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Abstract. We describe a codimension-3 bifurcational surface in the space of Cr-

smooth (r � 3) dynamical systems (with the dimension of the phase space equal

to 4 or higher) which consists of systems which have an attractive two-dimensional

invariant manifold with an in�nite sequence of periodic orbits of alternating sta-

bility which converge to a homoclinic loop.

Introduction. Consider an (n + 1)-dimensional Cr-smooth (r � 3) dynamical

system with a saddle equilibrium state O. Let the stable manifold W
s of O be n-

dimensional and the unstable manifold W
u be m-dimensional. The unstable mani-

fold consists of the point O and two orbits, called separatrices, leaving O at t = �1

in opposite directions. Let one of the separatrices, �, tend to O as t ! +1 too,

forming a homoclinic loop (i.e. � is an orbit of intersection of W u and W
s).

Under certain assumptions which we formulate below, the system has a two-dimensional

invariant manifold M which contains the equilibrium state O and the homoclinic

loop �. This manifold persists for every Cr-close system, even when the homoclinic

loop splits. It is an attractive manifold: every forward semiorbit which stays in a

small neighborhood U of � tends to M as t ! +1 and every whole orbit which

entirely lies in U must belong to M.

The �rst statements of this kind can be found in [1, 2]; invariant manifold theorems

for di�erent classes of homoclinic loops can also be found in [3, 4, 5, 6, 7]. The signif-

icance of this result is obvious: it shows that the dynamics near our homoclinic loop

� is essentially two-dimensional. We cannot expect chaotic dynamics, for example;

and the only bifurcation we can expect here is a birth of a certain number of limit

cycles (in the case when M is a Möbius band, one more bifurcation is possible � a

formation of a double homoclinic loop). Therefore, the main questions which must

be asked here are what is the number of limit cycles which can be born from �, can
they coexist with �, etc..

For su�ciently smooth systems on a plane the answers are known due to the works of

Dulac and Leontovich. Thus, it was shown in [8] that in the case of �nite codimension

(i.e. unless the system satis�es an in�nite set of independent conditions of equality

type) a homoclinic loop to a saddle on a plane is either stable (an !-limit set) or

unstable (an �-limit set). In [9] a sharp estimate on the number of limit cycles

which can be born from the homoclinic loop on a plane was given (these results

were rediscovered in [10]).

For a large class of heteroclinic cycles of su�ciently smooth systems on a plane, the

�niteness of the number of periodic orbits which can be born from such heteroclinic

cycles in the case of �nite codimension was proven by Ilyashenko and Yakovenko

[11] (see [12] for an overview).

The aim of the present paper is to demonstrate that in the case of planar systems

obtained by reduction of a multidimensional system onto the two-dimensional in-

variant manifold the situation is quite di�erent. Namely, we give an example of a

codimension-3 homoclinic loop � for which the attractive two-dimensional invariant

manifold M exists and, at the same time, on M there is a sequence of periodic

orbits of alternating stability which has � as the limit.



2

As we mentioned, such situation is impossible in the case of su�ciently smooth

planar systems. The main reason why this phenomenon happens in our case is that

the smoothness of the non-local invariant manifold M is always very limited. In

general, this manifold is only C
1+", with " < 1. Another important ingredient of

our construction is the presence of complex characteristic exponents of the saddle

O. The corresponding two-dimensional invariant subspace of the system linearized

at O is transverse to M, so our example is at least four-dimensional.

Statement of the problem. Let us put the saddle O at the origin. The system

near O is then written as

_z = Bz + o(z)

where the matrix B has n eigenvalues to the left of the imaginary axis and one

eigenvalue to the right. The eigenvalues of B are called characteristic exponents; we

denote them as �1; �2; : : : ; �n and 
, assuming that


 > 0 > Re�1 � � � � � Re�n:

We assume also that �1 is real and simple, so

A) 
 > 0 > �1 > Re�2 � � � � � Re�n.

One can introduce coordinates (x; y; w) (where x 2 R
1, y 2 R

1, w 2 R
n�1) such

that the system near O will take the form

_y = 
y + : : : ; _x = �1x + : : : ; _w = Cw + : : : ;

where the spectrum of the matrix C is �2; : : : ; �n, and the dots stand for nonlinear-

ities. In this case the unstable manifold W
u is tangent to the y-axis at O, and the

(x; w)-space is the tangent to the stable manifold W s at O.

