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Abstract

Let H be a semi–bounded self–adjoint operator in a separable Hilbert space.
For a certain class of positive, continuous, decreasing, and convex functions
F we show the convexity of trace functionals tr(F (H + U − ε(U))) − ε(U),
where U is a bounded self–adjoint operator on H and ε(U) is a normalizing
real function—the Fermi level—which may be identical zero. If additionally
F is continuously differentiable, then the corresponding trace functional is
Fréchet differentiable and there is an expression of its gradient in terms of
the derivative of F . The proof of the differentiability of the trace functional
is based upon Birman and Solomyak’s theory of double Stieltjes operator
integrals. If, in particular, H is a Schrödinger–type operator and U a real–
valued function, then the gradient of the trace functional is the quantum
mechanical expression of the particle density with respect to an equilibrium
distribution function f = −F ′. Thus, the monotonicity of the particle density
in its dependence on the potential U of Schrödinger’s operator—which has
been understood since the late 1980s—follows as a special case.
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1 Introduction

In the semi–classical approximation the density of electrons and holes in a two–band
bulk semiconductor depends continuously and monotone on the chemical potential
of electrons and holes, respectively. This behaviour of the charge densities ensures
the unique solvability of Poisson’s equation for the electrostatic potential, see e.g.
[9, 10, 24] and the references cited there.

In quantum semiconductor structures like resonant tunneling diodes and quantum
well lasers the semi–classical approximation and its underlying assumption, that
electrons and holes can move freely in all space directions, is not valid anymore.
Instead, in a quantum well a quantization of energy levels takes place, see e.g.
[7, 27]. The electron density in quasi low–dimensional systems, such as quantum–
wells, –wires, and –dots in the infinitely high barriers limit, is obtained by solving
an eigenvalue problem

(H + U)ψj(U) = λj(U)ψj(U)

for an appropriate Hamiltonian H+U with pure point spectrum on a space of square
integrable functions. More precisely, the electron density is given by∑

j∈N

f (λj(U)− ε(U)) |ψj(U)(x)|2 ,

where f is the thermodynamic equilibrium distribution function for the system and
ε is the quasi–Fermi potential which in general also depends on U . The shift ε(U)
normalizes the trace of f (H + U − ε(U)) in such a way that f (H + U − ε(U)) be-
comes a density matrix. In this paper we normalize to 1, though other conventions
are also common. In semiconductor physics—H being a one–electron, effective
mass Hamiltonian in Ben–Daniel–Duke form—one often chooses the total num-
ber of undistinguishable electrons in the system as normalizing condition. If the
thermodynamic equilibrium distribution function f is smooth enough, strictly and
sufficiently rapidly decreasing, then the electron density depends—as in the semi–
classical approximation—continuously and anti–monotone on the potential of the
Hamiltonian, which is, up to the normalizing shift, the negative chemical potential.
This fact has been observed in 1990 independently by Caussignac et al. [6] and Nier
[21] for the spatially one–dimensional case. In [22, 12, 13, 14, 15] the monotonicity
result for the electron density has been extended to larger classes of thermodynamic
equilibrium distribution functions f , to two and three space dimensions (that means
to quantum wires and quantum dots) including the case of quantum heterostructures
with mixed boundary conditions. As in the semi–classical approximation the mono-
tonicity result for the electron and hole density has been used to prove existence
and uniqueness of solutions for the corresponding non–linear Poisson equation, then
usually addressed as Schrödinger–Poisson system [6, 21, 22, 12, 13, 14, 15]. Even
more, one obtains existence and conditional uniqueness of solutions for the Euler
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equations of density functional theory—in local density approximation—, the so
called Kohn–Sham system [14, 15].

In this paper we generalize the monotonicity result for the density to abstract
quantum systems with an unperturbed Hamiltonian H which has pure point spec-
trum. Making minimal requirements on the continuity and the decay of the ther-
modynamic equilibrium distribution function f we prove that the density matrix
f (H + U − ε(U)) is the negative gradient of the convex functional

tr (F (H + U − ε(U)))− ε(U), F (t)
def
=

∫ ∞
t

f(s) ds,

where U is any bounded self–adjoint perturbation of H, see Theorem 33.

Our investigation uses a result by J. v. Neumann about the convexity of certain
trace functionals, see Proposition 16. The differentiability of trace functionals
tr (F (H + U)) with respect to U follows from Birman and Solomyak’s theory of
double Stieltjes operator integrals, see Proposition 20.

If the underlying Hilbert space is a space of square integrable functions and U is
induced by an essentially bounded, real–valued function u, then the corresponding
density matrices can be represented by the non–negative, integrable functions. The
dependence of these functions on u is anti–monotone and continuous, see Corol-
lary 37. This result covers, in particular, earlier ones by Caussignac et al. [6]
and Nier [21]. In the framework of [6, 21] H is the kinetic energy part of a one–
dimensional Schrödinger operator on a bounded interval; homogeneous Dirichlet
boundary conditions ensure the discreteness of the spectrum.

Maz’ya et al. give necessary and sufficient conditions for the discreteness and posi-
tivity of the spectrum of Schrödinger operators on the whole space Rn, see [17, 19].
For Schrödinger–type operators H on a bounded domain of Rn the spectral dis-
tribution function usually is asymptotical equivalent to a power function. For this
case we give a simple sufficient condition for the admissibility of a thermodynamic
equilibrium distribution function f in terms of the critical exponent of H, see The-
orem 14. Birman and Solomyak calculate the critical exponent for a large class
of self–adjoint elliptic differential operators, see Section 6, which allows to use our
criterion for these operators H.

