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Abstract

Stress assisted di�usion in single crystal Gallium Arsenide (GaAs) leads to
the formation and growth of unwanted liquid arsenic droplets in a solid matrix.
This process happens during the heat treatment of single crystal GaAs, which
is needed for its application in opto-electronic devices, and it is of crucial
importance to pose and answer the question if the appearance of droplets can
be avoided. To this end we start a thermodynamic simulation of this process.
Special emphasis is given to the in�uence of mechanical e�ects on chemistry,
di�usion and interface motion in GaAs.

1 Introduction of the complete problem
Stress assisted di�usion in single crystal Gallium Arsenide (GaAs) leads to the for-
mation and growth of unwanted liquid droplets in a solid surrounding, [14], [15], [4],
[5]. This is an elaborate thermodynamic process involving chemical reactions, di�u-
sion, motion of phase boundaries, and all these phenomena are strongly in�uenced
by local mechanical stress �elds. The resulting model consists of a coupled system
of algebraic equations, partial di�erential equations and conditions at the appearing
liquid/solid interfaces. The variables are the mole fractions of various constituents,
which appear in semi-conducting GaAs, the mechanical strain, and a phase density,
indicating the size distribution of droplets.
Single crystal GaAs contains the major elements gallium and arsen, and additionally
various trace elements, which are of most importance in order to fabricate semi-
conducting or semi-insolating GaAs, respectively. All constituents occupy three
sublattices of face-centered cubic (fcc) symmetry. The sublattices are indicated by
three greek letters: α, β, γ. The lattice α is dominantly occupied by gallium, while
the arsenic is the major substance on the lattice sites of sublattice β. The sublattice
γ indicates an interstitial lattice, where the dominant elements are vacancies. For
a proper application of single crystal semi-conducting or semi-insolating GaAs as a
wafer material, it is crucial that the trace elements are distributed homogeneously
on the lattice sites of the three sublattices. In order to remove dislocations, which
appear during the process of crystal growth, a special heat treatment of the wafer
becomes necessary. However, the heat treatment might start a di�usion process,
where the trace elements move preferably towards the vicinity of the dislocations,
where the trace elements �nd thermodynamic conditions so that the formation of
liquid droplets, dominantly formed by the arsenic, sets in. However, also in regions,
which are free of dislocations, the arsenic precipitates appear.
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The �rst Figure shows two graphs, which represent the morphology of single crystal
Gallium Arsenide on the mm-scale.

Figure 1: Distribution of dislocations (left), Distribution of droplets (right)

The graph on the left hand side Figure 1 is a photo-luminescence mapping, and
shows the distribution of dislocations. The cellular structure is typical for Gallium
Arsenide: The dislocations are dominantly arranged in rings, with an inner region,
which is free of dislocations. The graph on the right hand side of Figure 1 shows
the distribution of droplets. A careful study of this graph reveals that large droplets
appear in the cell wall, i.e. in the vicinity of the dislocations. Adjacent to this ring
of droplets, there is a region without droplets, and the center of the dislocation ring
is occupied by small droplets. The number densities of small and large droplets are
of the same order.
We are thus confronted with the problem to describe the thermodynamic nucleation
and growth conditions of liquid droplets within a solid matrix. In particular we will
study the in�uence of local mechanical stresses on chemistry, di�usion and interface
motion. Stress �elds arise due to dislocations, eigenstrains due to point defects and
due to mis�t strain that describes the phenomenon that the arsenic liquid phase,
which appears as inclusions has a larger speci�c volume than the solid phase.

2 Some physical and chemical properties of semi-
insulating/semi-conducting GaAs

2.1 The phase diagram

The phase diagram of GaAs, which is shown in Figure 2, indicates the various phases
and their boundaries. Below the liquidus line, we �nd, left and right of the stoichio-
metric line, i.e. (arsenic) composition y = 0.5, two regions where the solid GaAs
crystal may coexist with the liquid. Right and left from y = 0.5, the crystal is
As-rich and Ga-rich, respectively. These regions are bounded from below by the two
eutectic lines at 29.5◦C and 810◦C, respectively. The two regions below the eutec-
tic lines indicate mixtures consisting of the solid GaAs crystal as matrix material
containing solid Ga-rich and As-rich precipitates, respectively. In this study, we are
exclusively concerned with thermodynamic processes in the two-phase region right
from the stoichiometric line and above the 810◦C eutectic.
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Figure 2: Equilibrium phase diagram of GaAs

