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ABSTRACT. The temporal evolution of moments of outflow-rate is investigated 
in a stochastically perturbed nonlinear reservoir due to precipitation. The de-
tailed stochastic behaviour of outflow is obtained from the numerical solution of 
a nonlinear stochastic differential equation with multiplicative noise. The time-
development of first two moments is studied for various choices of parameters. 
Using Stratonovich interpretation, it turns out that the mean outflow-rate is 
above that given by the deterministic solution. Based on the set of 9000 simu-
lation runs, 90 % confidence intervals for the mean evolution of outflow-rate are 
computed. The effect of stochastic perturbations with finite correlation time is 
also investigated. 
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1. INTRODUCTION 

The time distribution of outflows at the outlet of catchments fed by rainfall is usu-
ally studied on the basis of a single or a cascade of conceptual reservoirs, see Nash 
[16]. The outflows driven by deterministic inputs of rainfall have been extensively 
studied within the framework of cascade of conceptual reservoirs. Efforts have also 
been made to incorporate the nonlinear relationship between storage and discharge 
in Singh [20]. 
U nny & Karmeshu [24] have extended the Nash cascade of reservoirs to take into 
account the stochastic nature of input. The objective of such an extension is to pro-
vide a principal basis for the generation of stochastic stream flows. Incorporating 
stochastic input, the storage balance equations for the system of reservoirs turn out 
to be stochastic differential equations (SDE's ). There are already examinations for 
quite general SDE's describing hydrological systems, e.g. in stochastic streamflow 
modelling with jump diffusions by Konecny & N achtnebel [10]. However, herein 
attention is to be drawn to SDE's driven only by white and coloured noise sources. 
Recently Karmeshu & Lal [6] have further investigated the stochastic behaviour of 
storage in conceptual reservoirs based on storage balance equations. The explicit 
time-development of moments of outflow for a reservoir could be obtained only in 
the linear case. However, in a nonlinear reservoir the resulting nonlinear SDE leads 
to a rather intractable hierarchy of moment equations. In a recent paper Fujita, 
Shinohara, Nakao & Kudo [4] have also considered a stochastic nonlinear reservoir 
and have analyzed the linearized version with additive noise. · 
T;lie purpose of this paper is to investigate the evolution of moments of outflow 
in a nonlinear reservoir arising due to stochastic rainfall/precipitation. The re-
sulting SDE with multiplicative noise can be int~rpreted in two different ways -
Stratonovich and Ito prescriptions, cf. Gardiner [3]. These are related to each other 
in the sense that one can transform results of one prescription to those of the other. 
We have adopted Stratonovich prescription as it is preferable for modelling a phys-
ical process, due to Wong & Zakai [27]. However, for the purpose of comparison we 
have presented results for Ito prescription as well. 
The evolution of moments of outflow is obtained by numerical integration schemes, 
in general, based on the stochastic Taylor expansion described in Kloeden & Platen 
[7]. Unny [25] also discussed the numerical integration of SDE's in the context of 
catchment modelling. Resorting to numerical analysis has enabled us to take into 
account the time varying nature of the rainfall intensity. 
The paper comprises seven sections. Section 2 deals with the formulation of the 
stochastic model involving a nonlinear stochastic differential equation. Section 3 
and 4 are concerned with the stationary probability density function (pdf) andthe 
evolution of moments of outflow-rate. After discussing briefly numerical methods 
for the solution of stochastic differential equations in section 5, we carry out the 
numerical simulation of moments in section 6. Succeeding section 7 is devoted to 
the study of effects of coloured noise :fluctuations on the evolution of moments. 
Eventually, this paper finalizes with some conclusions and remarks in section 8. 
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2. FORMULATION OF THE MODEL 

The continuity equation for the storage S( t) in a reservoir can be written as 

d~~t) = I(t) - Q(t), (2.1) 

where Q(t) denotes the outflow-rate and I(t) is the inflow-rate. The storage equa-
tion takes into account the nonlinearity of the conceptual reservoir considered, fol-
lowing the consideration of Singh (20]. Among several storage equations proposed 
in the literature, the simplest nonlinear reservoir is defined as 