InW s there exists a uniquely de�ned (n�1)-dimensional smooth invariant manifold

W
ss (the strong stable manifold) which is tangent at O to the w-space. The orbits

which do not lie inW ss tend to O along the leading direction (the x-axis) as t! +1
(see more details about the strong-stable manifold, as well as about the hierarchy of

various extended unstable manifolds mentioned below, in [7]). We will assume that

the same holds true for the homoclinic orbit �, i.e.

B) � 6� W
ss.

The unstable manifoldW u lies within the so-called extended unstable manifoldW ue

which is a two-dimensional C1-smooth invariant manifold which is tangent at O to

the eigenspace corresponding to the characteristic exponents �1; 
, i.e. to the (x; y).
Since the orbit � is an intersection of W u and W

s, it also lies in the intersection of

W
ue and W

s. We make the following assumption:

C) the manifold W ue is transverse to W s at the points of the homoclinic orbit �.
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Since W ue is two-dimensional, and W
s is a manifold of codimension 1, they can in-

deed intersect transversely along a one-dimensional trajectory. Although the man-

ifold W
ue is not de�ned uniquely, any of these manifolds contains W u and all of

them are tangent to each other at every point of W u. In particular, all of them are

tangent at every point of �, so the transversality condition above is well posed.

The conditions B,C are necessary and su�cient (see [5, 7]) for the existence of the

two-dimensional attracting invariant C1-manifoldM which is transverse to W ss at

O and contains the homoclinic loop �. Moreover, it contains all orbits which stay

in a small neighborhood of � for all times.

Conditions A,B,C are of inequality type, so the systems with a homoclinic loop

satisfying this conditions form bifurcational surfaces of codimension 1 in the space

of Cr-smooth systems. Now we impose two additional restrictions on the system

which de�ne a codimension 3 manifold within this surface. Namely, we assume that

the saddle O is resonant, i.e.

D) the saddle value � = �1 + 
 equals to zero.

We also assume

E) the separatrix value A, introduced below (see formula (13)), equals to 1.

Note that this condition is equivalent, as we will show below, to the vanishing of

the integral
R +1

�1

divX(z(t))dt, where fz(t)gt2(�1;+1) denotes here the homoclinic

solution �, and X denotes the vector �eld of the system on the two-dimensional

invariant manifoldM.

When the saddle value � = �1 + 
 is non-zero, bifurcations of the homoclinic loop

under consideration were studied in [13] for systems on the plane, and in [14, 15]

in the multidimensional case. Here, only one periodic orbit can be born from the

loop. The �niteness of the number of limit cycles which can be born from the

homoclinic loop with � = 0 was established (in the cases of �nite codimension) in

[9] for systems on the plane, and in [16, 17] for three-dimensional systems. When

jAj 6= 1 (i.e. condition E is violated) bifurcations of the resonant homoclinic loop

on the plane were studied in [18]; for multidimensional systems the corresponding

bifurcation diagrams was constructed in [19], with the �nal proof obtained in [20]

in the three-dimensional case and in [21] in the general case. It follows from these

works that no more than two limit cycles can be born from the resonant homoclinic

loop if jAj 6= 1.

The main result of the present paper is the following theorem.
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Theorem. Let a C
r-smooth (r � 3) dynamical system in R

n+1 (n � 3) have
a homoclinic loop �, and let conditions A,B,C,D,E be satis�ed. Let the next to �1

characteristic exponent be complex, i.e. 0 > �1 > Re�2 = Re�3 > Re�k (3 < k � n),
Im�2 = �Im�3 6= 0; moreover, we assume

(1) Re�2 > 2�1:

Then, provided conditions F,G of general position (formulated below) are satis�ed,
the homoclinic loop � is the limit of a sequence of isolated periodic orbits.

Note that the fact that the presence of complex characteristic exponents can lead to

an in�nite number of single-round periodic orbits near a homoclinic loop has been

known since [22] where it was shown that the dynamics near � is chaotic if �1 is

complex and 
 +Re�1 > 0. In our example the dynamics is simple � it is con�ned

on the two-dimensional invariant manifoldM, but still we have in�nitely many limit

cycles. Note that condition (1) prevents the manifoldM of being C2 or of a higher

smoothness.

