE[UN (t)]� u(t)jj � 4kmaxjjIE[UN (t)]� u(t)jj+ 2kmaxjjcovN(t)jj+

3kmax

2N
;

and according to the choice of U(0),

jjIE[UN (t)]� u(t)jj �
tZ

0

 
4kmaxjjIE[UN (�)]� u(�)jj+ 2kmaxjjcovN(�)jj+

3kmax

2N

!
d�:

Then, lemma 2.2 yields the inequality, and Theorem 2.1 is proved.

The statement shows, that the vector covN(t) = (
X
j�1

Cov[UN
i (t); UN

j (t)])i�1 can be used

to estimate the value of the bias of the Bird type method. Though this value cannot be

estimated analytically, the calculations show, that it is inverse to the number of particles

in the model system N . In Table 2.1 we show the values of several components of the

vector covN(t) (their maximal values on t 2 [0; T ]) for di�erent values of N for Kij = 1
and T = 20.

Table 2.1. The value of sup
t2[0;T ]

covNl (t) for Kij = 1 and T = 20.

N l = 1 l = 2 l = 4 l = 8 samples

128 1.62e-3 2.58e-4 1.21e-4 2.25e-5 240000

256 8.11e-4 1.32e-4 6.05e-5 1.12e-5 120000

512 4.06e-4 6.80e-5 3.09e-5 5.47e-6 60000

1024 2.06e-4 3.45e-5 1.52e-5 2.89e-6 30000

Calculations of the value of sup
t2[0;T ]

jjIE[UN (t)]�u(t)jj (see Table 2.2) show, that it decreases

proportionally to N�1 as N increases. Therefore, in view of the estimation given in

Theorem 2.1, we conclude that the norm of the vector covN(t) behaves like N�1, as N

increases.
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Table 2.2. The value of sup
t2[0;T ]

jjIE[UN (t)]� u(t)jj for Kij = 1 and T = 20.

N sup
t2[0;T ]

jjIE[UN (t)]� u(t)jj samples

128 9.17e-3�0.21e-3 240000

256 4.59e-3�0.21e-3 120000

512 2.28e-3�0.21e-3 60000

1024 1.11e-3�0.21e-3 30000

3 Variance Reduction Algorithms

3.1 Weight Equation

As we have already mentioned in the Introduction, the decrease of the number of particles

in a model system in stochastic algorithms is the main source of the variance increase.

To overcome it, H. Babovsky [2] has suggested to transform the equation (1) (governing

the particle concentration) to the mass-�ow equation

@gl(t)

@t
=

l�1X
i=1

1

i
Ki(l�i)gigl�i � gl

X
i�1

1

i
Kligi; l � 1; where gl(t) = lul(t):

Stochastic algorithms for this equation (for their detailed description, see [2, 4]) keep the

number of particles �xed during the whole time. This approach has also another nice

property: the number of large particles decreases slower than in the traditional Bird's

algorithm. One may expect that these features should drastically increase the variance.

However, the distribution of small and large particles in mass-�ow systems is still far

from being uniform. In fact, even in the case of constant coagulation coe�cients Kij = 1
the decrease of particle concentration with the growth of size l (for any �xed time t) is

exponential:

ul(t) = (1 + 0:5t)�2
�
1� 1

1 + 0:5t

�l�1
:

Note that, for the unbounded coagulation kernels the relative number of large particles is

even smaller.

Therefore, it is reasonable to introduce a weight function w(l) increasing with the growth

of l, and to transform the original Smoluchowski equation (1) to a �weight equation� for

the new variable, the weighted concentration zl(t) = w(l)ul(t). This weight equation reads
obviously

@zl(t)

@t
=

1

2

X
i+j=l

K̂ijzizj � zl
X
i�1

K̂li

w(l)

w(i+ l)
zi; l � 1; K̂ij = Kij

w(i+ j)

w(i)w(j)
: (13)

To solve this equation, we develop a generalization of the method of �ctitious jumps

(MFJ) (see [5] for (1)). Together with this algorithm, we construct a generalization of

the method of majorant frequencies (MMF) (its description for (1) can be found in [16]).

Though the latter algorithm can be treated as the particular case of the former, it is very

important itself, as comes from the remarks below.

7



3.2 Description of the Algorithms

Let us consider a system of N particles. Each particle i is characterized by its size li,

where li is an integer number.

Suppose, that we know a function h such that K̂ij � h(i)h(j) for each i, j.

The initial size distribution of the system is constructed arbitrarily, but in such a way

that it approximates the initial conditions for (13):

NP
p=1

Æi;lp

N
� zi(0); i � 1:

The changes of the states of the system happen in discrete time steps. At each time step

a pair of particles i and j is chosen, which coagulate according to some probability, that

is a particle of size li + lj is born.

Let us describe the evolution process in more details, both for MFJ and MMF methods.

Assume the state of the system at the time instant tk is (l1; : : : ; lL). Then, its state at

the time instant tk+1 is de�ned as follows.

