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Abstract
We consider a class of singularly perturbed parabolic problems in case of

exchange of stabilities, that is, the corresponding degenerate equation has two
intersecting roots. We present an analytic result about the phenomenon of
delayed exchange of stabilities and compare it with numerical investigations
of some examples.

1 Introduction
Consider an autonomous dynamical system S depending on some parameter λ. The
study of the in�uence of λ on the long-term behavior of the dynamical system S
represents an essential part of the bifurcation theory. λ∗ is called a bifurcation point
for S concerning the region G in the phase space of S if in any neighborhood N
of λ∗ in the parameter space there exist two points λ1 and λ2 such that the phase
portrait of S in G is not topologically equivalent for λ1 and λ2 If we assume that λ is
slowly changing in time then we arrive at the so-called dynamic bifurcation theory
[1]. As an example we consider the scalar ordinary di�erential equation

dx

dt
= f(x, λ), (1.1)

where we assume f(0, λ) ≡ 0 for all λ. For de�niteness we suppose that λ∗ = 0 is
an bifurcation point of (1.1), where x = 0 is stable (unstable) for λ < 0 (λ > 0).
This assumption implies that the bifurcation point λ = 0 is generically related either
to a transcritical bifurcation (see Fig 1.1) or to a pitchfork bifurcation (see Fig. 1.2).

u = ϕ(t)

u = ϕ(t)

t0 Ttc t

u

u = 0

Fig. 1.1. Transcritical bifurcation

u = ψ+(t)

u = ψ−(t)

t0 Ttc t

u

u = 0

Fig. 1.2. Pitchfork bifurcation
Now we suppose that λ increases slowly with t. For simplicity we set

λ = εt,
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where ε is a small positive parameter. Introducing the slow time τ by τ = εt, the
di�erential equation (1.1) takes the form

ε
dx

dτ
= f(x, τ), (1.2)

that is, (1.2) is a singularly perturbed non-autonomous di�erential equation. Under
our assumption, the solution set f−1(0) of the degenerate equation of (1.2)

0 = f(x, τ) (1.3)

consists in the τ − x�plane of two curves intersecting for τ = 0, as indicated in
Fig. 1.1 and Fig. 1.2. All points of f−1(0) are equilibria of the associated equation
to (1.2)

dx

dσ
= f(x, τ), (1.4)

where τ has to be considered as a parameter. The curve x = 0 is an invariant
manifold of (1.4) which is attracting for τ < 0 and repelling for τ > 0. We call this
situation as exchange of stabilities (according to Lebovitz and Schaar [15]).
If we consider for equation (1.2) the initial value problem

x(τ0) = x0, τ0 < 0, (1.5)

and if we assume that x0 belongs to the region of attraction of the invariant manifold
x = 0, then it follows from the standard theory of singularly perturbed systems (see,
e.g.,[24]) that the solution x(τ, ε) of the initial value problem (1.2),(1.5) exists at
least for τ0 < τ < 0.
For τ > 0 there are the following possibilities for the behavior of the solution x(τ, ε) :

(i). x(τ, ε) follows immediately the new stable branch emerging at τ = 0.

(ii). x(τ, ε) follows for some O(1)-time interval (not depending on ε) the repelling
part of the invariant manifold x = 0 and then jumps to the stable branch.

(iii). x(τ, ε) follows for some O(1)-time interval the repelling part of the invariant
manifold x = 0 and then jumps away from this manifold (possibly blowing
up).

