
Weierstraÿ-Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Blue sky catastrophe in singularly-perturbed

systems

Andrey Shilnikov1, Leonid Shilnikov2, Dmitry Turaev3

submitted:

1 Department of Mathematics

and Statistics,

Georgia State University,

Atlanta, GA 30303-3083, USA

E-Mail: ashilnikov@cs.gsu.edu

2 Institute for Applied

Mathematics & Cybernetics,

Ul'janova Str. 10,

603005 Nizhny Novgorod, Russia

E-Mail: shilnikov@focus.nnov.ru

3 Weierstrass Institute for

Applied Analysis and Stochastics

Mohrenstr. 39,

D-10117 Berlin, Germany

E-Mail: turaev@wias-berlin.de

No. 841

Berlin 2003

WIAS

2000 Mathematics Subject Classi�cation. 37G15, 34E15, 37C27, 34C26.

Key words and phrases. saddle-node, global bifurcations, stability boundaries, slow-fast system,

bursting oscillations, spikes, excitability.



Edited by

Weierstraÿ-Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



1

Abstract. We show that the blue sky catastrophe, which creates a stable pe-

riodic orbit whose length increases with no bound, is a typical phenomenon for

singularly-perturbed (multi-scale) systems with at least two fast variables. Three

distinct mechanisms of this bifurcation are described. We argue that it is behind

a transition from periodic spiking to periodic bursting oscillations.

1. Stability boundaries for periodic orbits

Stable periodic orbits play a very special role in nonlinear dynamics. One of the

basic questions here concerns the structure of the boundaries of their stability re-

gions in the parameter space. Namely, suppose that a time-continuous dynamical

system exhibits sustainable self-oscillations, i.e. has a stable periodic orbit. One

may wonder how the periodic orbits evolves as the parameters of the system vary?

In other words, consider a one-parameter family X� of dynamical systems with an

exponentially stable periodic orbit at some �. This periodic orbit will persist and

remain stable within some interval of the parameter values. What is the bound-

ary of this interval? Which type of bifurcation will it correspond to in a typical

one-parameter family?

These questions gave an original impulse to the development of bifurcation theory

in the pioneering works by Andronov and Leontovich [1] (see also [2]) who had

discovered the following four codimension-1 boundaries of stability of limit cycles

for systems of ODE's on a plane. The �rst one corresponds to the stable limit cycle

bifurcating from/into a stable equilibrium state; on the second boundary the stable

limit cycle coalesces with an unstable one and disappears; on the third boundary the

periodic orbit transforms into a homoclinic loop of a simple saddle-node equilibrium

state; the last, fourth boundary corresponds to the stable periodic orbit becoming

a homoclinic orbit to a saddle equilibrium state with negative saddle value.

In the multi-dimensional case, generic one-parameter families have already seven

such stability boundaries known as today. There are two kinds of them conditioned

by whether the periodic orbit exists or not at the critical moment. In the former case

the intersection of the periodic orbit with a local cross-section is the �xed point of the

Poincaré map, so the problem reduces to the analysis of how the multipliers of the

�xed point exit the unit circle. The �rst possibility is similar to the two-dimensional

case: a single multiplier of the periodic orbit becomes equal to (+1), this is the

saddle-node bifurcation (see Fig.1). Two other codimension-1 bifurcations are the

�ip or period-doubling one and the birth of a torus. At the �ip bifurcation there is

a single multiplier equal to (�1). The periodic orbit itself does not disappear after
this bifurcation (unlike the saddle-node case) but only loses stability. In the case

where a pair of complex-conjugate multipliers crosses the unit circle outward the

periodic orbit survives too but loses its skin � a stable two-dimensional invariant

torus is born.

There are three stability boundaries of the second kind, as in the planar case.