(2.2) 

k and n being positive parameters. The exponent n is generally found to lie between 
0.4 and 3.3. Combining equations (2.1) and (2.2), we get the differential equation 
for the outflow-rate · 

~~ = aQ1-n[J(t)- QJ, (2.3) 

where 

a= 1/(kn). (2.4) 

The inflow-rate being usually expressible in terms of precipitation is stochastic in 
nature. Customarily, the stochastic fluctuations in the precipitation can be repre-
sented by a white no!se process. Thus we set 

I(t) = J(t)[l + ae(t)] (2.5) 

where I( t) denotes the mean precipitation, e( t) represents the stochastic fluctua-
tions and a measures their intensity. 
Substituting equation (2.5) in equation (2.3), we get the SDE for the outflow-rate 

dQ(t) = aQ1-n(t)[l(t) - Q(t)]dt + aal(t)Q1-n(t) o dW(t) (2.6) 

where we replace e(t)dt by the differential dW(t) of the Wiener process, and the 
SDE (2.6) is to be interpreted in the Stratonovich sense. 
The Ito SDE corresponding to the Stratonovich SDE (2.6) is 

dQ(t) = [aQ1-n(t)(I(t) - Q(t)) + ~a2a2(1- n)J2(t)Q 1- 2n(t)] dt 

+ aal(t)Q1-n(t)dW(t) (2.7) 

The SDE (2.6) as well as (2. 7) completely describes the stochastic evolution of the 
outflow-rate from a conceptual reservoir. The solution process Q(t) is a diffusion 
process, and accordingly the SDE is subject to the theory of diffusion processes. 
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3. STATIONARY PROBABILITY DENSITY OF THE OUTFLOW-RATE 

The complete probabilistic description of the model can be obtained in terms of 
the Fokker-Planck equation (FPE) which yields the probability density for the 
outflow-rate Q(t). The FPE corresponding to the SDE (2.6) is 

8p( Q, t!Qo) a [ 1 , ] 1 82 
[ 2 ] at = - aQ {f(Q, t) + 29 (Q, t)g(Q, t)}p + 2 8Q2 9 (Q, t)p (3.1) 

where 

J(Q, t) =aQ1-n(l(t) - Q), 
g(Q, t) =aal(t)Q1-n. 

(3.2) 

The FPE is to be solved under appropriate boundary conditions, one of them is 
that at Q = 0 there is a reflecting barrier. This condition can be expressed by the 
requirement that the current probability vanishes at Q = 0, i.e. 

(3.3) 

The other boundary condition is provided by imposing the natural boundary con-
dition for Q ~ oo. The initial condition can be expressed as 

limp(Q, t!Qo) = 6(Q - Qo). 
t~o 

(3.4)~ 

It may be mentioned that to derive the explicit solution of the FPE seems to be 
impossible. However, the stationary probability density function Ps( Q) (pdf) can be 
obtained by setting c3p~~,t) = 0. Following Horsthemke & Lefever [5], the stationary 
pdf Ps( Q) is found to be 

N(n) f(u) 
[ 

Q ] p,(Q) = g(Q) exp 2 f g2(u)du , Q > 0 (3.5) 

where N( n) is. the corresponding normalization constant. Consequently, the station-
ary probability density Ps( Q) corresponding to the outflow model (2.6) possesses 
then the form 

Ps(Q) = { N(n)·Co·Qn-l.exp[C1·Qn-C2 ·Qn+1] : if Q>O 
0 : else (3.6) 

where Co = ~' C1 = 2 Co C2 = C1 n 
k n I a2 n ' I ( n + 1) 
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with I, u 2 , k, n > 0. 

p(Q) 

0.25 

0.2 

0.15 

Figure 1. Stationary probability densities of the outflow-rate 
(n = 1/3, 1/2, 3/4, 1). 