The GaAs crystal at the stoichiometric composition consists of two fcc sublattices
that are displaced along the diagonal of the elementary cube, i.e. the crystal has
the symmetry of Zinkblende. However, the ideal crystal at y = 0.5 is neither a semi-
conductor nor a semi-insulator. The latter one may form if the crystal composition
is slightly on the As-rich side. Moreover there are further constituents appearing in
GaAs. These are Oxygen (O), Silicon (Si), Bor (B) and Carbon (C) in very small
quantities, but nevertheless these trace elements induce very important phenomena.
Above the 810◦C eutectic there is a region, which is called region of homogeneity,
where the excess amount of As and the just mentioned trace elements behave like
point defects that are homogenously distributed over the two already mentioned
sublattices and on a further sublattice, which is formed by interstitial lattice sites.
Figure 3 shows the region of homogeneity (H) as it was calculated on demand for
Freiberg Compound Materials (FCM) by H. Wenzl and G. Erikson. For details of
the underlying model see [15]. During a heat treatment of the crystal, the boundary
of the region H may be crossed, as it is indicated in the Figure. If this happens,
unwanted liquid As-rich precipitates appear. Thus the knowledge of the boundary
of the region H is of crucial importance for the proper application of GaAs as a
wafer material.

Figure 3: Zoom of the homogeneity sector of the GaAs phase diagram

The calculated region of homogeneity depends sensitively on the assumed chemistry,
i.e. on the chemical reaction that are taken into account.
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One of the objectives of this study is the determination of the mechanical in�uence
on the region of homogeneity. The mechanical in�uence arises due eigenstrains,
which are induced by point defects and dislocations, and due to mis�t strain, which
is induced by a volume change during the solid/liquid phase transition. Regarding
the non-mechanical parts of the thermodynamic theory, we rely on the chemical
model given by Wenzl et. al.,[15], in collaboration with the wafer manufacturer
FCM, and which will be discussed in detail in the following Section.

2.2 The chemical constitution of semi-insulating As-rich GaAs

The chemical model of Wenzl et. al. [15] is suited to describe the behaviour of
semi-insulating As-rich GaAs that is fabricated by Freiberg Compound Materials
(FCM).
The GaAs crystal is assumed to consist of three sublattices, indexed by {α, β, γ}.
Among them there are the already introduced two fcc sublattices, which are mainly
occupied by Ga- and As-atoms, respectively, and the fcc interstitial sublattice, whose
lattice sites are mostly occupied by vacancies.

Figure 4: Elemtary cell of the GaAs crystal

Figure 3 gives a scetch of the elementary cell of the crystal. The lattice sites at the
corners and faces of the cube form the sublattice α, which is mainly occupied by Ga
atoms, indicatet by solid balls. In the interior of the elementary cell of the sublattice
α there are further lattice sites, viz. four octahedral and eight tetrahedral lattice
sites. Four lattice sites of the tetrahedral sites forme the elementary cell of the β
sublattice, indicated in the Figure by light balls. The remaining four tetrahedral
sites form the sublattice γ. It is important to know that the available space of a
lattice site of the β sublattice is equal to the corresponding space in the γ sublattice.
The available space for octahedral sites is too small for an occupation by atoms, and
thus the octahedral lattice remains empty.
The number densities of sublattice sites are denoted by nα, nβ, nγ. There holds
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nα = nβ = nγ = nSL. The free electrons and free holes do not need lattice sites,
rather the form the electronic gas.
The constituents of the GaAs crystal are the chemical elements Ga, As, O, Si, B, C,
and vacancies V, free electrons e and holes h, which are also treated like chemical
elements. For a proper description of semi-conducting/semi-insulating GaAs, the
list of constituents must be extended because the elements As, O, Si, C and the
vacancies V may also occur as charge carriers, which is indicated by a superscript.
In addition, when the constituents occur on di�erent sublattices they are considered
as di�erent constituents, and this is indicated by a subscript. There are thus 17
constituents: free electrons and holes, which do not occupy lattice sites, and 15
constituents on the three sublattices according to the following table.
Sublattice α Gaα As

(0)
α As

(+)
α V

(0)
α V

(3−)
α B

(0)
α Si

(+)
α

Sublattice β Asβ O
(0)
β O

(−)
β O

(+)
β C

(−)
β V

(0)
β

Sublattice γ As
(0)
γ V

(0)
γ

The constituents Gaα and Asβ form the major portions on their privileged sub-
lattices which determine the symmetry of the crystal. The other constituents are
called (point) defects, which thus consist of antisite atoms, interstitial atoms, trace
elements and vacancies.
The special choice of constituents, and in particular the assumption that Ga is
exclusively without charge on the sublattice α, has been suggested by FCM and is
called Freiberger model. The underlying reasoning of the Freiberger model relies on
experimental hints, and in particular on the objective to calculate a quite realistic
homogeneity region that �ts to the properties of FCM made semi-insulating GaAs.
For di�erent choices and resulting consequences we refer the reader to [15].