They correspond, to the birth of a periodic orbit o� a stable equilibrium state
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(a) (c)(b)

Figure 1. Saddle-node bifurcation: (a) � < 0, there are two periodic
orbits: stable and saddle; (b) � = 0, the periodic orbits merge into a

saddle-node one. Its strong stable manifoldW ss divides the neighbor-

hood into the node region (below W ss in the �gure) and the saddle

region (above W ss). The unstable manifold is the part of the center

manifold which lies in the saddle region. (c) � > 0, the saddle-node

disappears; the drifting time throughout its neighborhood is estimated

as � 1=
p
�.

(the Andronov�Hopf bifurcation), and to its �owing into a homoclinic loop of ei-

ther a simple saddle-node equilibrium state or a hyperbolic equilibrium state with

one-dimensional unstable manifold and with negative saddle value [3].

It can be shown that the list above gives all the main stability boundaries for the case

where the length of the periodic orbit remains bounded at the bifurcation moment

(although the period may tend to in�nity if the orbit adheres to a homoclinic loop).

One more (and, conjecturally, the last one) main boundary of stability that has no

two-dimensional analogues and corresponds to the unbounded growth of the length

of the periodic orbit was discovered in [4]. This is a codimension-1 bifurcation

of smooth �ows in at least three-dimensional phase space, such that for any one-

parameter family X� of �ows which crosses a corresponding bifurcational surface

at, say, � = 0, for all small � > 0 (with the appropriate choice of the direction of

increase of the parameter �) the �ow has a stable periodic orbit L� which stays in a

bounded region of the phase space and is away from any equilibrium states; besides,

it undergoes no bifurcations as �! +0, whereas both its period and length increase

without bound, and L� disappears at � = 0.

The likelihood of such type of bifurcation (called a �blue sky catastrophe�) was

a long-standing problem. In the construction suggested in [4] (see also [5, 6, 7])

the blue-sky stability boundary is an open subset of a codimension-1 bifurcational

surface corresponding to the existence of a saddle-node periodic orbit. This open

set is distinguished by some qualitative conditions that determine the geometry of

the unstable manifold of the saddle-node (see Fig.2) as well as by a few quantitative
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restrictions (the Poincaré map introduced below must be a contraction). If every-

thing is right, the stable periodic orbit L� whose period and length both tend to

in�nity when approaching the moment of bifurcation is born when the saddle-node

orbit disappears.

Figure 2. The global structure of the set W u preset for the blue sky

catastrophe. The intersection of W u with the local cross-section S in

the node region is a countable set of circles accumulating to S \ L.

Although the global structure of the unstable set of the saddle-node for the blue

sky catastrophe appears to be rather complex, and hence it may be unclear how

this construction can be achieved plainly in dynamical systems of a natural origin,

nevertheless the answer did not make one wait long. The �rst explicit example of a

three-dimensional system of ODE's where the blue sky catastrophe occurs was con-

structed in [8] considering a global homoclinic Guckenheimer-Gavrilov bifurcation

with an extra degeneracy. Another setup for the blue sky bifurcation was proposed

in [7] where it was shown that this particular con�guration of the unstable set of the

saddle-node is, in fact, quite typical for the slow-fast (i.e. singularly perturbed) sys-

tems with at least two fast variables. In this paper we present and analyze speci�c

scenarios which cause indeed the blue sky catastrophe in the singularly perturbed

systems.

2. Slow-fast systems.

A slow-fast system is a system of the form

(1)
_x = g(x; y; ");
" _y = h(x; y; ");
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where " > 0 is a small parameter. This system may be regularized by rescaling the

time t = "� . With the new time � system (1) becomes

(2)
x0 = "g(x; y; ");
y0 = h(x; y; ");

where the prime denotes di�erentiating with respect to � . Taking the limit " = 0,
we obtain

(3)
x0 = 0;
y0 = h(x; y; 0):

The second equation here is called the fast system. For simplicity, we assume that

x 2 R
1 . The variable x may be considered as a parameter which governs the motion

of the fast y-variables; we assume y 2 R
n with n � 2.