1. Choose a random time step � according to the distribution

p� (x) = � exp(��x);

where � =
2N 

LP
i=1

h(li)

!2

Wmax

for MFJ

and

� =
2N

L(L� 1) max
1�i;j�L

K̂liljWmax

for MMF, (14)

where Wmax = max
1�i;j�L

wli+lj

wli + wlj

:

Set tk+1 = tk + � .

2. Choose the reacting particles i and j 6= i according to the distribution

h(li)=
LX
j=1

h(lj); i = 1; : : : ; L

in the MFJ method, and uniformly distributed in MMF method.

3. Check, whether the interaction takes place between li and lj with probability

K̂lilj

h(li)h(lj)
in the MFJ method, and with probability

K̂lilj

max
1�i;j�L

K̂lilj

in MMF method.

8



If the interaction happens, then:

(a) with the probability w(li)=w(li + lj) the cluster li is removed,

(b) with the probability w(lj)=w(li + lj) the cluster lj is removed,

(c) a new cluster li + lj appeared.

Let us now consider the cost of these algorithms for some �xed N . The di�erence of the

MFJ and MMF algorithms comes mainly from the di�erent choice of the time step (step

1) and di�erent ways of generating the reacting particles (step 2). Let us compare the

�rst step.

Step 1. Obviously, the algorithm MFJ has a larger mean time step if

 
LX
i=1

h(li)

!2

< L(L� 1) max
1�i;j�L

K̂li;lj :

The di�erence between the left- and right-hand sides is large for the fast growing coagula-

tion coe�cients Kij; the inequality can be approximated by h(i)h(j) � Kij (for instance,

Kij = ij). However, this di�erence can be small for slowly growing coe�cients. Not that

for bounded coe�cients Kij � const the left- and right-hand sides coincide.

Step 2. Sampling of reacting particles in MMF method is very simple. Namely, the

number i, uniformly distributed in f1; : : : ; Lg can be found by the following code (C++,

� is uniformly distributed in [0; 1]):

long fun;

fun=�L;

if( fun==L ){ i=1; }

else{ i=fun+1; }

So, to generate the reacting particle we need two arithmetic operations and one �if� jump.

Whilst the generation of the reacting particle in the �rst algorithm needs in average about

of L operations.

Thus we can assume that the �rst algorithm is preferable in the cases of fast growing

coagulation kernels, which can be close approximated with h(i)h(j) � Kij.

4 Comparative Analysis of the E�ciency

We consider the following algorithms:

� method of majorant frequencies (MMF). As mentioned in Introduction, this method

is a modi�cation of the direct simulation algorithm. Its description can be found in

[16]

� method of majorant frequencies with doubling of the number of particles, when it

becomes two times smaller

� mass-�ow algorithm (MFA) (see [4] for the detailed description)
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� weighted algorithm (WA), described in the previous section, for the weight function

w(l) = lq, with q = 0:5, q = 1, q = 1:25.

Remark 4.1. The weight equation with w(l) = l coincides with the mass-�ow equa-

tion. However, as we will see below, di�erent algorithms (WA and MFA) for solving this

equation provide for �xed N di�erent biases and have di�erent computational costs.

For our investigation we take the pure coagulation equation with monodisperse initial

conditions

u1(0) = 1; ul(0) = 0; l > 1;

and the following coagulation coe�cients:

(1) Kij = 1;

(2) Kij = 0:5(i+ j):

These coe�cients present examples of slow (case 1) and fast (case 2) coagulation regimes.

Analytical solutions to the relevant coagulation equation for these cases read (see, e.g.,

[1]):

(1) : ul(t) = (1 + 0:5t)�2
�

0:5t
1+0:5t

�l�1
;

(2) : ul(t) = e�0:5tB(1� e�0:5t; l); B(x; l) =
(lx)l�1e�lx

l!
:

Remark 4.2. As we have already mentioned, MMF can be considered as a particular

case of a more general �method of �ctitious jumps� (MFJ), developed in [5]. However, for

the constant coagulation coe�cients MFJ coincides with MMF. In the case of the additive

coagulation coe�cients (2) the calculations show that MMF is the most e�ective version

of MFJ.

Remark 4.3. For additive coe�cients only WA with w(l) = l0:5 will be considered.

Computational cost of WA with w(l) = l and w(l) = l1:25 is too high to be included in

considerations.

We take the time interval [0; T ] with T = 20 for the constant coagulation coe�cients, and
T = 5 for the additive coe�cients. This choice ensures that the particle concentration at

T decreases to about 90%.

Let us introduce the following notations.

N , the number of the monomers in the system at zero time

M , the number of samples, i.e., the independent realizations of the algorithm

� , the computational cost per one sample.

For h(u), an arbitrary function of the solution to the coagulation equation (3), the fol-

lowing characteristics are de�ned:

IE[h(U)] =
1

M

MX
i=1

h(U (i)), the mean value taken over M samples

Var[h(U)] =
1

M

MX
i=1

�
h(U (i))

�2
� (IE[h(U)])2, the mean variance taken over M samples
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Varrel[h(U)] =
1

h2(u)
Var[h(U)], the relative mean variance realizations;

Er[h(U)] = 100%� jul(t)� IE[h(U)]j
h(u)

, the relative error of the algorithm

St[h(U)] = 100%� 3

s
Varrel[h(U)]

M
, the relative statistical error of the algorithm

m2 =
X
i�1

i2ui, the second moment of the solution.