The case (ii) is called delayed exchange of stabilities, case (iii) is called delayed loss
of stability. The corresponding solutions are said to be canard solutions.
The case of exchange of stabilities for singularly perturbed ordinary di�erential
equations has been treated by several authors using di�erent methods (see, e.g.,
[11-22, 25-27, 29-31]). In the papers [17, 18], the authors have applied the method
of lower and upper solutions to derive conditions for an immediate and for a delayed
exchange of stabilities, respectively.
The same technique has been used in the papers [2, 5-10] to derive conditions for an
immediate exchange of stabilities for di�erent classes of partial di�erential equations.
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In [16] the authors have shown that the same method can be used to establish the
phenomenon of delayed exchange of stabilities for a class of singularly perturbed
parabolic problems. In what follows we will compare our analytic estimate of the
transition region (interior layer) with numerical investigations of some examples.
As a conclusion of this study we get that the space-independent lower and upper
solutions should be replaced by space-dependent ones. The paper is organized as
follows. Section 1 contains the formulation of the problem, in section 2 we collect
our assumptions, section 3 present our analytic result. Section 4 is devoted to the
numeriacal study of the phenomenon of delayed exchange of stabilities, the �nal
section 4 contains the conclusions.

2 Formulation of the Problem
We consider the scalar singularly perturbed parabolic di�erential equation

ε

(
∂u

∂t
− ∂2u

∂x2

)
= g(u, x, t, ε),

(2.1)
(x, t) ∈ Q = {(x, t) : 0 < x < 1, 0 < t ≤ T},

where ε > 0 is a small parameter, and study the initial-boundary value problem
∂u

∂x
(0, t, ε) =

∂u

∂x
(1, t, ε) = 0 for t ∈ (0, T ],

(2.2)
u(x, 0, ε) = u0(x) for x ∈ [0, 1].

A root u = ϕ(x, t) of the degenerate equation

g(u, x, t, 0) = 0 (2.3)

represents a family of equilibria of the associated equation to (2.1)

du

dτ
= g(u, x, t, 0), (2.4)

where x and t have to be considered as parameters.
We recall that a root u = ϕ(x, t) is referred to as stable (unstable) in a region G if
gu(ϕ(x, t), x, t, 0) < 0 (> 0) ∀(x, t) ∈ G.
As in [9], we consider the case that the degenerate equation (2.3) has exactly two
roots u = ϕ1(x, t) and u = ϕ2(x, t) intersecting in a curve such that an exchange
of stabilities arises. In di�erence to [9], we treat in this chapter the phenomenon of
delayed exchange of stabilities, that is, we derive conditions such that the solution
u(x, t, ε) of (2.1), (2.2) stays in the unstable region of ϕ1(x, t) arising for t = tc(x)
for some O(1)-time interval near the unstable root ϕ1(x, t) and then either jumps to
the stable root ϕ2(x, t) (delayed exchange of stability) or escapes from the unstable
root (delayed loss of stability).
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3 Assumptions
Let Iu be an open bounded interval containing the origin, let Iε0 = {ε : 0 < ε <
ε0 ¿ 1}, D = Q × Iu × Iε0 . Let the functions g and u0 satis�es the smoothness
condition

(A0). g ∈ C2(D, R), u0 ∈ C2([0, 1], Iu).

With respect to the roots of the degenerate equation we suppose

(A1). The degenerate equation (2.3) has in Iu × Q exactly two roots: u ≡ 0 and
u = ϕ(x, t), ϕ(x, t) ∈ C2(Q, Iu). The roots u ≡ 0 and u = ϕ(x, t) intersect
in some smooth curve K with the representation t = tc(x) ∈ C1([0, 1], (0, T )).
For de�niteness we suppose

ϕ(x, t) < 0 for 0 ≤ t < tc(x), 0 ≤ x ≤ 1,

ϕ(x, t) > 0 for tc(x) < t ≤ T, 0 ≤ x ≤ 1

(see Fig. 3.1).

From assumption (A1) it follows

ϕ(x, tc(x)) ≡ 0 for 0 ≤ x ≤ 1.

Concerning the stability of these roots we assume

(A2).

gu(0, x, t, 0) < 0, gu(ϕ(x, t), x, t, 0) > 0 for 0 ≤ t < tc(x), 0 ≤ x ≤ 1,

gu(0, x, t, 0) > 0, gu(ϕ(x, t), x, t, 0) < 0 for tc(x) < t ≤ T, 0 ≤ x ≤ 1.