3 A list of simpli�ed problems with increasing com-
plexity

The last section has revealed that we have a quite complex thermochemical process
under consideration. For this reason it is appropriate to consider at �rst only very
simple initial and boundary value problems that serves especially to design the
mathematical model and to calibrate its parameters.
In particular we consider the two situations that are scetched in the following Figure.
The two pressure vessels, which are closed by a movable piston, set two thermody-
namic systems with prescribed outer pressure, p0 and temperature T0. The inner
temperature is assumed to be homogeneous and equal to the outer temperature.
The example on the left hand side considers a liquid and a solid phase separated by
a planar interface. This example is designed to study the in�uence of mechanical
stresses to the chemical and interfacial equilibrium condition and on the di�usion
process in the solid.
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Figure 5: Two example problems: liquid/solid plane interface (left), liquid single
droplet in contact with a solid (right)

In particular, the example on the right hand side considers a solid ball on µm scale
in contact with a gas consisting of the four arsenic constituents As, As2, As3, As4.
The solid ball contains at its center a liquid droplet, made exclusively from As and
Ga, that can grow or shrink. The outer interface of the ball is in equilibrium with
the gas, and we consider the case that only As2 may cross the interface and becomes
an interstitial As in the solid.

4 Thermodynamics of mixtures, Part 1: Variables
We consider a body B whose volume V (t) may depend on time t. A space point,
which is at some time t occupied by a material point P of B, is indicated by its
cartesian coordinates x = (xi) = (x1, x2, x3). The notion material point means the
smallest units of B that cannot further be resolved on the chosen space scale.
The body B may consist of coexisting �uid and solid phases, both are mixtures of
various chemically di�erent constituents.
The thermodynamic state of the �uid phase is described by the variables

na = na(t, x), a ∈ {1, 2, ..., aL}, number densities of constituents,
υi = υi(t, x), barycentric velocity of the mixture,
T = T (t), (absolute) temperature. (1)

The total mass density of the mixture, ρ, is given by the sum over the number
densities × molecular weights, Ma, and for some purposes it is useful to calculate
the mixture velocity, υ, from the velocities of the constituents, υi

a. Thus we write

ρ =

aL∑
a=1

Mana and υi =

aL∑
a=1

Mana

ρ
υi

a. (2)

In order to describe the deformation of the solid phase we must at �rst introduce
a reference con�guration. To this end we indicate at a �xed reference time t0 any
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material point P of the solid phase by its cartesian coordinates X = (X1, X2, X3).
The motion of P, is described by the �eld χi(t,X) = (χ1(t,X), χ2(t,X), χ3(t,X)),
which gives the coordinates of P at time t > t0 :

xi = χi(t,X). (3)

The �eld χi is called motion, and its �rst derivatives

υ̂i =
∂χi

∂t
and F ij =

∂χi

∂Xj
with J = det(F ij) 6= 0 (4)

are the velocity and the deformation gradient, respectively. The condition on the
Jacobian J guarantees that (3) is invertible.
It is well known that the Jacobian is related to the total mass density by

J =
ρR

ρ
, (5)

where ρR is the mass density in the reference con�guration.
The solid phase may consist of a mixture with aS constituents, and thus the ther-
modynamic state of the solid phase is described by the variables

xi = χi(t,X), na = na(t, x), T = T (t). (6)

5 Thermodynamics of mixtures, Part 2: General
Constitutive Model

We consider a GaAs crystal consisting of two coexisting phases, which are formed
by a nonviscous mixture of liquids and a thermoelastic solid mixture, respectively.
There are eigenstrains due to the presence of point defects, mis�t strain and dislo-
cations. However, dislocations are not considered in the current paper.
Beyond the variables, further important quantities are needed to describe properties
of mixtures. These are: speci�c internal energy, u, speci�c entropy, s, speci�c free
energy, ψ = u− Ts, and the chemical potentials of the constituents, µa, [10], [11].
Furthermore there are three measures of stress, viz. the Cauchy stress, σik, and the
�rst and second Piola Kirchho� stress, respectively, σ̂ik and tik:

σik = σki, σ̂ik = Jσij
−1

F kj, tik = J
−1

F ij
−1

F klσjl. (7)