4 

For the purpose of illustration we present in figure 1 graphs of Ps( Q) for various 
values of the exponent n. We find that for n < 1, the shape of Ps( Q) is highly 
skewed and tends to be symmetrical as n increases up to 1 and beyond, with more 
and more concentrating mass at Q = 1. Although it has not been possible to obtain 
the evolution of pdf p( Q, t1Q0 ), nevertheless significant insight could be gained from 
the evolution of moments pertaining to the pdf. 
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4. EVOLUTION OF MOMENTS FOR THE OUTFLOW-RATE 

The differential equations governing the evolution of first two . moments of the 
outflow-rate can be obtained from the SDE (2.6). Using Ito's formula (Arnold 
[1], Gardiner [3] or Kloeden & Platen [22]), the mentioned differential equations 
are 

dE[~(t)) =af(t)E[Q1-n(t)] - alE[Q2-n(t)) + ~o-2a2 (1 - n)72(t)JE[Q1- 2n(t)); 

dE[Q
2
(t)] =2al(t)E[Q2-n(t)] - 2aE[Q3-n(t)] + a 2a2(2 - n)I\t)E[Q2- 2n(t)]. (4.1) 

dt . 
Proceeding in a similar manner, differential equations for higher order moments can 
be derived. It may be noted that except for the linear case ( n = 1 ), the equations 
for the first (and second) moments involve moments of orders other than first (and 
second). It is easily seen that, in order to study moments, one is confronted with 
the hierarchy of moment equations (Soong [21 ]). 
To make any progress one could truncate the hierarchy at some stage, but the 
truncation procedures based on the assumption that the pdf of the process Q( t) is 
close to a Gaussian process are not suitable for our purpose. The reason is that the 
·model considered here is described by a SDE driven by multiplicative noise which 
yields a probability distribution being quite different from the Gaussian one. The 
best one can do under these circumstances is to employ a numerical scheme and to 
simulate the evolution of the moments for the outflow-rate. 

5. NUMERICAL METHODS FOR THE SOLUTION OF SDE's 

Numerous methods for the numerical treatment of stochastic differential equations 
can be found in the literature. For the sake of generality we only consider the 
following type· of stochastic differential equations. Given am-dimensional Wiener 
process (Wi ( t) );=1, ... ,m which drives the Ito differential equation 

m 

dQ(t) = a(Q(t)) dt + E ll(Q(t)) dWi(t) (5.1) 
j=l 

starting at Q(O) = Q0 E Rd on. the time interval [O, T]. As already mentioned the Ito 
and Stratonovich versions of (5.1) can be transformed each other in a natural way. 
Solutions {Q(t) : t ~ O} of (5.1) exists and are unique under the assumptions of 
Lipschitz continuity and of 'appropriate' polynomial boundedness of the functions 
a(.) and b(. ). The simplest method to generate numerically such solutions is the 
Euler-Maruyama method constructed by the scheme 

m 

Yn+l = Yn + a(Yn) D:.n + L ll(Yn) 6 w~ (n = 0, 1, 2, ... ). (5.2) 
j=l 

Here Yn+l means the value of the approximate solution using the step size 6n = 
tn+i - tn at the time point tn+i· With 6 W~ == Wi(tn+i) - Wi(tn) we denote 
the current j-th increment of the Wiener process Wi ( t) which can be generated 
as a standard Gaussian random variable multiplied by ~· At least for 'small 
enough' step sizes 6n, by corresponding convergence theorems the application of 
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the method (5.2) to the equation (5.1) is justified to obtain an approximate solution 
depending on the practical purpose one is going to follow. In cas~ of path wise 
approximation (strong) one requires that it exists a positive constant K = K(T) 
( T terminal time) such that 