4.1 Bias and Variance of the Algorithms.

Before analysing the e�ciencies of the algorithms, we give several conclusions about the

behaviour of their bias and variance.

Conclusion 4.1 The bias and the variance of h(u) are inverse proportional to N if h(U)
is linear, for all algorithms under consideration.

This conclusion is based on a large series of calculations, made for di�erent functions

h(u), e.g., for m2 and ul, for di�erent values of l, and for the distribution cl =
X
i�l

ui for

di�erent values of l as well. For illustration, we present here the error of the algorithms,

when calculating u2 for di�erent N , for constant (Tables 4.3�4.4) and additive (Tables

4.5�4.6) coagulation coe�cients. One can see that the 5-times diminishing of N leads to

a 5-times increase of the error. Note that the statistical error is no larger than 10% of the

total error of the algorithms, so we can treat Er[h(U)] as the bias of the estimator.

Another illustration of the Conclusion 4.1 is presented in Tables 4.9�4.12, where the

error of the algorithms when calculating the second moment m2 is shown for constant

(Tables 4.9�4.10) and additive (Tables 4.11�4.12) coagulation coe�cients. Again, a 2-

times enlargement of the value of N leads to a 2-times decrease of the bias and variance

of the algorithms.

Let us now compare the error and the variance of the algorithms. According to the

Conclusion 4.1, the ratio of the errors and the variance of the di�erent algorithms (which

we are interested in) will be the same for all values of N . So, we will consider in detail

one particular choice of N . Namely, we take N = 128 for constant, and N = 1024 for

additive coe�cients. The number of samples M for di�erent algorithms are chosen so

that the largest statistical errors are approximately all the same for all algorithms (which

is indicated in the �gures).

In Figs. 4.1-4.2 we plot the relative error of algorithms when calculating ui(t) for di�erent
time instances. Namely, the results are given at times, when the total particle concen-

tration becomes 5 times smaller (t = 8 for constant and t = 3 for additive coe�cients)

and 10 times smaller (t = 20 and t = 5, respectively) compared to the initial number of

particles. The size spectra presented in these �gures contain 95% of the total mass.

One can see that the bias of the doubling procedure, MFA and WA (for �xed N) is smaller

than that of MMF. This is more pronounced for fast growing additive coe�cients (nearly

5 times in case (1) and about 100 times in case (2)), while the doubling procedure provides

approximately the same decrease of the bias in both cases. Note, that the pictures are

nearly the same for both time instances. Hence we can make the following conclusion.
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Figure 4.1. The relative error of algorithms: calculations of size distribution ui(t�) for
N = 128 at di�erent times, for constant coagulation coe�cient (plotted sizes contain 95%

of the total mass).
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Figure 4.2. The relative error of the algorithms: calculations of size distribution ui(t�)
for N = 1024 at di�erent times, for additive coagulation coe�cient (plotted sizes contain

95% of the total mass).
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Conclusion 4.2 The doubling procedure, MFA and WA, all have (N �xed in all algo-

rithms) a bias which is considerably smaller than that of MMF. For MFA and WA this

advantage is more pronounced for fast growing coagulation coe�cients.
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Figure 4.3. The relative variance of the algorithms: calculations of size distribution

ui(t�) for N = 128, at di�erent times, for constant coagulation coe�cients (plotted sizes

contain 95% of the total mass).
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Figure 4.4. The relative variance of the algorithms: calculations of size distribution

ui(t�) for N = 1024 at di�erent times, for additive coagulation coe�cients (plotted sizes

contain 95% of the whole mass).

Let us now compare the variance of the algorithms for �xed values of N . In Fig. 4.3-4.4

we plot the function Varrel[Ui(t�)] at t� = 8 and t� = 20 for constant and at t� = 3 and

t� = 5 for additive coe�cients. The size spectra, presented in the �gures, contain 95% of

the total mass.

One can see that in the case of constant coagulation coe�cients (Fig. 4.3) the doubling

procedure diminishes the variance of MMF approximately 4 times for t� = 8, and 9 times

for t� = 20, uniformly with respect to i. The variance of MFA and WA for the monomer

concentrations coincides with that of MMF. With the growth of size i, the variance of MFA

and WA decreases (up to i = 5 for t� = 8, and i = 12 for t� = 20). Its further increase is
slower than that of MMF variance. Thus for large sizes the MMF has a variance which is

considerably larger than the variance of MFA, WA and MMF with doubling. Namely, it is

5 times (when t� = 8) and 8 times (when t� = 20) larger than that of WA with w(l) = l0:5;

20 times (when t� = 8) and 60 times (when t� = 20) larger than that of MFA and WA
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with w(l) = l; 40 times (when t� = 8) and 130 times (when t� = 20) larger than that of

WA with w(l) = l1:25. However, for small sizes the di�erence is much smaller. Note that

the variance of WA decreases with the growth of q in w(l). For q = 1, it coincides with
the variance of the MFA.