A trajectory of system (3) starting o� any initial point (x; y) goes typically to an

attractor of the fast system for the given value of x. The attractor may be a stable

equilibrium, or a stable periodic orbit, or be of a less trivial structure � we would

like to skip the discussions concerning the latter possibility for now. When the

equilibrium state or the periodic orbit of the fast system is exponentially stable, it

depends smoothly on x. Thus, we obtain a smooth attracting invariant manifold of

system (3): equilibria of the fast system form curves Meq in the (x; y)-space, while
limit cycles form two-dimensional cylinders Mpo, see Fig.3.

x=const

poMeqM

Figure 3. An orbit of the fast subsystem may tend to a stable equi-

librium, or to a stable limit cycle.

Locally, near every exponentially stable equilibrium point, or a periodic orbit of the

fast subsystem, such a manifold is a center manifold for system (3). Since the center

manifold persists for any close system, it follows that the smooth attractive invariant

manifolds Meq(") and Mpo(") will exist for all small " in the whole system (2) (see

[9, 10] for details).

Thus, a trajectory of the system (2) for small " > 0 behaves in the following way:

in a �nite time it comes into a small neighborhood of one of the invariant manifolds

Meq or Mpo so that its x-component stays nearly constant. Then, it begins drifting

slowly along the chosen invariant manifold with the speed of change of x of order ".
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As for the original system (1) is concerned, one will observe, in contrast with the

above development, an almost instant jump in the y-components towards the invari-

ant manifold followed by a �nite speed motion in the x-variable. Additionally, if this
is the manifold Mpo, then one observes a fast circular motion in the y-components,

as depicted in Fig.4.

The equilibrium states of the fast system are found from the condition h(x; y; 0) = 0
yielding the algebraic equation forMeq. If y = yeq(x) is a stable branch ofMeq, then

the equation of motion of the x-component along it is given, up to the �rst order in

", by

(4) _x = g(x; yeq(x); 0):

This is a one-dimensional system which may possess attracting and repelling equi-

librium states corresponding to stable and saddle equilibrium states in the entire

system (1) or (2). The evolution along Meq is either limited to one of the stable

points, or the trajectory hovers about Meq onwards until it reaches a small neigh-

borhood of a critical value of x. Recall that x is treated as a governing parameter

for the fast system, hence its critical values correspond to bifurcations in the fast

system. So, for instance, at such critical x� two, stable and unstable, equilibrium

states of the fast subsystem may collide, thereby forming a saddle-node. This will

correspond to a maximum (or a minimum) of x on Meq. The x-component of the

trajectory may no further increase (resp. decrease) along the stable branch of Meq.

Instead, the orbit jumps towards another attractor, which is the !-limit set of the

outgoing separatrix of the saddle-node equilibrium state in the fast system at x = x�,

see Fig.5.

l po

(ε)poM

Figure 4. The fast circular motion on the cylinder Mpo(") de�nes
the Poincaré map of the intersection curve lpo(").

In order to determine the dynamics of the trajectory near the cylinder Mpo(") we
must �nd �rstly the equation y = ypo(� ; x) of the corresponding fast limit cycle for

the given x; here ypo is a periodic function in � of period T (x). Then we substitute

y = ypo(t"; x) into the right-hand side of the �rst equation in (1) and average it over

the period T (x). The resulting averaged system

(5) _x = �(x) �
1

T (x)

Z
T (x)

0

g(x; ypo(� ; x); 0)d�
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x=x

Meq Mpo

*

*x>x

Figure 5. Fast jump of the trajectory taking o� the fold towards the

attracting cylindrical surface.

gives a �rst order approximation (see [11]) for the evolution of the x-component of

the orbit near Mpo.