Let us now formulate the remaining conditions F and G of the theorem. By our

assumptions, the tangent space to W s at O splits into two subspaces invariant with

respect to the linearized system: one, the x-axis, corresponds to the characteristic

exponent �1, and the second, the w-subspace corresponds to the characteristic ex-

ponents �2; :::; �n. We will write w = (u; v) where u 2 R
2 is the projection onto

the invariant subspace corresponding the characteristic exponents �2 and �3, and v

is the projection onto the invariant subspace corresponding to the rest of the char-

acteristic exponents �. We will show below that condition (1) guarantees that in

the stable manifoldW s there is a uniquely de�ned (n�3)-dimensional Cr�1-smooth

invariant submanifoldW s0 which is tangent at O to the (x; v)-subspace. Recall that
we assume r � 3, so the manifoldW s0 is at least C2. It is this smoothness condition

which de�nes W s0 uniquely: we will see below that when (1) holds, every other

manifold tangent to the (x; v)-space is only C
1. By condition B, the homoclinic

loop � is tangent to the x-axis when it enters O at t = +1, so it is tangent to W s0

at O. We, however, assume that

F) � 6� W
s0.

Another invariant object we should mention is the invariant four-dimensional C1-

manifold W
uee which is tangent at O to the (x; y; u)-space. This manifold includes

the unstable manifold W
u; the family of tangents Nuee to W

uee at the points of

W
u is a uniquely de�ned continuous family of three-dimensional spaces, which is

invariant with respect to the linearized �ow and tends to the (x; y; u)-space when

approaching the point O. The space Nuee contains a two-dimensional subspace Nue

which is the tangent to the manifold W
ue (the invariant two-dimensional manifold

tangent at O to the (x; y)-space, see condition C). The family of subspaces N
ue

is also invariant with respect to the linearized �ow, continuous, and it is de�ned

uniquely. We will show below that condition (1) guarantees the existence of another
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two-dimensional subspace Nu0 of Nuee which is transverse to Nue at every point of

the unstable manifold W u; the family of the subspaces Nu0 is continuous, invariant

with respect to the linearized �ow, and it is uniquely de�ned by these conditions.

Our last genericity assumption is that

G) the subspace Nu0 is transverse to W s at every point of �.

Proof of the theorem. Let us locally straighten the stable and unstable manifolds

near the point O, i.e. we will make a C
r-transformation of the coordinates after

which the equation of W s

loc
in a small neighborhood of O becomes y = 0 and the

equation of W u

loc
becomes (x; u; v) = 0. Hence, in these coordinates the system near

O is written as follows:

(2)

d

dt

�
x

u

�
= (D1 + f11(x; u; v; y))

�
x

u

�
+ f12(x; u; v; y)v;

_v = D2v + f21(x; u; v; y)

�
x

u

�
+ f22(x; u; v; y)v;

_y = 
y (1 + g(x; u; v; y)):

Here

D1 =

0
@ �� 0 0

0 �� �!

0 ! ��

1
A ;

where we denote �1 = �� and �2;3 = ��� i!, so the spectrum of D1 is f�1; �2; �3g;

the spectrum of matrix D2 consists of the characteristic exponents �k with 3 < k �

n, so we may assume

(3) keD2tk = o(e��t) as t! +1

for some � > �. Recall that by our assumptions

(4) 0 < 
 = � < � < 2�

and ! 6= 0. It will be also convenient for us to take � < 2�.

The functions fij and g in (2) are Cr�1-functions vanishing at zero. By scaling the

time we can always make

g � 0;

which we will hereafter assume. What is also important, that the coordinates

(x; u; v; y) can be chosen in such a way that the functions fij will satisfy the following
identities:

(5) fi1(x; u; v; 0) � 0; f1j(0; 0; 0; y) � 0:

The transformation which brings the system near O to the form (2) with the iden-

tities (5) satis�ed is of class Cr�1. The existence and smoothness of this transfor-

mation is proven in [7] (following [23, 24]; note that the proof in [7] is conducted for

the case where all the eigenvalues of the matrix D1 have the same real parts, but it
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remains valid without any change in the case we consider here, when the spectrum of

D1 lies strictly in the strip �� < Re(�) < �� 0 with � 0 > 0 and � < min(2� 0; � 0+
)).