Let us now turn to the additive coagulation coe�cients (Fig. 4.4). One can see that

MMF with doubling procedure, MFA and WA again provide a smaller variance compared

to that of MMF.

If we consider the ratio of the variances of di�erent algorithms to that of MMF, it turns

out that it is again small for small sizes and increases with the growth of i, achieving 4

times (when t� = 3 and t� = 5) for doubling procedure; 68 times (when t� = 3) and 225

times (when t� = 5) for MFA; 8 times (when t� = 3) and 10 times (when t� = 5) for
WA with w(l) = l0:5. Note that for MFA this e�ect becomes more pronounced with the

growth of time.

Summarizing these results we can make the following conclusion.

Conclusion 4.3. The doubling procedure, MFA and WA have (the value of N �xed) a

lower variance compared to that of MMF. For MFA and WA the di�erence increases with

the growth of t and is more pronounced for the concentration of large particles.

4.2 Computational Cost

Let us now analyze the relative computational cost of the algorithms for the �xed value

of N .

Analysing the description of the algorithms (see [16] for MMF, [4] for MFA and the

previous section for WA), we can make the following conclusion concerning the growth of

their computational cost with the growth of N .

Conclusion 4.4. For bounded coagulation coe�cients the computational cost of MMF

and WA is linear with respect to N , while the computational cost of MFA grows faster

than linear. It means that the relative e�ciency of MFA compared to MMF and WA,

decreases with the growth of the accuracy of the algorithm.

The nonlinear growth of the computational cost of MFA is caused by the complicated

procedure of the choice of the reacting particles. Namely, it is necessary to sample from

the distribution of the form

P(i = Ai) =
qi

NP
j=1

qj

; i = 1; : : : ; N;

whose computational cost increases with the growth of N .

We illustrate this in Table 4.1. One can see that for MMF and WA, the doubling of N

leads to the doubling of the computational cost per one sample. For MFA, this leads to

a 3-4 times enlargement of the cost.
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Table 4.1. The algorithm cost per one sample (sec.), for Kij = 1, T = 20.
N MMF MMF with doubling MFA w(l) = l0:5 w(l) = l w(l) = l1:25

64 3.67e-5 6.87e-5 2.88e-4 1.81e-4 1.07e-3 3.53e-3

128 7.08e-5 1.35e-4 7.66e-4 3.56e-4 2.09e-3 6.91e-3

256 1.39e-4 2.67e-4 2.29e-3 7.08e-4 4.16e-3 1.38e-3

512 2.75e-4 5.29e-4 7.73e-3 1.41e-3 8.30e-3 2.75e-2

1024 5.44e-4 1.06e-3 2.74e-2 2.81e-3 1.65e-2 5.44e-2

2048 1.09e-3 2.11e-3 1.04e-1 5.64e-3 3.12e-2 1.10e-1

4096 2.18e-3 4.22e-3 3.11e-1 1.12e-2 6.63e-2 2.19e-1

8192 4.36e-3 8.58e-3 1.36 2.25e-2 1.33e-1 4.40e-1

In Table 4.2 we show the computational cost of the algorithms for di�erent values of N in

the case of additive coagulation coe�cients. It is seen that in this case the cost increases

faster than linearly. Namely, the doubling of the value of N leads to a 2.2-2.7 times (MMF

and WA, respectively) and 2.2-4 times (MFA) increase of sample's cost.

Table 4.2. The algorithm cost per one sample (sec.), for Kij = 0:5(i+ j), T = 5.
N MMF MMF with doubling MFA WA, w(l) = l0:5

64 1.72e-4 5.79e-4 7.71e-3 �

128 4.39e-4 1.55e-3 1.72e-2 3.35e-3

256 1.10e-3 4.07e-3 4.12e-2 8.08e-3

512 2.72e-3 1.06e-2 1.11e-2 1.96e-3

1024 6.54e-3 2.59e-2 3.41e-1 4.62e-2

2048 1.56e-2 6.02e-2 1.13 1.10e-1

4096 3.63e-2 1.48e-1 4.09 2.43e-1

8192 8.32e-2 3.40e-1 15.6 5.49

Analysing the comparative computational cost of the algorithms, presented in Tables

4.1-4.2, we can make the following conclusion.

Conclusion 4.4. The computational cost of MFA and WA for �xed N is considerably

larger than that of MMF.

Let us now discuss the main reasons why the relative cost of MFA and WA is larger

compared to MMF, for �xed value of N .

1. MFA: complicated sampling of reacted particles (see the discussion above).

2. Doubling procedure, MFA, and WA: the number of particles in the model system

during the whole time behaves essentially di�erent from that of MMF. Indeed, the

number of particles in the system in MMF behaves approximately as
1

1 + 0:5t
for

constant and as exp(�0:5t) for additive coagulation coe�cients, so that at t = T

the number of particles is 10 times less. Unlike it, the doubling procedure keeps the

number of particles no less than 0:5N , the MFA keeps N particles for the whole

time period, while WA with q > 1 even enlarges the number of particles in average.