By cutting the cylinder surface by a cross-section transverse to the fast motion (see

Fig.4), one �nds a Poincaré map de�ned on the intersection line lpo("):

(6) �x = x+ " (x; ") = x+ "�(x)T (x) + o("):

This one-dimensional map may have stable and unstable �xed points (sited at the

zeros of  (x)). These points correspond to stable and saddle periodic orbits of the

system (1). The iterates of any point on lpo either converge to one of the stable �xed
points of the map, or continue to grow monotonically up to the critical value of x.

A critical value of x corresponds to a bifurcation in the fast system. We will next

consider three types of such bifurcations. The �rst one (see Fig.6) corresponds to

the case where the stable periodic orbit of the fast system collides with a saddle

periodic orbit thereby forming a saddle-node one which later fades. After passing

such critical value, orbits of the singularly-perturbed system (1) must follow orbits

of the fast subsystem, i.e. they jump toward the !-limit set of the unstable manifold

of the saddle-node.

The second situation illustrated in Fig.7 corresponds to the case where the stable

periodic orbit of the fast system shrinks to a focus. After passing through the

critical value the phase point keeps on drifting along the corresponding branch of

stable equilibria of the fast system.

The third situation (see Fig.8) corresponds to the case where the stable periodic

orbit of the fast system becomes a homoclinic loop of a saddle equilibrium with

one-dimensional unstable manifold. Thus, at this value of x the stable branch of

Mpo terminates by touching a saddle branch of Meq.

At " = 0 this branch of Meq is comprised of saddle equilibria of the fast system.

The union (over an interval of values of x) of their one-dimensional unstable man-

ifolds gives a two-dimensional invariant manifold W u(Meq) and the union of their

stable manifolds forms an n-dimensional invariant manifoldW s(Meq). The manifold

W u(Meq) is exponentially attracting, and the manifold W s(Meq) is exponentially
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repelling. Both are normally-hyperbolic invariant manifolds, and they, hence, per-

sist for all su�ciently small " [9]. The saddle branch Meq(") is the intersection of

W u(Meq) and W
s(Meq). The manifold W u(Meq) attracts orbits, so for every initial

point close to Meq, the orbit (may be after some drift along Meq) leaves a small

neighborhood of Meq close to W u(Meq), i.e. it deserts Meq at some x and follows

one of the separatrices of the corresponding saddle of the fast subsystem.

(ε)(ε) Mpo
L

*

0

x=x*
1

1Meq

2

*

2

0

lpo

x=x

eqM

x=x

W
u

L0

0L

u
W

Figure 6. The fold on Mpo (due to the saddle-node bifurcation in

the fast system at x = x�0) triggers the fast jump towards the attract-

ing slow motion surface M1
eq

corresponding to equilibria of the fast

subsystem. The unstable manifold of the saddle-node periodic orbit

L0 shrinks to a narrow tube after the jump.

(ε)(ε) Mpo
L

*
2

x=x*
1

2

eqM 1

0

0

lpo

x=x

*x=x

eqM
0

W
u

L0

W
u

L

Figure 7. The surfaceMpo shrinks intoM
1
eq
through the supercritical

Andronov�Hopf bifurcation in the fast subsystem at x = x�0.

3. Blue sky catastrophe

Let us now suppose that there exists certain numbers x�0; :::; x
�

k
such that the follow-

ing holds. Our singularly perturbed system has a number of branches M1
eq
; :::;Mk

eq
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*
0x=x

1

x=x

0

eqM

*
00

eq

(ε)

x=x*

M

M

1

0L
po

0L

u
W

W0L

u

Figure 8. The surface Mpo ends at x = x�00 which corresponds to a

homoclinic loop in the fast subsystem. The saddle branch M0
eq
termi-

nates at the fold at x = x�0. All the orbits starting near M0
eq

arrive

eventually next to the stable branch M1
eq
.

composed of exponentially stable equilibria of the fast system at " = 0. Each branch

M j

eq
is given by an equation y = yj

eq
(x) at " = 0, where the function yj

eq
(x) is de�ned

on a certain interval of values of x, including the interval between x�
j�1 and x