The Cauchy stress appears naturally in a thermodynamic description where the
reference con�guration of the solid phase does not explicitly appear. The �rst Pi-
ola Kirchho� stress is a simply measurable quantity, and appears naturally in the
description that relies on the reference con�guration. Finally the second Piola Kirch-
ho� stress is needed to formulate constitutive laws, which relate the stress to the
variables, [13].
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Let us decompose the Cauchy stress into its trace and the traceless part, the latter
one is indicated by angle brackets around the indices, for example we write

σik = −pδik + σ<ik> with p = −1

3
σnn. (8)

The quantity p is called pressure.
There are also various measures of the deformation of a body. The most important
one is the right Cauchy Green tensor, Cik, and its unimodular restriction, which we
denote by cik:

Cik = FmiFmk and cik = J−2/3Cik so that det(cik) = 1. (9)

All these quantities are related to each other by the Gibbs equation, which reads in
�uids as well as in thermoelastic solids

dρψ = −ρsdT +
1

2
J−1/3tikdcik +

∑
a

µadna. (10)

The Gibbs equation implies

ρs = −∂ρψ

∂T
, tik = 2J1/3∂ρψ

∂cik
, and µa =

∂ρψ

∂na

. (11)

Furthermore, there holds the Gibbs/Duhem equation

ρψ + p =
∑
a=1

µana. (12)

For the solid phase the knowledge of the free energy density ρsψs(T, n1,...,nas , c
ik) is

su�cient to relate the introduced quantities to the variables.
In a mixture of isotropic �uids the free energy does not depende on cik, and the
second Piola/Kirchho� stress drops out of the Gibbs equation. Thus for the liquid
phase the knowledge of the free energy density ρLψL(T, n1, . . . , naL

) is su�cient to
relate the introduced quantities to the variables.
The proof of the Gibbs equation for �uid mixtures and for those solids that only
consists of a single substance can be found in [10]. The generalization to a solid
mixture, viz. eqn. (10), has not been published elsewhere, but it can be derived
along the strategies that are outlined by I. Müller in [10].

6 Thermodynamics of mixtures, Part 3: Explicit
representations of free energies, chemical poten-
tials, pressure and stresses

In general there are three competing additive contributions to the free energy of a
mixture: (i) entropy, (ii) interaction or mixing energy, and (iii) mechanical energy.
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If only the entropic contribution is considered, the mixture is called an ideal mixture.
In the following we combine the two �rst contributions in the so called chemical part
of the free energy, and we write

ρψ = ρψchem + ρψmech and accordingly µa = µchem
a + µmech

a . (13)

6.1 Chemical potentials and pressure of the liquid phase

As a simpli�cation we assume that the liquid phase only consists of Ga and As. We
give at once the explicit constitutive laws for the chemical potentials and the pres-
sure. The free energy density can then be calculated by means of the Gibbs/Duhem
equation (12).

µchem
Ga = µ0

Ga(T ) + RT Log(1− y) + (L0 + L1(3− 4y))y2,

µchem
As = µ0

As(T ) + RT Log(y) + (L0 + L1(1− 4y))(1− y)2. (14)
The newly introduced quantity y = nAs/n is the arsenic mole fraction. The �rst
parts give the standard chemical potentials. The second parts are the entropic contri-
butions, and the third parts give the mixing energy according to the Redlich/Kister
model, and L0, L1 measure the strength of the mixing energy. R is the universal gas
constant. For details, see [12].
The mechanical parts of the chemical potentials are nonclassical contributions.
These describe the interfacial mis�t, which arises because the transition from the
solid phase to the liquid phase is accompanied by a change of the speci�c volume.
In fact, arsenic rich liquid needs more space than solid GaAs. In order to describe
this phenomenon, let us at �rst introduce the function

1

ρtherm(T, y)
=

υAs(T )
MAsy

MAsy + MGa(1− y)
+ υGa(T )(1− MAsy

MAsy + MGa(1− y)
), (15)

where υAs(T ) and υGa(T ) are the speci�c volumes of pure As and pure Ga, respec-
tively. Next we choose as a reference density of the liquid ρR = ρtherm(TR, 1), and
we set ρ∗(T ) = ρtherm

s (T ), where ρtherm
s is the density of stoichiometric solid GaAs

which can be read o� from a table. Finally we measure the interfacial mis�t by
ρ∗(T )− ρR

ρR

. (16)

There results the mechanical chemical potentials

µmech
Ga =

MGa

ρR

K LLog(
ρ

ρ∗(T )
) and µmech

As =
MAs

ρR

KL Log(
ρ

ρ∗(T )
), (17)

which rely on the simple constitutive law for the liquid pressure:

p = pR + KL(
ρ− ρ∗(T )