3. WA: the mean time step is decreased by the factor
1

Wmax

< 1 (see (14)).
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Summarizing we can conclude, that the enlargement of the relative number of large par-

ticles in a model system decreases considerably the bias and variance of the algorithm

for �xed N , especially for fast growing coagulation coe�cients. However the high com-

putational cost of such algorithms makes their relative e�ciency within the framework of

the de�nition (2) not obvious. These algorithms could not be e�ective when calculating

the concentration of small particles, for which their variance does not di�er much from

that of MMF. They can be e�cient for calculating the concentration of large particles,

especially for fast growing coagulation coe�cients.

To compare the e�ciencies of the algorithms, we will present calculations of some func-

tionals of the solution u(t) with some �xed accuracy. Calculations are made for the con-

centration of small particles, the concentration of large particles and the second moment

m2 of the solution.

Note that in all calculations we will always obtain the same statistical error jjSt[h(U)]jj
for all algorithms. In this particular case we can write for the ratio of e�ciencies (2) of

two relevant algorithms 1 and 2 that

E�Alg1

E�Alg2
=

�Alg2MAlg2

�Alg1MAlg1

:

Thus when comparing e�ciencies of algorithms we can use simply the computational cost

�M instead of the value jjVar[UN (t)]jj� .

4.3 Examples

4.3.1 Concentration of Small Particles

In Tables 4.3-4.6 the results of u2(t)-calculation are presented. We compare 6 di�erent

algorithms, the relative error is about 1% for constant (Tables 4.3 and 4.4) and 5% for

additive (Tables 4.5 and 4.6) coagulation coe�cients.

Table 4.3. Calculation of u2 with the accuracy of about 1%, for Kij = 1, T = 20.

Algorithm N M sup
t2[0;T ]

Er[U2] sup
t2[0;T ]

St[U2] �(sec.) �M

MMF 3300 400 000 0.911% 0.093% 1.80e-3 720

MMF, doubling 600 400 000 0.912% 0.106% 6.66e-4 266

MFA 500 1 000 000 1.004% 0.101% 7.93e-3 7932

WA, w(l) = l0:5 390 2 300 000 0.975% 0.093% 1.09e-3 2513

WA, w(l) = l 110 5 000 000 1.043% 0.098% 1.80e-3 9015

WA, w(l) = l1:25 100 4 500 000 0.949% 0.099% 5.49e-3 24687
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Table 4.4. Calculation of u2 with the accuracy of about 5%, for Kij = 1, T = 20.

Algorithm N M sup
t2[0;T ]

Er[U2] sup
t2[0;T ]

St[U2] �(sec.) �M

MMF 660 80 000 4.348% 0.458% 3.54e-4 28

MMF, doubling 120 80 000 3.859% 0.483% 1.26e-4 10

MFA 100 200 000 4.916% 0.497% 6.05e-4 121

WA, w(l) = l0:5 78 460 000 5.307% 0.454% 2.19e-4 100

WA, w(l) = l 22 1 000 000 5.115% 0.490% 3.84e-4 365

WA, w(l) = l1:25 20 900 000 4.666% 0.499% 1.18e-3 1065

Table 4.5. Calculation of u2 with the accuracy of about 1%, for Kij = 0:5(i+ j), T = 5.

Algorithm N M sup
t2[0;T ]

Er[U2] sup
t2[0;T ]

St[U2] �(sec.) �M

MMF 1024 850 000 0.932% 0.092% 6.55e-3 5566

MMF, doubling 250 900 000 0.948% 0.092% 3.94e-3 3546

MFA 70 6 000 000 0.992% 0.091% 8.56e-3 51354

WA, w(l) = l0:5 315 2 000 000 1.015% 0.092% 1.06e-2 21220

Table 4.6. Calculation of u2 with the accuracy of about 5% for Kij = 0:5(i+ j), T = 5.

Algorithm N M sup
t2[0;T ]

Er[U2] sup
t2[0;T ]

St[U2] �(sec.) �M

MMF 206 170 000 5.575% 0.452% 8.28e-4 141

MMF, doubling 50 180 000 4.879% 0.457% 4.06e-4 73

MFA 14 1 200 000 5.285% 0.443% 1.56e-3 1871

Analysing the last column of the Tables, one can conclude that for this particular problem,

MMF with the doubling procedure is the most e�cient algorithm. The doubling procedure

increases the e�ciency of MMF more than 3 times for constant, and more than 1.5 times

for additive coe�cients.

MFA is considerably less e�cient than MMF, for both constant and additive coe�cients,

and this e�ect is even more pronounced for higher accuracies, e.g., for constant coe�cients

we got the following results: at 5%-accuracy level MMF is 4 times faster than MFA, while

at 1%-accuracy level it is 11 times faster.

The WA is also less e�cient than MMF in this case. For constant coe�cients its e�ciency

decreases with the growth of the power of w(l).