Hypothesis (A2) implies that the roots u ≡ 0 and u = ϕ(x, t) of the degenerate
equation (2.3) considered as families of equilibria of the associated equation (2.4)
exchange their stabilities at the curve K.
Furthermore, we suppose

(A3). g(0, x, t, ε) ≡ 0 for (x, t, ε) ∈ Q× I0.

Assumption (A3) is motivated by applications in reaction kinetics where we are
looking for nonnegative solutions.
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u

0

0 x1

tc(x)

T

t

ϕ(x, t)

Fig. 3.1. Intersection of u ≡ 0 and u = ϕ(x, t) in the curve t = tc(x).

Now we introduce the functions

gmin
u (t) = min

x∈[0,1]
gu(0, x, t, 0), gmax

u (t) = max
x∈[0,1]

gu(0, x, t, 0) for 0 ≤ t ≤ T.

Obviously, we have for (x, t) ∈ Q

gmin
u (t) ≤ gu(0, x, t, 0) ≤ gmax

u (t). (3.5)

We need also the primitives of these functions:

Gmin(t) =

∫ t

0

gmin
u (s)ds, G(x, t) =

∫ t

0

gu(0, x, s, 0)ds, Gmax(t) =

∫ t

0

gmax
u (s)ds.

By (3.5) the following inequalities hold for (x, t) ∈ Q (see Fig. 3.2)

Gmin(t) ≤ G(x, t) ≤ Gmax(t).

>From assumption (A2) we get that the equation Gmin(t) = 0 has at most one
solution in the interval (0, T ). We assume that this solution exists.

(A4). The equation Gmin(t) = 0 has a solution t = tmax in (0, T ).
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T ttmaxt∗

maxtmax
c t∗(x)tmin t∗

min
0

G

Gmax(t)

G(x, t)

Gmin(t)

Fig. 3.2. Inclusion of G(x, t) by Gmin

and Gmax for given x

0 x1

tc(x)

t∗(x)

T

t

tmax

t∗

min

tmin

tmax
c

Fig. 3.3. Location of tc(x) and t∗(x)

From hypotheses (A2) and (A4) it follows that the equation Gmax(t) = 0 has a unique
solution t = tmin in (0, T ), and that for each x ∈ [0, 1] the equation G(x, t) = 0 has
a unique solution t = t∗(x) in (0, T ) (see Fig. 3.2).
Obviously, for x ∈ [0, 1] we have

tmin ≤ t∗(x) ≤ tmax.

Finally we assume that the following conditions hold.

(A5).
tmax
c = max

x∈[0,1]
tc(x) < tmin (see Fig. 3.3).

(A6). There is a positive number c0 such that (−c0, c0) ⊂ Iu where Iu is the interval
from assumption (A0), and
g(u, x, t, ε) ≤ gu(0, x, t, ε)u for |u| ≤ c0, x ∈ [0, 1], 0 ≤ t ≤ t∗(x), ε ∈ Iε0 .

We note that assumption (A6) is satis�ed if the second derivative guu(0, x, t, ε) is
negative for all (x, t, ε) under consideration.

(A7). u0(x) lies in the basin of attraction of the stable root u ≡ 0.

4 Main results
Our main result is concerned with the estimate of the delay time in cases of delayed
exchange or delayed loss of stabilities.
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Theorem 4.1 Assume the hypotheses (A1)�(A7) to be valid and u0(x) > 0. Then,
for su�ciently small ε, there exists a unique solution u(x, t, ε) of (2.1), (2.2) which
is positive and satis�es

lim
ε→0

u(x, t, ε) = 0 for (x, t) ∈ [0, 1]× (0, tmin), (4.6)

lim
ε→0

u(x, t, ε) = ϕ(x, t) for (x, t) ∈ [0, 1]× (tmax, T ]. (4.7)

In case u0(x) < 0, the unique solution u(x, t, ε) of (2.1), (2.2) is negative and and
satis�es

lim
ε→0

u(x, t, ε) = 0 for (x, t) ∈ [0, 1]× (0, tmin),

for t > tmin the solution escapes from u ≡ 0 at some time tesc (escaping time) which
can be estimated by tesc ≤ tmax.