(5.3) 
where 6 = sup 6n < +oo. In contrast to that, for momentwise approximation 

n 
(weak) it is sufficient to demand only that 

\ltn: II E (g(Q(tn)) - g(Y(tn))) II < K(T,g) · 6(3 (5.4) 

with respect to a class of 'sufficiently smooth' functions g (often g E C;°). The 
weak convergence has more practical usage because one is mostly interested in the 
calculation of moments only. In those cases one may even simplify the generation 
of the random variables 6 W~ in (5.2). For equidistant approxim~tions, it turns out 
to take any independent random variables e;,n instead of 6 w~ which satisfy the 
moment relation 

for a constant C > 0. Thus we keep the weak convergence order /3 = 1.0 of the 
simplified Euler method (5.2) with validity of (5.4). For example, this is tr;ie for 
the two-point distributed random variable [or the three-point distributed [with 

" r;: 1 ~ /;;-;- 1 ~ 2 
JP(e = ±y 6) = 2 or JP(e =. ±y36) = 6 and JP(e = 0) = 3' 

respectively. This simplification saves time and computational effort, but the same 
procedure cannot be applied to the scheme (5.2) approximating pathwisely the 
solution of (5.1) via the requirement (5.3). The method (5.2) possesses the strong 
convergence order r = 0.5 and weak convergence order /3 = 1.0. Mil'shtein has done 
one of the first trials of systematic construction of numerical methods and proved 
the convergence of the well-known Mil'shtein schemes (with r = 1.0 and /3 = 1.0). 
In general, corresponding higher order methods are derived from the stochastic 
Taylor expansion, which is due to the iterative application of Ito's lemma, by ap-
propriate truncation. This approach has been firstly suggested in Wagner & Platen 
(26] and is described in Mil'shtein [13] and Kloeden & Platen [7]. For further details, 
see Clark & Cameron [2], Kushner & Dupuis [11], Newton [17], Pardoux & Talay 
(18], Talay (22, 23] or Kloeden, Platen & Schurz [8]. In our experiments we used 
the scheme form (5.2) and obtained reasonable results for the outflow-rates. Note 
that higher order methods would not be always applicable to our models because 
of explosions in their numerical solutions close to zero. Furthermore, in Mil'shtein, 
Platen & Schurz [14] one finds first attempts to achieve control in stochastically stiff 
situations, such systems where one observes slowly and rapidly varying stochastic 
components influencing decisively the dynamical behaviour. In some applications 
(in particular in long-term simulations for stiff systems and in simulations for cas-
cades of water reservoirs) one needs stability of numerical intergration methods, 
in addition to convergence requirements on finite time intervals. For this purpose 
implicit methods are introduced, cf. Kloeden et al. [7, 8, 9] or Mil'shtein (13, 14]. 
Special interest for moment stability, particularly for mean square stability, rises 
during the simulation experiments, as in this paper. A corresponding mean square 
stability analysis for linear numerical methods with lower convergence order has 
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been recently worked out by Schurz [19]. Using contribution [19] one can achieve 
control on the numerical behaviour (here moment evolution of the outflow-r?-te) of 
the linearized models up to their second moments, as long this is true for the cor-
responding continuous time systems. However, such analysis and implicit methods 
are not generally needed for our hydrological model. 
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6. NUMERICAL SIMULATION OF MOMENTS 

As discussed in section 4, the numerical solution of SDE's is an effective means of 
obtaining detailed information about the stochastic behaviour of the outflow-rate. 
To this end we have simulated the system governed by SDE's for the following 
situations: 
A. Constant mean precipitation, 
B. Constant mean precipitation followed by exponential decay. 