4.3.2 Concentration of Large Particles

Here we will deal with the largest particles of the size spectrum from Figs. 4.1-4.4, for �xed

times. Namely, for constant coagulation coe�cients we take the concentration of {21}-

clusters at t = 8, and {50}-clusters at t = 20 (see Figs. 4.1, 4.3); for additive coagulation

coe�cients we consider the concentration of {70}-clusters at t = 3 (see Figs. 4.2, 4.4).
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Note that the particle subsystem whose size spectrum is presented in these �gures contains

95% of the total mass, the largest particles of this size distribution can be considered as

large particles.

In Tables 4.7-4.9 we present the results of calculations of u21(8) with the accuracy 3% and

u50(20) with the accuracy 5% for constant coe�cients, and u70(3) with the accuracy 3%

for additive coe�cients.

Table 4.7. Calculation of u21(8) with the accuracy of about 3%, for Kij = 1.

Algorithm N M sup
t2[0;T ]

Er[U21(8)] sup
t2[0;T ]

St[U21(8)] �(sec.) �M

MMF 340 6 500 000 3.124% 0.298% 1.84e-4 1199

MM, doubling 24 25 000 000 3.003% 0.294% 2.83e-5 707

MFA 35 2 800 000 3.146% 0.310% 1.35e-5 379

WA, w(l) = l0:5 120 3 800 000 3.001% 0.309% 3.36e-4 1278

WA, w(l) = l 80 1 400 000 2.872% 0.302% 1.32e-3 1850

WA, w(l) = l1:25 70 800 000 2.961% 0.305% 3.84e-3 3076

Table 4.8. Calculation of u50(20) with the accuracy of about 5%, for Kij = 1.

Algorithm N M sup
t2[0;T ]

Er[U50(20)] sup
t2[0;T ]

St[U50(20)] �(sec.) �M

MMF 400 2 700 000 5.053% 1.058% 2.17e-4 586

MMF, doubling 20 7 500 000 4.618% 0.989% 2.36e-5 177

MFA 24 1 000 000 4.897% 1.006% 8.87e-5 89

WA, w(l) = l0:5 90 1 950 000 5.024% 0.991% 2.74e-4 534

WA, w(l) = l 68 372 000 5.128% 1.009% 1.14e-3 423

WA, w(l) = l1:25 78 135 000 4.690% 0.998% 4.45e-3 600

Table 4.9. Calculation of u70(3) with the accuracy of about 3%, for Kij = 0:5(i+ j).

Algorithm N M sup
t2[0;T ]

Er[U70(3)] sup
t2[0;T ]

St[U70(3)] �(sec.) �M

MMF 802 48 500 000 3.091% 0.298% 4.83e-3 234027

MMF, doubling 600 17 500 000 3.089% 0.298% 1.18e-2 205677

MFA 48 1 200 000 2.951% 0.296% 5.65e-3 6781

WA, w(l) = l0:5 136 34 500 000 2.952% 0.299% 3.90e-3 134670

One can see that for this problem, MFA is the most e�cient among the considered algo-

rithms. Its relative e�ciency is more pronounced in the case of the fast growing additive

coe�cients and the e�ciency achieves a 36-times advantage compared to MMF.

The doubling procedure improves MMF for constant coe�cients, and the advantage in-

creases with time: 1.7 times when calculating u21(8) and 3.3 times when calculating

u50(20). However for additive coe�cients the e�ciency of MMF practically does not

change when using the doubling procedure.
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The relative e�ciency of WA, compared to MMF, also increases with the growth of t in

the case of the constant coe�cients. This e�ect is more pronounced for larger powers of

w(l). So, WA with w(l) = l1:25 is practically as e�cient as MMF when calculating u50(20),
while it is approximately 2.5 times less e�cient for u21(8).

4.3.3 Second Moment of Solution

In Tables 4.10-4.13 we present the results of calculation of the second moment m2 with

the accuracy of about 1% and 2% for constant coe�cients (Tables 4.10 and 4.11), and of

about 2.5% and 5% for additive coe�cients (Tables 4.10 and 4.11).

Table 4.10. Calculation of m2 with the accuracy of about 1%, for Kij = 1, T = 20.

Algorithm N M sup
t2[0;T ]

Er[m2] sup
t2[0;T ]

St[m2] �(sec.) �M

MMF 700 180 000 0.995% 0.099% 4.15e-4 75

MMF, doubling 160 150 000 0.967% 0.097% 1.78e-4 27

MFA 64 80 000 1.040% 0.095% 3.46e-4 28

WA, w(l) = l0:5 190 400 000 0.959% 0.099% 4.98e-4 199

WA, w(l) = l 128 400 000 1.065% 0.100% 2.10e-3 840

WA, w(l) = l1:25 110 410 000 1.136% 0.101% 5.97e-3 2447

Table 4.11. Calculation of m2 with the accuracy of about 2% for Kij = 1, T = 20.