Remark 4.2 From Theorem 4.1 it follows that the solution u(x, t, ε) stays near
the unstable root u = 0 of the degenerate equation at least for the time interval
(tc(x), tmin),

Remark 4.3 In case u0(x) < 0, the solution u(x, t, ε) may not exist for all t in
[0, T ].

The proof is based on the technique of asymptotic lower and upper solutions. Details
of the proof can be found in [16].

5 Numerical investigations
The goal of this section is to illustrate Theorem 4.1 by studying an example numer-
ically. For this purpose, we consider the following initial-boundary value problem

ε

(
∂u

∂t
− ∂2u

∂u2

)
= −u

[
u−

(
t− x

4
− 1

)]
, 0 < x < 1, 0 < t ≤ 3.

∂u

∂x
(0, t, ε) =

∂u

∂x
(1, t, ε) = 0 for t ∈ (0, T ]. (5.1)

u(x, 0, ε) = u0(x) for x ∈ [0, 1],

The degenerate equation has two roots

u = 0 and u = ϕ(x, t) := t− x

4
− 1

which intersect in the curve t = tc(x) := x
4

+ 1.

The root u = 0 (u = t − x
4
− 1) is stable (unstable) for 0 ≤ t < tc(x), 0 ≤ x ≤ 1

and unstable (stable) for tc(x) < t ≤ 3, 0 ≤ x ≤ 1. It can be easily seen that the
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assumptions (A0) - (A3) of Theorem 4.1 are satis�ed.
Furthermore, we have

gmin
u (t) := t− 5

4
, gmax

u (t) := t− 1,

Gmin(t) :=
t

2

(
t− 5

2

)
, Gmax(t) := t

( t

2
− 1

)
,

G(x, t) := t
( t

2
− 1− x

4

)
,

and therefore

tmin = 2, tmax =
5

2
, t∗(x) :=

x

2
+ 2. (5.2)

It follows that the conditions (A4) and (A5) of Theorem 4.1 are satis�ed. One can
also check that assumptions (A6) and (A7) are valid. Hence, according to Theorem
4.1, problem (5.1) has a unique solution with a transition layer inside the time in-
terval [tmin, tmax].

In order to get more information about the location of the transition layer we in-
vestigate the initial-boundary value problem (5.1) numerically. For this purpose, we
apply a two layer �nite di�erence scheme of Crank-Nicolson type with a uniform
mesh in space (step h = 1/N). Taking into account an iterative process to treat
the nonlinearity in (5.1), our scheme for the transition from the time layer jτ to the
next time layer (j + 1)τ can be written as follows:

ε

(
ŷ

(n)
i −yi

τ
−∆x̄x

( ŷ
(n)
i +yi

2

))
= f

(
ŷ

(n−1)
i +yi

2
, ih, (j+0.5)τ

)
, i = 0, . . . , N ;

(5.3)

ŷ
(n)
−1 = ŷ

(n)
1 , ŷ

(n)
N+1 = ŷ

(n)
N−1, n = 1, . . . ; ŷ

(0)
i = yi, ŷi = lim

n→∞
ŷ

(n)
i .

Here, we have used the following notation for the grid functions and the operators:

yi ≈ u(ih, jτ), ŷi ≈ u(ih, (j + 1)τ), ∆x̄xvi
def
=

vi+1 − 2vi + vi−1

h2
.

It is known that for su�ciently smooth initial data and if the solution u and its
derivatives remain bounded such a scheme is of a second order precision in time and
space, it is unconditionally stable and converges to a solution of problem (5.1) as
τ, h → 0.