Note that the terms in functions fij which do not satisfy identities (5) are always non-

resonant. So the possibility to achieve these identities means that these particular

non-resonant terms can be killed by a single Cr�1-transformation of coordinates.

Identities (5) have also certain geometrical meaning.

Thus, it is easy to see that the �rst of identities (5) imply that on the stable manifold

(i.e. in the system obtained by plugging y = 0 in (2)) the evolution of the (x; u)-
variables is independent on the v variables. Moreover, it is linear:

_x = ��x; _u1 = ��u1 � !u2; _u2 = ��u2 + !u1

at y = 0. It is obvious from this equation, that the manifold fu = 0; y = 0g is

invariant; moreover, since � 2 (�; 2�), it is the only invariant manifold which is

tangent to the fu = 0; y = 0g-space and which is C2, at least. Thus, the invariant

manifold W
s0 from our condition F is given by the equation fu = 0; y = 0g in our

coordinates.

Analogously, the only invariant submanifold of W s which is transverse to the x-axis

is the manifold fx = 0; y = 0g; i.e. it is the manifold W
ss mentioned in condition

B.

Let (x = 0; u = 0; v = 0; y = y
Æ(t)) be a trajectory in the unstable manifold. Taking

into account the second of identities (5), we see that the linearization of system (2)

(with g � 0) is written for such trajectory as

(6)

d

dt

�
X

U

�
= D1

�
X

U

�
+ f12(0; 0; 0; y

Æ(t))V;

_V = (D2v + f22(0; 0; 0; y
Æ(t)))V;

_Y = 
Y;

where we denote as (X;U; V; Y ) the coordinates in the tangent space. One can

see that the space V = 0 is invariant with respect to the linearized system. By

uniqueness, V = 0 is the space Nuee, i.e. the tangent space to the invariant manifold

W
uee. Within the space V = 0 the system (6) reduces to

d

dt

�
X

U

�
= D1

�
X

U

�
;

this system has exactly two invariant subspaces: X = 0 and U = 0. The space

(U = 0; V = 0) is the space Nue which is tangent to the invariant manifold W
ue;

hence the space (X = 0; V = 0) is the invariant space Nu0 from our condition G.

We see that invariant manifolds and subspaces mentioned in the genericity conditions

on our homoclinic loop have especially simple equations when identities (5) hold.

In particular, the manifold W ue

loc
is tangent to the space (u; v) = 0 at every point of

the local unstable manifold. The system on this invariant manifold can be written,
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_y = 
y; _x = ��x + p(x; y);

where the C
1-function p vanishes identically, along with its �rst derivative with

respect to x, both at y = 0 and at x = 0 (see (2),(5)). Thus, the divergence of the

vector �eld on W ue

loc
vanishes (recall that 
 = � by assumption) at the points of W u

loc

and of W ue

loc
\W s

loc
. This means that the �ow on W

ue

loc
, when linearized at the points

of any orbit from W
u

loc
or W ue

loc
\W

s

loc
, preserves the area (the manifold W

ue

loc
is not

uniquely de�ned, but this area-preservation property holds for any of them).

By assumption, the loop � coincides locally with one of the y-semiaxes when it

leaves O at t = �1. Since � 6� W
ss, it enters O as t! +1 along the x-axis. We

assume that � adjoins O from the side of positive y and of positive x, as t ! �1

and t! +1, respectively.

Take two cross-sections, S0 and S1 to the loop �. Namely, S1 is fy = dg and S0 is

fx = dg, for some small d > 0. Denote the coordinates on S1 as (x1; u11; u12; v1) and
the coordinates on S0 as (y0; u01; u02; v0).

Since we have g � 0 in (2), the last equation of (2) is easily integrated and gives

(7) y(t) = e

t
y0:

Thus, the orbit of a point on S0, when leaving the d-neighborhood of O, intersects

the cross-section S1 if and only if y0 > 0; and the �ight-time from S0 to S1 equals to

(8) � = �
1



ln
y0

d
:

The time-�(y0) map of the upper part S+
0 : fy0 > 0g of S0 into S1 is called the local

map T0.