Algorithm N M sup
t2[0;T ]

Er[m2] sup
t2[0;T ]

St[m2] �(sec.) �M

MMF 350 90 000 1.894% 0.197% 1.90e-4 17

MMF, doubling 80 75 000 1.987% 0.190% 8.52e-5 6

MFA 32 40 000 2.231% 0.193% 1.22e-4 5

WA, w(l) = l0:5 95 200 000 1.885% 0.201% 2.65e-4 53

WA, w(l) = l 64 200 000 2.036% 0.204% 1.07e-3 214

WA, w(l) = l1:25 55 205 000 2.197% 0.205% 3.06e-3 627

Table 4.12. Calculation of m2 with the accuracy of about 2:5% for Kij = 0:5(i+ j),
T = 5.

Algorithm N M sup
t2[0;T ]

Er[m2] sup
t2[0;T ]

St[m2] �(sec.) �M

MMF 14000 40 000 2.607% 0.320% 1.59e-1 6375

MMF, doubling 3000 60 000 2.283% 0.263% 9.63e-2 5778

MFA 24 540 000 2.547% 0.247% 2.70e-3 1460

WA, w(l) = l0:5 300 2 600 000 1.827% 0.145% 9.98e-3 25958
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Table 4.13. Calculation of m2 with the accuracy of about 5% for Kij = 0:5(i+ j),
T = 5.

Algorithm N M sup
t2[0;T ]

Er[m2] sup
t2[0;T ]

St[m2] �(sec.) �M

MMF 7000 20 000 4.995% 0.571% 7.01e-2 1403

MMF, doubling 1500 30 000 4.743% 0.493% 4.08e-2 1223

MFA 12 270 000 5.038% 0.514% 1.35e-3 364

WA, w(l) = l0:5 150 1 300 000 4.523% 0.417% 4.03e-3 5245

One can see that for constant coe�cients, the e�ciencies of MMF with the doubling

procedure and MFA are practically the same: they are approximately 3 times higher than

that of MMF. In contrast, for additive coe�cients, the doubling procedure practically

does not change the e�ciency of MMF, while the e�ciency of MFA is approximately 4

times higher compared to MMF.

The e�ciency of WA is in this case lower compared to the other considered algorithms.

4.4 Discussion and open problems

Summarizing the discussion above we give the following remarks.

1. For bounded coagulation coe�cients it is better to use MMF with the doubling pro-

cedure. But if it is necessary to obtain the concentration of large particles, MFA is

preferable.

2. For fast growing coagulation coe�cients (Kij � C(i+j)) MFA is preferable, but not

in the case when only the concentration of small particles is important: then MMF

with the doubling procedure is more e�cient.

This conclusion leaves however some important problems open. For instance, it is clear

that the relative e�ciencies of the algorithms depend generally on the structure of the

coagulation coe�cients. We can consider the bounded coe�cients as a characteristic

example of the �slowly growing� coe�cients, and Kij � C(i + j) as characterizing the

�fast growing� coe�cients. But we cannot predict for sure that the situation for moderate

changing coe�cients will be similar.

A question which arises in the context of the small- and large particle parts of the size

spectrum: which particles can be treated as �large� and �small� in particular problems?

Obviously it depends on many physical features of the coagulation-fragmentation system,

and on the de�nition of the monomer as well.

Finally, very important open problem is the decrease of the computational cost of im-

plementation of MFA and WA. As we have shown, these methods have su�ciently small

bias and variance for �xed initial number of particles in the model system, but their high

computational costs makes their competition with other methods problematic.
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5 Coagulation and Evaporation in Free Molecule Regime

Consider a coagulation-evaporation process in a free molecule regime, which is governed

by the equation (see [6])

@u1(t)

@t
= �u1

X
i�1

Ki1ui +
X
i�3

Eiui + 2E2u2; (15)

@ul(t)

@t
=

1

2

X
i+j=l

Kijuiuj � ul
X
i�1

Kliui � Elul + El+1ul+1; l � 2

with

Kij =
�

3

4�

� 1

6

 
6kT

�p

! 1

2
 
1

i
+

1

j

! 1

2 �
i
1

3 + j
1

3

�2
;

Ej = EK1j exp
�
A
�
j
2

3 � (j � 1)
2

3

��
:

Here k is Boltzmann's constant, T is the absolute temperature, �p is the particle density.

In what follows we will suppose monodisperse initial conditions:

u1(0) = u(0); ul(0) = 0; l > 1:

The question we are interested in is how the values of the evaporation parameters in�uence

the behaviour of the process. To be more speci�c, we study the total concentration of all

particles whose sizes are larger than a given size j�: cj
�

(t) =
X
i�j

�

ui(t).

We will �rst write the equation (15) in more convenient form. Note that the solution to

(15) depends on large number of parameters. Actually, ui is a function of t, u(0), k, T , �p,

A, and E. Our aim now is to reduce the number of parameters.

Let us introduce a characteristic time scale of the coagulation process

TC =
1

u(0)K11

;

which can be interpreted as the mean collision time of the particles at the initial time.