ρR

). (18)

Recall that the liquid density is denoted by ρ.K L is the bulk modulus of the liquid.
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6.2 The free energy of the solid phase

The solid phase of GaAs consists of three fcc sublattices α, β, γ which are occupied by
seventeen di�erent constituents according the description of Section 2.2. However,
there are only �fteen unknown number densities, because the trace elements Si, C
and B are prescribed.
The chemical part of the free energy density of the solid phase is given by

ρψchem =
17∑

a=1

naµ
0
a(T ) + RT

17∑
a=1

na log(
na

nSL

) +
q

2

17∑

a,b=1

Iab(T )na
nb

nSL

. (19)

The free energy density ρψchem consists of three contributions, which are the stan-
dard chemical potential µ0

a(T ), consisting of the energy and entropy constants (�rst
term), entropy (second term) and mixing energy (third term). The constant q, (= 4
in the current study), is the coordination number and the temperature dependent
quantities Iab denote the interaction energies. We take only nearest neighbour in-
teractions into account. Furthermore, we assume that electrons, holes and the other
charged constituents have only entropic free energies, which is a fairly good approx-
imation. Examples for numerical values for the nonzero interaction energies can be
found in [14] and [15].
The free energy density ρψmech describes elastic energy including eigenstrains and
is given by

ρψmech =
1

4J
(J2/3cij − Cij

∗ )Kijkl(J2/3ckl − Ckl
∗ )− pR

√
det(cij)|det(cij)=1. (20)

Kijkl is the sti�ness matrix and Cij
∗ is a measure for the eigenstrains. The form

of ρψmech has been chosen so that the Gibbs equation implies Hookes law for the
second Piola/Kirchho� stress, viz.

tij =
1

2
Kijkl(J2/3ckl − Ckl

∗ )− pRJ1/3
−1

cki (21)

The matrix Ckl
∗ describes the various eigenstrains due to point defects, see the next

Section for details.
Next we calculate from (19) and (20) the chemical and mechanical parts of the
chemical potentials. There results

µchem
a = µ0

a(T ) + RT log(
na

nSL

) + q

17∑

b=1

Iab(T )
nb

nSL

− q

2

17∑

a,b=1

Iab(T )
nanb

n2
SL

, (22)

for the chemical part of the chemical potential, while its mechanical part reads

µmech
a = − Ma

3ρSJ
(
1

4
(J2/3cij − Cij

∗ )− Cij
∗ )Kijkl(J2/3ckl − Ckl

∗ ). (23)
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7 Thermodynamics of mixtures, Part 4: Eigenstrains
due to point defects

There are three di�erent mechanisms that give rise to eigenstrains, which may appear
due to (i) dislocations, (ii) point defects, and (iii) interfacial mis�t.
The role of eigenstrains due to dislocations have been discussed in the introduction
and will not considered anymore in the current study.
The eigenstrains due to interfacial mis�t can be attributed either to the liquid phase
or to the solid phase, see for example [7]. In the present study we have chosen the
liquid phase in order to incorporate the interfacial mis�t, see Section 6.1.
There remains to discuss eigenstrains due to the various point defects on lattice
sites of the two sublattices α and β, viz. As

(0)
α , As

(+)
α , V

(0)
α , V

(3−)
α , B

(0)
α , Si

(+)
α on

sublattice α, O
(0)
β , O

(−)
β , O

(+)
β , C

(−)
β on sublattice β. Note that the Freiberger model

does not lead to eigenstrains on sublattice γ, because the defect As
(0)
γ needs the

same space as an As atom on the sublattice β. Uncharged vacancies on interstitials
have no e�ect at all. The defects on sublattices α and β induce eigenstrains, which
are di�erent for the neutral and the charged defects. The neutral defects except
the vacancies can be fairly well approximated as elastic balls, whereas the charged
defects and the vacancies behave as they were rigid balls.
Let us decompose the function Cij

∗ as a product of thermal eigenstrains and eigen-
strains due to defects:

Cij
∗ = Cik

thermCkj
defects. (24)

The thermal part is obviously given by

Cik
therm = (1 + α(T − TR))2δik, (25)

where α denotes the coe�cient of thermal expansion.
A simple calculation relying on elastic and rigid balls yields explicit expressions for
the corresponding eigenstrains, which can be written as a product of elastic and
rigid eigenstrains:

Ckj
defects =

∏
a

(1 +
na

3nSL

)Za

∏

b

(1 +
nb

3nSL

)Zbδ
kj. (26)

for a ∈ {As
(0)
α , B

(0)
α , O

(0)
β } and b ∈ {As

(+)
α , V

(0)
α , V

(3−)
α , Si

(+)
α , O

(−)
β , O

(+)
β , C

(−)
β , V

(0)
β }.