�

j
. The

drift along the M j

eq
is directed from x�

j�1 towards x
�

j
, i.e.

g(x; yj
eq
(x); 0) 6= 0 and sign g(x; yj

eq
(x); 0) = sign(x�

j
� x�

j�1)

for all x 2 [x�
j�1; x

�

j
] (see (4)). At x = x�

j
the branch M j

eq
ends up; namely, it

collides with a certain saddle one so the fast system has a saddle-node equilibrium

at x = x�
j
. The unstable manifold of this saddle-node tends to the exponentially

stable equilibrium of the fast system on the branch M j+1
eq

at j < k. When j = k,
the unstable manifold of the saddle-node tends to an exponentially stable periodic

orbit of the fast system. The corresponding stable branch Mpo extends in x until

one of the three following events takes place.

(I) At x = x�0 the stable branch Mpo meets that of saddle periodic orbits, i.e. the

fast system has a saddle-node periodic orbit. The unstable manifold of this orbit

in the fast system tends, as a whole, to the exponentially stable equilibrium on the

branch M1
eq
(Fig.6).

(II) At x = x�0 the stable periodic orbit of the fast system shrinks to the equilibrium

state lying in the branch M1
eq
(Fig.7).

(III) At some x = x�00 between x
�

k
and x�0 the stable periodic orbit of the fast system

adheres to a homoclinic loop of the saddle equilibrium of the fast system. The

corresponding saddle branch M0
eq

extends in x until x = x�0 where it terminates at

the fold representing a saddle-node equilibrium in the fast system; the direction of

the shift in x on M0
eq
is from x�00 towards x

�

0. For every x between x�00 and x
�

0 both

the one-dimensional separatrices of the saddle of the fast system tend to the stable

equilibrium on the branch M1
eq

(at x = x�00, when one of the separatrices forms a

homoclinic loop, the other tends to the equilibrium on M1
eq
). At x = x�0 the whole
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unstable set of the saddle-node of the fast system tends to the exponentially stable

equilibrium on M1
eq
(Fig.8).

In the latter case we need one more assumption. Let �j(x) stand for maximum of

the real part of the characteristic exponents (i.e. for the largest Lyapunov exponent)

of the equilibrium state of the fast system for the �xed value of x on the branch

M j

eq
at " = 0. By construction, all �1(x); : : : ; �k(x) are negative (for equilibria on

the branches M1
eq
; : : : ;Mk

eq
are exponentially stable). Since the single branch M0

eq

corresponds to a saddle equilibrium, it follows that �0(x) > 0. We assume that

(7)

kX
j=2

Z
x
�

j

x�
j�1

�j(x)
dx

g(x; yjeq(x); 0)
+

+max
x

 Z
x
�

1

x

�1(x)
dx

g(x; y1
eq
(x); 0)

+

Z
x

x
�

00

�0(x)
dx

g(x; y0
eq
(x); 0)

!
< 0;

where the maximum is taken over all x 2 [x�00; x
�

0].

Concerning the motion near the manifold Mpo, for all three cases above we assume

also that the function �(x) that de�nes, to the �rst order, the direction of the drift

along Mpo (see (6)) has constant sign (the same as the sign of x�0 � x�
k
) everywhere

except for one point x = x�� where � vanishes. So, �(x��) = 0, �0(x��) = 0 and

we may assume �00(x��) 6= 0 (the functions g and h in (1) are required to be C2 at

least). Let us include our slow-fast system in a one-parameter family of systems (i.e.

we assume that the functions g and h depend on some parameter � varying near

� = 0) such that �(x��) = 0 at � = 0 and
@�

@�
(x��) > 0.