Then let

TE =
1

E2

be the characteristic time scale of the evaporation, and

� =
TC

TE
(16)

the ratio of these time scales. Now, using the dimensionless time

� =
t

TC
(17)
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we rewrite the equation (15) as follows:

@u01(�)

@�
= �u01

X
i�1

ki1u
0
i +

X
i�3

eiu
0
i + 2e2u

0
2; (18)

@u0l(�)
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1

2

X
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kiju
0
iu
0
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X
i�1

kliu
0
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0
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0
l+1; l � 2
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u0l =
ul
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;
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Kij

K11
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1
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ej = � exp
�
A
�
(j

2

3 � (j � 1)
2

3 )� (2
2

3 � 1)
��

:

It implies the following assertion:

Statement 5.1.

The function u(t; u(0); k; T; �p; A; E) can be represented as follows:

u(t; u(0); k; T; �p; A; E) = u(0)u0(� ; �;A);

where � and � are de�ned by (16) and (17), u0 being the solution to (18).

Let us now study how the change of the evaporation parameters A and � in�uence the

behaviour of the function c0j
�

(�) for di�erent j�.

It is worth to be mentioned that the following processes change the value of the total

concentration of particles whose size is larger than j�.

1. Collisions between two particles whose sizes are less than j� can result in particles

of size, larger than j�; this gives a contribution to the increase of value of c0j
�

(�).

2. Coagulation of two particles whose sizes are larger than j� decrease the value of

c0j
�

(�).

3. Evaporation of monomers: it decreases the value of c0j
�

(�) and can be considered as

an e�ective time-dependent monomer generator.

Simple analysis shows that two di�erent regimes should exist for c0j
�

(�). First, in the initial
time interval the total concentration of particles larger than j� increases. It is caused by

the prevailing role of the collision processes among smaller particles, since initially, only

monomers existed. After achieving a maximal value, the function c0j
�

(�) decreases due to
the increasing role of the collisions between particles larger than j�.

In Fig. 5.1 we plot the function c0j
�

(�) for di�erent ratios �, keeping the parameter A

�xed (A = 1). Note that the case � = 0 corresponds to the pure coagulation, because the
equation (18) then obviously corresponds to the equation (15) with Ej = 0, j � 2. In the

terms of the time scales this situation can be interpreted as the in�nite evaporation time

scale TE. The increase of � corresponds to the relative decrease of the evaporation time

scale TE.
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The increase of � damps down the growth of c0j
�

(�) at the �rst stage, and the maximum

value is getting smaller. This is caused by the evaporation of the monomers: its in�uence

is essential when the intensive growth of particles via monomers takes place.

Let us consider the second stage. In the pure coagulation case, the number of particles

smaller than j� becomes now relatively small. So, the process is determined by the

collisions between the larger particles. However, the evaporation gives an additional

permanent generator of monomers, which, in turn, causes generation of larger particles.

Thus, the value of c0j
�

(�) becomes larger, compared to the pure coagulation case. The

di�erence increases with the growth of �. Note, that for � � 1 the function c0j
�

(�) is

practically constant in the second stage.

Let us now consider how the total concentration of particles, larger than j� depends on

the evaporation parameter A. In Fig. 5.2 we plot the function c0j
�

(�) for di�erent values
of A, keeping � = 1. One can see that the increase of the parameter A leads to the same

e�ect, as the decrease of the parameter � (see Fig. 1). Namely, the growth of c0j
�

(�) in
the �rst stage and its decrease in the second stage become slower, and its maximal value

decreases. The reason of this is that the decrease of the parameter A leads to the increase

of the evaporation coe�cients ej, since (j2=3 � (j � 1)2=3)� (22=3 � 1) < 0 for each j > 2.
This implies the relative growth of the intensity of evaporation compared to coagulation.
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Figure 5.1. The summary concentration of the particles, larger, than j� via dimensionless

time � for A = 1 and di�erent values of �.
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Figure 5.2. The summary concentration of the particles, larger, than j� via dimensionless

time � for � = 1 and di�erent values of A.

6 Conclusion

A general variance reduction technique for stochastic particle methods for solving the

coagulation-fragmentation Smoluchowski equation is suggested. This method generalizes

the mass-�ow approach proposed by H. Babovsky, and is aimed at variance reduction

for a speci�c band of the size spectrum. Estimations of the variance and bias of the

method are derived. A comparative cost and variance analysis is made for the known

stochastic methods. An applied problem of coagulation-evaporation dynamics in free

molecule regime is solved.

We have shown, that our approach, as well as the mass-�ow algorithm, provides consid-

erably smaller bias and variance of the estimator, compared with the direct simulation

algorithm. This advantage is more pronounced for the fast growing coagulation coe�-

cients, when calculating the concentration of large particles. However, the high computa-

tional cost of these algorithms makes their competition with other algorithms not obvious.

Namely, they proved to be preferable only in the case of fast growing coagulation coe�-

cients, when calculating the concentration of large particles.

We have shown, that a simple doubling of the particles in the model system (after their

number becomes 2 times smaller) reduces the bias and the variance of the direct simulation

algorithm and increases its e�ciency up to 2 times. The direct simulation algorithm with

the doubling procedure proved to be the most e�cient among the other algorithms for

bounded coagulation coe�cients and when calculating the concentration of small particles.
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