5.1 Delayed exchange of stabilities

We consider the initial-boundary value problem (5.1). According to Theorem 4.1 and
relation (5.2), problem (5.1) has a unique solution with a transition layer between
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tmin = 2.0 and tmax = 2.5, where for su�ciently small ε, u(t, x, ε) stays near u ≡ 0
for 0 < t < tmin, and near ϕ(t, x) for t > tmax. Fig. 5.1 and Fig. 5.2 show the
solution of problem (5.1) with u0 ≡ 0.5 for di�erent values of ε.

 

0 0.5 1 1.5 2 2.5 3

t

0
0.25

0.5
0.75

1x

0
0.5

1
1.5

u(x,t)

Fig. 5.1. Solution u(x, t, ε) of
(5.1) with u0 ≡ 0.5 for ε = 0.01 .

 

0 0.5 1 1.5 2 2.5 3

t

0
0.25

0.5
0.75

1x

0
0.5

1
1.5

u(x,t)

Fig. 5.2. Solution u(x, t, ε) of
(5.1) with u0 ≡ 0.5 for ε = 0.05 .
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=

   
 (

t)

x 
=

   
 (

t)
β

Fig. 5.3. Transition layer for
ε = 0.01 .

α

0

0.2

0.4

0.6

0.8

1

2 2.1 2.2 2.3 2.4 2.5

x

t

 x 
=

   
 (

t)

β
x 

=
   

 (
t)

Fig. 5.4. Transition layer for
ε = 0.05 .

Fig. 5.3 and Fig. 5.4 characterize the time-space region where u(t, x, ε) exhibits
a fast transition from u ≡ 0 to some neighborhood of u = ϕ(t, x). The numerical
results indicate that the phenomenon of delayed exchange of stabilities arises also for
moderate values of ε, where a broadening of the transition layer can be observed for
increasing ε. Fig. 5.3 shows that the theoretically derived bounds t = 2 and t = 2.5
for the transition layer in case of small ε are quite satisfactory. The transition layer
is located between the curves x = α(t) and x = β(t), where the curve x = α(t) is
de�ned by the condition u(t, x, ε) = 0.01, while x = β(t) characterizes the points
(t, x) where we have |u(t, x, ε)− ϕ(t, x)| = 0.1.

5.2 Delayed loss of stability

We consider the initial-boundary value problem (5.1) with u0(x) negative. According
to Theorem 4.1, problem (5.1) has a unique solution with a transition layer between
tmin = 2.0 and tmax = 2.5, where for su�ciently small ε, u(t, x, ε) stays near u ≡ 0
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for 0 < t < tmin, for tmin ≤ tesc < t < tmax u(t, x, ε) exhibits a blowing up. Fig.
5.5 and Fig. 5.6 show the solution of problem (5.1) for u0 ≡ −0.5 and for di�erent
values of ε.

 

0 0.5 1 1.5 2 2.5 3

t

0
0.25

0.5
0.75

1x

-0.5

0
u(x,t)

Fig. 5.5. Solution u(x, t, ε) of
(5.1) with u0 ≡ −0.5 for ε = 0.01 .
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0.5
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0
u(x,t)

Fig. 5.6. Solution u(x, t, ε) of
(5.1) with u0 ≡ −0.5 for ε = 0.05 .
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Fig. 5.7. Inclusion of the transition
layer of (5.1) with u0 ≡ −0.5 for ε =
0.01 .
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x 

=
   

 (
t)

α

Fig. 5.8. Inclusion of the transition
layer of (5.1) with u0 ≡ −0.5 for ε =
0.05 .

Fig. 5.7 and Fig. 5.8 characterize the time-space region where u(t, x, ε) exhibits
a fast escaping from u ≡ 0. Here again curves x = α(t) show the begining of the
transition layer and are de�ned by the condition u(t, x, ε) = −0.01, while the other
curve shows the points (t, x) where blowing up solution satisfy condition u(t, x, ε) =
−0.2.
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