It follows that there exists a smooth curve � = ��("), ��(0) = 0, such that the

function  from (6) has exactly two zeros at � < ��(") which collide at � = ��("),
and at � > ��(") the function  is non-zero for all x between x�

k
and x�0 (between

x�
k
and x�00 in case III). Zeros of  are the �xed points of the Poincaré map on the

attracting invariant manifold Mpo("). Thus, if � < ��(") our system (2) (or (1) has

two periodic orbits on Mpo("): a stable orbit L+ and a saddle orbit L� (Fig.9).

Let U be a small �xed neighborhood U enveloping the branches Mpo and M j

eq
, as

well as the orbits of the fast system which connect them. By construction, every

orbit (excluding those in the stable manifold of L�) within U tends to L+ as time

increases. Indeed, any orbit, which begins nearMpo and reaches the threshold x = x�0
or x = x�00, will eventually jump next to the branch M1

eq
, then drift along it before

making the next leap to the similar branch M2
eq

and so forth until it will bound

�nally back to the initial branch Mpo landing in the attraction basin of the periodic

orbit L+.

At � = ��(") the orbits L+ and L� unite into a saddle-node periodic orbit L0. The

manifold Mpo(") is a center manifold for this orbit; that part of Mpo(") where the

orbits run away from L0 as time increase is the unstable manifold of L0. After
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approaching the critical value of x where the stable branchMpo �nishes, all the orbits

on the unstable manifold land closely next to the branch M1
eq

so that the manifold

W u

L
will focus in a very narrow tube following around and bouncing amongst the

slow motion branches M j

eq
, prior its �nal return to L0 twirling around Mpo. This

gives exactly the con�guration of the unstable manifold which was projected in

Fig.2. Therefore, one should anticipate the blue sky catastrophe here, which is

indeed justi�ed by the following theorem.

)

µ

ε

µ

µ=µ (ε)*

(

L
L+

Ws-L -L

Figure 9. At � < ��(") the system has two periodic orbits: a stable

orbit L+ and a saddle orbit L�. The orbits which do not lie in the

stable manifold of L� tend to L+ as time increases. At � > ��(") the
system has a single and attracting limit cycle L� whose length tends

to in�nity as �! ��(") + 0.

Theorem. In any of the above cases I,II or III, for all su�ciently small " > 0 and

� > ��("), in the neighborhood U there exists a unique stable periodic orbit L� which

attracts all orbits from U . Both the period and the length of L� tend to in�nity as

�! ��(") + 0.

Proof. By assumption, at " = 0 and � = 0 the fast system has a periodic orbit L0 at

x = x��. Since L0 is an exponentially stable periodic orbit of the fast subsystem the

absolute value of every of its multipliers is less than 1. In the augmented slow-fast

system (2) this orbit has, besides, an additional multiplier equal to +1 corresponding
to the x-variable. Formally speaking, L0 is a non-hyperbolic periodic orbit of (2)

with the center variable x. It is well known that for such orbit there exist an invariant
center manifold and an invariant strong-stable foliation which is transverse to the

center manifold. Moreover, both ones persist for all close values of parameters. The

center manifold coincides with the surface Mpo, so it can be parameterized by the

x-variable and by the angular variable ' 2 S
1 (which is indeed the phase on the
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periodic orbit in the fast system). The �ow is uniformly exponentially contracting in

the directions transverse toMpo. Let the coordinates in these contracting dimensions

be denoted as z 2 R
n�1 ; we can always introduce the z-coordinates so that the center

manifold becomes locally straightened, i.e. Mpo near L
0 acquires the equation z = 0

for all small " and �.

The existence of the strong-stable invariant foliation implies that the variables

(x; '; z) in a small neighborhood of L0 can be introduced in such a way that the evo-

lution of the (x; ')-variables will become independent of the z-variable for all small

" and � (see [12] for details and proofs). Thus, the Poincaré map of an appropriate

cross-section, say, ' = 0, is written near L0 as

(8) �x = x+ " (x; "; �); �z = A(x; z; "; �)z;

where  is the function from (6), and A is an (n � 1) � (n � 1)-matrix such that

jjAjj < 1.