The �ow outside a small neighborhood of O de�nes the global map T1 : S1 ! S0

by the orbits close to � (the map T1 takes any point from a small neighborhood of

zero in S1 into the �rst point of intersection of the forward orbit of this point with

S0). The composition T = T1T0 is the Poincaré map near the homoclinic loop �; its
�xed points correspond to periodic orbits of the �ow. Thus, to prove the theorem

we should show that the map T : S+
0 ! S0 has an in�nite sequence of isolated �xed

points converging to y0 = 0.

Analogously to [24], one may show that the ful�llment of identities (5) implies

the following estimates for the solution of the system starting at a point with the

coordinates (x0; u0; v0) at t = 0 and reaching fy = dg at some t = � :

(9)

�
x(�)
u(�)

�
= e

D1�

�
x0

u0

�
+ �2(x0; u0; v0; �); v(�) = �2(x0; u0; v0; �)

where

(10) k�1;2kCr�2 = o(e��� ):

Here, � > 0 is the constant such that the spectrum of the matrix D2 lies strictly to

the left of the line Re(�) = �� (i.e. (3) holds) and the spectrum of the matrix D1

lies in the strip R�;�0 : �� < Re(�) < �� 0 with � 0 > 0 and � < min(2� 0; � 0 + 
) (i.e.
� 2 (�; 2�) in our case; see (4)). A detailed proof of estimates (9) can be found
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in [21] (formally, only the case where all the eigenvalues of D1 have the same real

parts is considered in [21]; however, the proof given there covers our case, where the

real parts of the eigenvalues of D1 are spread in the small strip R�;�0, without any

change).

By plugging formula (8) for the �ight time into (9), (10) we obtain the following

estimate for the local map T0 : S
+
0 ! S1 (recall that 
 = � by assumption and that

x0 = d on S0):

(11)

x1 = y0 + '1(y0; u0; v0);

u11 =
�
y0

d

�
�

(u01 cos 
 ln
y0

d
� u02 sin
 ln

y0

d
) + '2(y0; u0; v0);

u12 =
�
y0

d

�
�

(u01 sin
 ln
y0

d
+ u02 cos 
 ln

y0

d
) + '3(y0; u0; v0);

v1 = '4(y0; u0; v0);

where we denote 
 = !=
, � = �=
, so 
 6= 0 and 1 < � < 2; the functions 'j,

j = 1; :::; 4, satisfy the following estimates

(12)

' = o(y�0);

@
p+q

'

@(u0; v0)p@y
q

0

= o(y��q0 ) (p+ q = 1; � � � ; r � 2):

The global map T1 : S1 ! S0 is a di�eomorphism of a small neighborhood of the

pointM�(0; 0; 0; 0) = �\S1 into a small neighborhood of the pointM+(0; u+1 ; u
+
2 ; v

+) =
� \ S0. Hence, it can be written as

(13)

y0 = a11x1 + a12u01 + a13u02 + a14v1 + : : : ;

u01 � u
+
1 = a21x1 + a22u01 + a23u02 + a24v1 + : : : ;

u02 � u
+
2 = a31x1 + a32u01 + a33u02 + a34v1 + : : : ;

v0 � v
+ = a41x1 + a42u01 + a43u02 + a44v1 + : : : ;

where aij are certain coe�cients, and the dots stand for the quadratic and higher

order terms.

The coe�cient a11 is called the separatrix value (see [21]); it is exactly the value A

from our condition E. One can show that in our case, where � = 
, the value of

a11 is invariant with respect to smooth coordinate transformations which keep the

system in the form (2) with g � 0 and with identities (5) satis�ed. This can be

veri�ed by a direct computation. We choose to prove it in the following way.