The constants Za and Zb are given by

Za =
δa

1 + δa

and Zb =
4µ

3K
δb. (27)

µ and K are the shear and bulk modulus of the solid phase, and

δa = {−0.055,−0.119,−0.317} (28)
δb = {−0.119,−0.119,−0.119,−0.119, 0.479,−0.317,−0.317,−0.317}. (29)
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The di�erence of the two representations for eigenstrains results, because elastic
eigenstrains are characterized by continuous normal stresses at the interface between
an elastic ball and the solid phase, while rigid eigenstrains are due to a prescribed
normal displacement at the interface between a rigid ball and the solid phase.

8 Thermodynamics of mixtures, Part 5: Field equa-
tions

The variables of the thermodynamic model are the �ve components of the strain
�eld and fourteen number densities of constituents in the solid phase, while in the
liquid phase the only variables are the two number densities of Ga and As, because
for simplicity we do not allow that the other constituents of the solid may cross the
interface.
The �eld equations for the variables rely on several assumptions:
(i) Mechanical equilibrium is reached immediately, so that the strain �eld is deter-
mined by the quasistatic momentum balance for given number densities.

∂σik

∂xk
= 0. (30)

(ii) Local chemical equilibrium in the solid phase is reached much faster than di�u-
sional equilibrium, so that for given total number densities of Ga and As, the other
number densities are determined by the 14 nonlinear algebraic equations represent-
ing the laws of mass actions. These equations will be derived in Section 9 and are
given by (40), (41), and (44) / (49). They have the generic form

FA(n1, n2, ...n14; T, nS
Ga, n

S
As) = 0, A ∈ {1, ..14}. (31)

We write the solution of these equations as

na = ña(T, nS
Ga, n

S
As). (32)

(iii) Thus only a single di�usion equation in the solid is needed. Furthermore, this
equation simpli�es due to the fact that only the mobility of the interstitial arsenic
is of importance. The di�usion equation reads

∂nS
As

∂t
= M∆(µ̃

As
(o)
γ
− µ̃Gaα), (33)

where M denotes the mobility of the interstitial As
(o)
γ and nS

As denotes total number
density of the As content of the solid. µ̃

As
(o)
γ
and µ̃Gaα are chemical potentials of the

indicated substances. However, the equations (32) has been used to eliminate those
constituents that are in thermal equilibrium with nS

Ga, n
S
As, and this procedure is
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indicated by the tilde. The exploitation of the di�usion equation is carried out in
[4].
(iv) The liquid is assumed to be in equilibrium and its number densities can be read
o� from the liquidus line of the phase diagram.
(v) The form of the interfacial jump conditions depend on the interfacial mobilities.
If the interfacial mobilities are much larger than the bulk mobility of As

(o)
γ , local

equilibrium at the interface can be assumed, and the jump conditions are those
that will be derived in the next two sections, see equations (43)2, (51)and (52).
However, currently the magnitude of the interfacial mobilities are not known, and
it may happen that they have the same order as the bulk mobility. In this case the
interfacial jump conditions result from the Becker/Döring theory of nucleation, for
details see [5].

9 Thermodynamics of mixtures, Part 6: The Global
Laws of Energy and Entropy

In this Section we derive the equilibrium conditions for two coexisting phases. We
consider the systems, which is shown in Figure 5, consisting of a container, which
is closed by a piston. At time t, the volume V (t) include either the liquid/solid or
the liquid-droplet/solid/gas. We assume that the outer pressure p0 is given. Fur-
thermore we prescribe the outer temperature T0 and assume that T0 is constant
throughout V (t). The dashed closed line indicate a control volume which we intro-
duce in order to apply the global balance laws of energy E and entropy S to the
described system:

dE

dt
+ p0

dV

dt
= Q̇, and dS

dt
≥ Q̇

T0

. (34)

The quantity Q̇ denotes the heat power, which may enter, Q̇ > 0, or leave, Q̇ < 0, the
system, so that a constant temperature T0 is guaranteed. The equality sign holds in
equilibrium, whereas in nonequilibrium, the variation of the entropy is greater than
the ratio of supplied heat and temperature. This statement expresses Clausius
version of the second law of thermodynamics, [2].
Elimination of the heat power leads to the main inequality

dA

dt
≤ 0 with the de�nition A = E − T0S + p0V. (35)