By assumption, when � > ��(") the function  vanishes nowhere; for de�niteness

we may assume  > 0 (in other words: x�0 > x�
k
). Hence, by �xing x+ > x��,

any trajectory beginning in a small neighborhood of x = x�� will eventually hit the

cross-section at a point (x; z) within the band �+ : x+ � x < x+ + " (x+; "; �). As
time grows the orbit will further move towards the increase of x, then it will leap

across onto a branch Meq, etc., and as explained above, will �nally return into a

small neighborhood of x = x�� on Mpo from the side of x < x��. Hence, given any

x = x� < x�� �xed near x = x��, the orbit will pierce the strip �� : x� � x <
x� + " (x�; "; �) on the cross-section at some uniquely de�ned point. Thus, the

�ow outside the small neighborhood of L0 determine the map: �+ 7! �� which we

will denote by T1.

Analogously, the �ow near Mpo in the region x� � x < x+ + " (x+; "; �) de�nes
the map T0 : �� 7! �+ for � > ��("). The composition T1 Æ T0 is a Poincaré map

of ��. We will show below that this map is a contraction, and hence has a single

and stable �xed point attracting all other orbits. This �xed point corresponds to

the sought periodic orbit L� of our slow-fast system. The number of iterations for

the map (8) to take an orbit from �� to �+ tends to in�nity as �! ��(")+ 0; each
iterate of the map corresponds to one complete revolution of the trajectory of the

�ow around Mpo, i.e. to a non-zero length interval on L�. Consequently, the total

length of L� increases without a bound as �! ��(") + 0. Thus, as soon as having

the contraction of the map T1 Æ T0 evinced, we have the theorem proved.

Let us �rst show that the �rst derivative of the map T0 is uniformly bounded from

above. As we mentioned, the map is contracting in z, so we have solely to check the

boundedness of the derivative of the map in the x-variable (which is independent

of z). Take any x0 2 [x�; x� + " (x�; "; �)) and let fx1; :::; xmg be its orbit, i.e.

xj+1 = xj + "+  (xj; "; �), and xm 2 [x+; x+ + " (x�; "; �)). We need to prove the

uniform boundedness of
dxm

dx0
for arbitrarily large m.
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Note that
dxj+1

dx0
= (1 + " 0(xj))

dxj

dx0
(we omit the dependence of  on " and �).

Following [6], let us introduce �j = ln
1

 (xj)

dxj

dx0
. It is easy to see that

�j+1 = �j + ln
(1 + " 0(xj)) (xj)

 (xj + " (xj))
� �j + ln

1 + " 0(xj)

1 + "minx2[xj ;xj+1]  
0(x)

:

It follows then that

�j+1 � �j � K"(xj+1 � xj);

where K is some constant. Hence,

�m � �0 � K"(xm � x0) � K"(x+ � x�):

Thus, �m � �0 is uniformly bounded, which means that
 (x0)

 (xm)

dxm

dx0
is uniformly

bounded too. Since x0 is bounded away from x��, the value of  (x0) is also bounded

away from zero, and from here the required uniform boundedness of
dxm

dx0
follows.

Next we will prove that the map T1 for all � is contracting with the contraction

factor tending to zero as " ! +0. Choose a point M 2 �+ and �M = T1M 2 ��.

Since the phase velocity vectors ( _x; _y) at both end points M and �M are bounded

away from zero and since the angle between these vectors and the cross-section is

bounded away from zero as well for all small ", it follows that in order to prove the

strong contraction property for the map T1 it is enough to show that the �ow from

M to �M contracts strongly two-dimensional areas, for any initial point M 2 �+.