A. Constant mean precipitation 
We have numerically solved the considered SDE for a few choices of the parameter 
a when the mean precipitation is assumed to remain constant over. the entire sim-
ulation run. In the following runs the time step size of the Euler approximation is 
ti = 0.0l(hr ). The initial time t 0 = 0 and the simulation is for 4 hrs so that T = 4. 
The other parameters of the model are fixed and their magnitudes are : 
Mean precipitation 1 = 10, k = 1.0, n = 0. 75, Initial outflow-rate Q(O) = 1.0. 
In figure 2 the deterministic evolution of Q( t) is presented. This corresponds to 
the case a = 0, when there are no :fluctuations. While modelling consideration· 
requires the Stratonovich interpretation, for comparison we have also computed 
the sample paths of Q(t) when the SDE is interpreted in Ito sense as well. For 
small values of a= 0.1, the two sample paths are very close to each other. Diver-
gence between paths increases with a caused by the growing up difference between 
the corresponding drift functions. We observe in figure 3 that the sample path 
under Ito interpretation gives a lower estimate of the outflow-rate as compared 
with the Stratonovich prescription. In figure 4 the temporal deterministic out:flow-
rate as well as the mean outflow-rate interpreted in Stratonovich and Ito calculus 
are given. One observes that Stratonovich prescription gives larger estimates of the 
mean outflow-rate than the deterministic values which are above the Ito estimates . ., 
The time-development of the second moment E[Q2 (t)] is viewed in figure 5, and 
we notice that, as time advances, it tends to settle down to a constant value. Fig-
ure 6 displays the 903 confidence intervals for the mean evolution in Stratonovich 
calculus comp~red with the deterministic values. The estimates are based on the 
mean of a set of 15 batches of trajectories repeatedly observed 600 times. 

B. Constant mean precipitation followed by an exponential decay 
In this situation we have assumed that the precipitation remains constant for T = 2 
hrs and then it falls exponentially. This can be expressed as 

I(t) _ { 11 (1 + ae(t)) 
- 11 exp(-a(t - 2)) (1 + ae(t)) t>2 (6.1) 

where a (> 0) is a precipitation decay parameter. The model described by the 
equation 6.1 besides being more realistic is mathematically interesting. The process 
evolves till time T = 2 governed by (2.6) with given initial condition. Then, terminal 
points Q(T) of the sample paths serve as random initial conditions for the out:fiow-
rate which has to be incorporated in (2.6). Figure 7 shows the mean evolution 
(a = 2) in both Stratonovich and Ito calculus compared with the deterministic 
values firstly increasing up to T = 2 and then starts declining. 



Karmeshu & H. Schurz: Moment Evolution of the Outflow-Rate 

Q(t> 

l.5 

Stochastic Euler approxi-tion 

l. 

Figure 2. Sample path of the outflow-rate with a = 0.1. 
~ Stratonouich approxi-tion 

Q<t> 

J.5 
Deter111 in istic Euler ..... r~ 

J. 

O-f-"-~~~~~-+-~~~~-11.-+-~--=-=--~~-+-~~~~~-1-~ 

0 l. 2 3 
til'M! t 

4 

Figure 3. Sample path of the outflow-rate with a = 0.5. 
E CQ< t> l 

l.2 

l. 

0 l. 
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"' --------DeterMinistic outflow-rate 

t 
'Ito est mate 

2 3 
t it"e t 

4 

Figure 4. Estimate for the first mean evolution. 
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E CQ<t>J 2 

St:ratonouich estiPN1.te 
~ 

l.50 

1.0 

Figure 5. Estimate for the mean square evolution. 
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Figure 6. Confidence intervals (903) for the mean evolution. 
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Figure 7. Estimated mean evolution with exponentially decaying precipitation. 
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7. EFFECT OF COLOURED NOISE FLUCTUATIONS 

In the previous section we carried out the analysis to study the effect of white 
noise :fluctuations in the precipitation. The assumption of white noise implies that 
the time scale of :fluctuations is negligibly small compared with the macroscopic 
time scale of the system. This assumption is in general rather too restrictive, and 
in a more realistic situation the time scale of :fluctuations may not be negligibly 
small. Accordingly, one has to assume that the stochastic perturbations in the 
precipitation are represented by coloured noise with a finite correlation time. A 
realistic version of noise with finite correlation time is the well-known Ornstein-
Uhlenbeck process [3]. The auto-correlation of e( t) is given by 