The newly de�ned quantity, A, is called the available free energy or availability. We
conclude that in dynamic processes that run at constant outer pressure, constant
temperature and constant total mass, the availability must decrease and assumes its
minimum in equilibrium.
The availability contains the combination Ψ = E−T0S denoting the Helmholtz free
energy, whereas A = Ψ+p0V give the Gibbs free energy G only if there is an overall
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constant pressure p = p0 in the interior of the volume V . However, we will not meet
this situation in the two considered examples.
The evaluation of the main inequality requires an explicit knowledge of the functional
dependence of energy, entropy and volume on those variables that may change in
the process under consideration. In the next sections we will introduce and discuss
the needed functions.
The two considered systems, which is shown in Figure 5, consist of solid, S, liquid,L,
and gas, G, phases, which occupy di�erent regions, so that the total volume at time
t is given by

V (t) = VS(t) + VL(t), V (t) = VS(t) + VL(t) + VG(t), (36)
for the left and right example, respectively. The total free energies of the two
examples can be additively decomposed into the free energies of the phases and the
surface free energy of the interface boundaries

Ψ = ΨS(t) + ΨL(t) + ΨG(t) + σOL. (37)
The surface energy, which is also called surface tension is denoted by σ and the
liquid/solid interface area is OL.
The free energies of the phases can be represented by the volume integrals

ΨS(t) =

∫

VS

ρψdV ΨL(t) =

∫

VL

ρψdV ΨG(t) =

∫

VG

ρψdV, (38)

where ψ is the speci�c free energy and ρ is the mass density of the mixture.

10 The laws of mass action and interface conditions
We consider the left problem in Figure 5, where a liquid phase is connected to a
solid phase by a plane interface. We assume that both phases are in equilibrium
and we pose the problem to determine the corresponding equilibrium conditions by
means of the exploitation of the minimum condition for the availability.
Thus we determine the minimum of the function

A = ρSψSVS + ρLψLVL + p0(VS + VL) (39)
under several side conditions.
Conservation of atoms

NGa = nGaαVS + nL
GaVL,

NAs = (nAsβ
+ n

As
(0)
α

+ n
As

(+)
α

+ n
As

(0)
γ

)VS + nL
AsVL,

NO = (n
O

(0)
β

+ n
O

(−)
β

+ n
O

(+)
β

)VS, NSi = n
Si

(+)
α

VS,

NB = n
B

(0)
α

VS, NC = n
C

(−)
β

VS. (40)
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The three sublattices have the same number of lattice sites:

nAsβ
+ n

O
(0)
β

+ n
O

(−)
β

+ n
O

(+)
β

+ n
C

(−)
β
−

(nGaα + n
As

(0)
α

+ n
As

(+)
α

+ n
V

(0)
α

+ 3n
V

(3−)
α

+ n
B

(0)
α

+ n
Si

(+)
α

) = 0 (41)
nAsβ

+ n
V

(0)
β

+ n
O

(0)
β

+ n
O

(−)
β

+ n
O

(+)
β

+ n
C

(−)
β
− (n

V
(0)
γ

+ n
As

(0)
γ

) = 0.

Conservation of charges

n
O

(−)
β

+ n
C

(−)
β

+ 3n
V

(3−)
α

+ ne − (n
As

(+)
α

+ n
Si

(+)
α

+ n
O

(+)
β

+ nh) = 0. (42)

We get rid of these nine constraints by introducing Lagrange multipliers. The vari-
ables are the volumes VS and VL of the solid and liquid phase, respectively, the
number densities nL

Ga, n
L
As of the liquid, and fourteen number densities, nGaβ

, n
As

(0)
α
,

nAsβ
, n

As
(0)
γ
, n

As
(+)
α

, n
O

(0)
β
, n

O
(−)
β

, n
O

(+)
β

, n
V

(0)
α

, n
V

(3−)
α

, n
V

(0)
β

, n
V

(0)
γ

, ne, nh, of the solid.

The minimization with respect to VS and VL yield the conditions for mechanical
equilibrium, which obviously read

pL = p0, σ33 = −pL. (43)

Furthermore there result two groups of algebraic equations: The �rst group contains
the so called laws of mass action that determine the number densities of the solid
phase for given (nS

Ga, n
S
As, nO, nC , nSi, nB). The laws of mass action read

µAsβ
− µ

As
(0)
γ
− µ

V
(0)
β

+ µ
V

(0)
γ

= 0, (44)

µ
As

(0)
α
− µ

As
(0)
γ
− µ

V
(0)
α

+ µ
V

(0)
γ

= 0, (45)
µ

V
(0)
α

+ µ
V

(0)
β

+ µ
V

(0)
γ

= 0, (46)