To do so we split the �ight from �+ to �� into a few stages such as the slow drift

along Mpo, then jumps towards and between the branches Meq, the slow passages

along ones, and the �nal leap back to Mpo together with the drift along it until

reaching ��. Let us pick a su�ciently small Æ > 0. The interval of time (�) needed
for a trajectory of the system (2) to �y o� the Æ-neighborhood of one branch to the

Æ-neighborhood of the other branch is �nite. Therefore, every such jump brings only

a �nite contribution into the contraction or expansion of areas. The number of such

interbranch leaps is �nite too, so altogether the jumps may contribute only a �nite

factor to the overall expansion/contraction of areas.

The �rst two Lyapunov exponents of the trajectory of the unperturbed system (2)

at a point x on M j

eq
are 0 and �j(x) when " = 0 (the zero exponent corresponds

to the x-variable, whereas �j is determined via the fast system). Therefore, when

" is nonzero and small, the time-�� shift (�� is small enough) set by the �ow in

the Æ-neighborhood of the point x multiplies the areas by a factor bounded above

by e(�
j(x)+O(Æ)+O("))�� . It follows from here that the total coe�cient of expansion

or contraction of areas gained during the transport in the Æ-neighborhood of the

branch M j

eq
from a point x1 to a point x2 is bounded above by

C1 exp

�
1

"

Z
x2

x1

(�j(x) + C2Æ)
dx

g(x; yjeq(x); 0)

�
;
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where C1;2 are some constants independent of x, Æ and ". Recall that �j < 0 for

j = 1; :::; k. Thus, if Æ > 0 is su�ciently small, it follows that in any of the cases I,II

and III under consideration (in case III, inequality (7) is crucial), during that phase

of motion between �+ and �� which corresponds to the drift in the Æ-neighborhood

of the branches M j

eq
and the interbranch jumps, the �ow contracts areas with a

factor e��=" at least, where � > 0 is a constant independent of Æ and ".

Now note that the �ow in the Æ-neighborhood of Mpo but outside a small neigh-

borhood of x = x�� and the Æ-neighborhood of the branches Meq cannot produce a

strong expansion of areas. Indeed, the �rst two Lyapunov exponents for the system

(2) at " = 0 are both zero on Mpo (as earlier, the �rst one is due to the x-variable
while the other one corresponds to the circular motion on the stable periodic orbit

of the fast system). In fact, every complete revolution in the Æ-neighborhood of

Mpo but outside the Æ-neighborhood of the branches Meq gives the rate of the area

expansion estimated as eO(Æ). When " 6= 0 is su�ciently small this becomes only

slightly worse, i.e. this factor is modi�ed to eO(Æ)+O("). The number of the turns

that the orbit makes around Mpo while travelling along the path from �� towards

�+ (i.e. outside of a small neighborhood of x��) is evaluated as O("�1) (because the
function  is bounded away from zero in this region, see (6)). Hence, the factor of

possible expansion of areas accumulating during that phase of transport from �+ to

�� which corresponds to the drift near Mpo does not exceed some e(C(1+
Æ
"
)).

Thus, when " is small enough, the areas are indeed strongly contracted during the

�ight from �+ to ��. Hence, the map T1 is a strong contraction, so is the map

T1 Æ T0 : �� ! ��. End of the proof.

4. Summary

To conclude we remark that the suggested mechanisms of the blue-sky catastrophe

in slow-fast systems have indeed been reported in models of neuronal activity, for

example, describing the dynamics of the leech heart interneurons, see [13]. The

transition (illustrated in Fig.9) from one type of self-sustained oscillations (a round

stable periodic orbit L+) to the regime where the attractor is the �long� stable orbit

L� can be interpreted as a transition from periodic tonic-spikes to periodic bursting

oscillations. Here, each burst is constituted of the slow helix-like motion along Mpo

generating a large number of spikes, followed by the inter-burst �calm� phase due to

the sluggish drive along Meq.

Note as well that even before the transition to the bursting oscillations the spiking

mode is in excitable state here: a perturbation which drives the initial point outside

the saddle limit cycle L� results in a long calm phase before the sustained spiking

restores.
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