I V I I E[e(t)e(t )] = 2exp(-vlt - t I) , t > t (7.1) 

which tends to the delta-correlated process as v ~ oo. Equations 7.1 can be used 
to define the correlation time as l/v (v > 0). Now we rewrite the SDE (2.6) to 

dQ(t) = aQ1-n(t)(J(t) - Q(t)) dt + ual(t)Q1-n(t) e(t) dt (7.2) 

where e( t) is a. stationary Ornstein-Uhlenbeck process determined by 

de(t) = -ve(t) dt + v dW(t). 

E [QCt>] 

l.O 

l. ..•.•••••.•.•.••...•••.••••••.••..•...••.••..•••••••.••.....•...•.•....•••••.•••.•.••.•...••.•.••.... 

0 l. 2 3 4 th•e t 

Figure 8. Estimated mean outflow-rate with exponentially decaying 
precipitation and various correlation parameters v. 

(7.3) 

For various values of the parameter v, the coupled SDE's 7.2 and 7.3 are solved 
numerically. Figure 8 gives the mean outflow-rate for the same values of parameters 
as considered in section 6.A. For large values of v we find that E[Q(t)] tends to those 
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viewed in the figure 4. However, for smaller values of v the deviation is significant. 
In passing, we note that under the peculiarity of coloured noised systems several 
special effects in their numerical simulation occur. For example, numerical solutions 
achieve a higher order of convergence to the exact one, cf. Mil'shtein & Tretjakov 
[15]. 

8. SUMMARY, CONCLUSIONS AND REMARKS 

The described hydrological models can be considered as natural generalization of 
the corresponding deterministic models. It is worth to introduce and handle with 
stochasticity influencing outflow-rates. The probabilistic behaviour of the outflow-
rate is given by a Fokker-Planck equation which is not explicitly solvable in general. 
Nevertheless, the stationary behaviour of the outflow-rate could be completely de-
scribed in terms of the stationary probability density (as normalized stationary 
solution of its FPE). Because a complete analysis of the FPE was not possible, as 
often met in nonlinear situations, the main attention has been drawn to the mo-
ment evolution of the outflow-rate. Using numerical techniques from [7, 8, 9) arising 
from stochastic analysis we obtained estimates for the first and second moments, 
including confidence intervals for these statistics. Thus, we deliberately avoided 
the application of closure procedures for approximating the unwieldy equations for 
the moments. Depending on the stochastic calculus - Ito or Stratonovich - one 
observes an under- and overestimating of the mean evolution compared with the 
deterministic evolution, respectively. However, Stratonovich interpretation should 
be prefered for modelling purposes, cf. Wong & Zakai [27]. Instead of white noise 
sources (uncorrelated increments), we recommend to model with coloured noise. 
At least in the mean sense, the coloured noised model leads to an estimate which is 
closer to the determ~nistic values than those of the Ito and Stratonovich estimates 
using white noise. 
A plenty of generalizations of the presented models for the outflow-rate could 
now follow. The framework proposed here can be easily extended to a cascade of 
stochastic nonlinear reservoirs. Besides, the incorporating of more general diffu-
sion processes in the models would be very useful. For example, jump-diffusions 
reflecting a series of jumps in the rainfall. As we already mentioned, such types of 
SDE's in Hydrology has been used by Konecny & Nachtnebel [10] in the context 
of daily streamflow modelling. They discribe the daily discharge series by a SDE 
with jumps based on the mass balance of a linear reservoir, and also provide some 
simulations. 
Anyway, much work incorporating some stochasticity in modelling has been and is 
being done. These and other papers demonstrate that even new e:ff ects can occur 
due to the consideration of several forms of stochasticity. Often, stochasticity ap-
propriately reflects the 'erratic behaviour of nature'. In this respect we close this 
paper with the hope of some encouragement of the readership to work on stochastic 
modelling. 
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