µ
O

(+)
β
− µ

O
(0)
β

+ µe − Me

ρS

σ<33> = 0, µ
O

(−)
β
− µ

O
(0)
β
− µe +

Me

ρS

σ<33> = 0, (47)

µ
V

(3−)
β

− µ
V

(0)
α
− 3µe + 3

Me

ρS

σ<33> = 0,

µ
As

(+)
α
− µ

As
(0)
α

+ µe − Me

ρS

σ<33> = 0, (48)

µe + µh − 2
Me

ρS

σ<33> = 0. (49)

The equations of the second group are jump conditions at the interface that relate
the solid densities to the number densities of the liquid. The jump conditions read

µGaα−
MGa

ρS

σ<33>−µVα−µL
Ga = 0,

1

3
(µ

As
(0)
α

+µAsβ
+µ

As
(0)
γ

)−MAs

ρS

σ<33>−µL
As = 0.

(50)
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11 Interfacial conditions at curved interfaces
In this section we generalize the interfacial jump condition to the case where the
liquid and the solid phase are separated by a curved interface. The following results
can be obtained for spherical droplets by minimizing (37) or for nonspherical droplets
by methods that are introduced in [3]. The mechanical equilibrium condition (43)
now read

−(σikνiνk + pL) = 2σKM , (51)
where σ denotes the surface tension, and is the mean curvature KM with KM = −1/r
for the spherical liquid droplet discussed in Section 3. The jump conditions regarding
the chemical potential at a curved interface read

µGaα −
MGa

ρS

σ<ik>νiνk − µVα − µL
Ga = 0,

1

3
(µ

As
(0)
α

+ µAsβ
+ µ

As
(0)
γ

)− MAs

ρS

σ<ik>νiνk − µL
As = 0. (52)

12 On the in�uence of mis�t strain on the phase
diagram

The equilibrium conditions that were derived in the last section can now be used
to calculate the liquidus line and the homogeneiity region of the phase diagram. In
particular we will determine the in�uence of mechanical e�ects on these parts of the
phase diagram. To this end we need to know values for the standard chemical poten-
tials, the interaction coe�cients and the Redlich/Kister coe�cients. Furthermore
we need the elastic constants and thermal expansion coe�cients. The parameters
that are needed for the liquidus line are taken from [12]. The parameters that are
needed for the determination of chemical equilibrium of the solid phase are read o�
from di�erent sources: Data for (49) are from [14]. Data for (44), (45),( 46) and
(48) are from [15] but have been slightly modi�ed. Data regarding the oxygen were
reported from [9]. The elastic and thermal expansion parameters can be calculated
from the data given in [1]. The temperature dependent data for liquid arsenic are
read o� from [8]. The mis�t parameter were calculated from atomic radii data,
where some information regarding the vacancy mis�t were given by [6]. The details
of the exploitation of the equilibrium conditions are found to be in [4].
The two graphs were calculated from the solutions of the algebraic system (40)
through (50). The graph on the left side shows the liquidus line of the GaAs phase
diagram, and turns out to be almost independent of mechanical e�ects. The graph
on the left side represents the homogeneiity region of the phase diagram, where
the defects are homogeneously distributed over the lattice sides. The smaller region
results if mechanical e�ects are ignored. If mechanical e�ects are taken into account,
the homogeneity region is a�ected by the outer pressure and increases if the outer
pressure is increased. The graph corresponds to an outer pressure of 500 bar. A
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Figure 6: Calculated liquidus line (left), calculated boundaries of the region of
homogeneity (right)

similar calculation for the situation with a spherical droplet within a solid matrix,
which is shown in Figure 5 (right), has exhibited a much more drastic mechanical
e�ect that does not need such high external pressure as in the current case with a
plane interface, see [4].
The concentration of the charged antisite As

(+)
α is of most importance regarding

the semi-insulating behaviour of GaAs. The next Figure shows the in�uence of
mechanical e�ects on the concentration of As

(+)
α .

Figure 7: Mechanical in�uence on the temperature dependence of the charged anti-
site mole fraction

Right from the melting point, the concentration of As
(+)
α increases drastically with

increasing outer pressure.

13 Synopsis and outlook
The current paper is the start of a series of studies on the formation and growth
of liquid arsenic droplets in solid GaAs. In the �rst paper we have developed a
thermodynamic model that takes in particular local mechanical stress �elds into
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account. Some simple examples shows their signi�cance on the laws of mass action
and on interfacial equilibrium conditions.
The next step of our investigations will be the study of the di�usion problem includ-
ing the coupling of the Becker/Döring theory to the liquid/solid interface conditions.
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