Note that the two-dimensional invariant manifoldM which contains the homoclinic

loop � is transverse at O to the strong stable manifoldW ss; therefore, this manifold

coincides with some local extended unstable manifoldW ue near O (see more details

in [7]). We can choose (x; y) as the coordinates on M near O. For the �ow on M,

the global map T1 : S1 \M! S0 \M is written as

y0 = a11x1 + o(x1):
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Thus, a11 is the coe�cient the expansion (or contraction) of distances at the point

M
� by the global map restricted on M. In our coordinates, the phase velocity

vectors _y = 
y and _x = ��x for the �ow on M, taken at the points M�(y = d)
and M

+(x = d), respectively, have the same length (recall that 
 = �). Therefore,

a11 is, as well, the coe�cient of expansion/contraction of areas by the �ow on M,

linearized at the points of the homoclinic orbit � on the segment from the point

M
� to the point M+. It follows that after a smooth coordinate transformation the

coe�cient a11 is multiplied to the factor J(M+)=J(M�) where J is the Jacobian of

the coordinate transformation onM. SinceM coincides locally with some manifold

W
ue, the �ow onM is divergence free at the points ofW u

loc
and ofW s

loc
\M, provided

g = 0 in (2) and identities (5) are satis�ed. Hence, when linearized at the points of

�, the �ow on M is area-preserving near O. This implies that in our coordinates,

the coe�cient a11 is independent of the choice of the points M
+ and M�, i.e. of the

choice of the small constant d. Therefore, for the smooth coordinate transformations

which keep the system in the form (2) with g � 0 and with identities (5) satis�ed,

the factor J(M+)=J(M�) have to be independent of d as well. By taking d! +0,
we getM+ andM� converging to the same point O, which gives J(M+)=J(M�) � 1
for the coordinate transformations under consideration. Thus, a11 is an invariant of

such transformations indeed.

By virtue of condition E, we have a11 = 1. By combining formulas (11) and (13)

we obtain the following equation on the �xed points (y; u; v) (we dropped the index

�0�) of the Poincaré map T = T1T0 on S
+
0 :

(14)

y = y +
�
y

d

�
�

juj(a12 cos(
 ln
y

d
+ �) + a13 sin(
 ln

y

d
+ �)) + o(y�);

u = u
+ +O(y); v = v

+ +O(y);

where we denote u = (juj cos �; juj sin �). For all small y, the last equations of this

system can be resolved with respect to u and v, so that the system reduced to the

following single equation on the y-variable:

(15) 0 = y
�ju+j(a12 cos(
 ln

y

d
+ �) + a13 sin(
 ln

y

d
+ �)) + o(y�):

This equation has an in�nite, converging to zero sequence of isolated positive roots

ym = de
�

�



m
e
(���arctan

a12

a13
)
(1 + o(1));

provided u
+ 6= 0 and a

2
12 + a

2
13 6= 0. It remains to note that these two inequalities

are, in fact, our conditions F and G, respectively. Indeed, by condition F, the point

M
+(0; u+; v+) does not belong to the manifold W

s0. The latter is given by the

equation (y = 0; u = 0) in our coordinates, so condition F reads as u+ 6= 0 indeed.

In turn, condition G reads in our coordinates as the transversality of the image of

the plane (x0 = 0; v0 = 0) from S0 by the map T1 to the space y1 = 0 at the point

M
+ in S1. It follows immediately from (13) that this transversality condition is

equivalent to a212 + a
2
13 6= 0.
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Thus, we have proved the existence of an in�nite sequence of the isolated �xed points

of the Poincaré map, converging to the W s

loc
\ S0. The �xed points of the Poincaré

map correspond to periodic orbits of the �ow. End of the proof.

An interesting question is how the obtained family of limit cycles bifurcates. We

deal here with a codimension-3 bifurcation, so we need at least three governing

parameters. We denote them as (�; Æ; �). The parameter � governs the splitting of

the homoclinic loop �: we take it equal to the y-coordinate of the pointM+ = T1M
�

where M� = W
u

loc
\S1. We also take Æ = �=
� 1, and � = a11� 1. Then, following

the same lines as in the proof of the theorem, one may show that the �xed point of

the Poincaré map satisfy the equation

y = �+ (1 + �)y1+Æ +Ky
� cos(
 ln y + �) + o(y�);

for some constantsK 6= 0 and �. This equation is bound to produce a rich bifurcation
diagram. Thus, one can show that an in�nite sequence of swallow tails exists in the

parameter space.
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