A straightforward application of our result is to the Euler equations of density
functional theory without local density approximation of the exchange–correlation
operator. Indeed, the existence and conditional uniqueness of solutions for these
equations depends only on the monotonicity property of the density but it is not
necessary that the exchange–correlation operator is a function, see [14, 15].
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4 Hans–Christoph Kaiser et al.

2 Preliminaries

Let H be a separable Hilbert space with the scalar product 〈·, ·〉H. We use the
following notations: B, B1, and B2 are the spaces of bounded, trace class, and
Schmidt class operators on H, respectively; Bs, Bs

1, and Bs
2 are the subspaces of

self–adjoint operators from B, B1, and B2, respectively. We denote the scalars and
the scalar multiples of the identity in B by the same symbol. For the dual pairing
between B∗ and B we write 〈·, ·〉. Since B1

∗ = B there is B1 ⊆ B∗; if T ∈ B1 and
S ∈ B, then 〈T, S〉 = tr(TS), where tr(·) denotes the trace.

Definition 1. A mapping A on the domain space B into a Banach space X is
sequentially w-continuous, if the convergence of a sequence {Un}n∈N ⊂ B to U ∈ B
in the weak operator topology ( w-limn→∞ Un = U ) implies

lim
n→∞

‖A(Un)− A(U)‖X = 0.

Remark 2. In general the sequential w-continuity of A does not imply the continuity
of A as a map from the topological vector space B endowed with the weak operator
topology into X. However, any closed ball

Mr(U)
def
= {V ∈ B : ‖U − V ‖B ≤ r} , r ∈ [0,∞), U ∈ B

in B endowed with the weak operator topology is a compact, metrisable space and
its topology possesses a countable base, see [8, 3.1]. Moreover, Mr(U) is totally
bounded, a fortiori bounded. As Mr(U) is metrisable, A : Mr(U) → X is sequen-
tially continuous if and only if it is topologically continuous, see [26, A6], if and only
if the restriction of A to the space Mr(U) is uniformly continuous. Furthermore, a
set of operators from B is bounded in norm if and only if it is bounded in the weak
operator topology. Hence, if A is a sequentially w-continuous mapping from B into
X, then A is a bounded mapping with respect to both the norm topology and the weak
operator topology in B.

Definition 3. Let ω be an even Sobolev mollifier, e.g.

ω(x)
def
=

{
c exp

(
1

x2−1

)
if |x| < 1,

0 elsewhere,
and

∫
R

ω(x) dx = 1.

We define the mollification Aτ of a sequentially w-continuous operator A defined on
B into a Banach space X by the Bochner–integral

Aτ (U)
def
=

1

τ

∫ τ

−τ
ω
(
t
τ

)
A(U − t) dt, U ∈ B, t ∈ R, τ ∈ (0, 1]. (1)

Remark 4. Definition 3 is justified, since the sequential w-continuity of A implies
the continuity of the mapping

R 3 t 7−→ A(U + t) ∈ X (2)

for all U ∈ B. Hence, for each U ∈ B the function (2) is Bochner–integrable on the
closed interval [−1, 1], see [11, IV Theorem 1.9].
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Lemma 5. If A : B → X is sequentially w-continuous, then

lim
τ→0
‖Aτ (U)− A(U)‖X = 0 for all U ∈ B. (3)

Proof. Let U ∈ B be arbitrarily given; the ball M1(U) contains all operators U − t
with |t| ≤ 1. Hence, see Remark 2, for each ε > 0 exists a δ ∈ (0, 1] such that |t| < δ
yields ‖A(U − t)− A(U)‖X < ε. Thus, for τ ∈ (0, δ] one obtains

‖Aτ (U)− A(U)‖X ≤
1

τ

∫ τ

−τ
ω
(
t
τ

)
‖A(U − t)− A(U)‖X dt < ε.

Lemma 6. If A : B → X is sequentially w-continuous, then the maps Aτ , τ ∈ (0, 1],
are sequentially w-continuous, uniformly in τ .

Proof. If {Un}n∈N is a sequence in B with w-limn→∞ Un = U , then an r > 0 exists
such that Un ∈ Mr(U) for all n ∈ N. A is uniformly continuous on Mr+1(U),
endowed with the weak operator topology, see Remark 2. Hence, for each ε > 0
elements x1, x2, . . . , xk, and y1, y2, . . . , yk from H exist such that

sup
j∈{1,2,...,k}

|〈(Un − U)xj, yj〉H| < 1 (4)

yields
‖A(Un − t)− A(U − t)‖X < ε for all t ∈ [−1, 1].

Thus, one obtains for all τ ∈ (0, 1] and all Un which fulfil (4):

‖Aτ (Un)− Aτ (U)‖X ≤
1

τ

∫ τ

−τ
ω
(
t
τ

)
‖A(Un − t)− A(U − t)‖X dt < ε.

Remark 7. In particular, if H = C ∼= B and A is a continuous function on Bs = R,
then Aτ is the usual mollification of A. Moreover, the functions Aτ , τ ∈ (0, 1], are
continuous, uniformly in τ . If, additionally, A : R → R is bounded on [0,∞)
and integrable on [0,∞), then the mollified functions Aτ , τ ∈ (0, 1], are bounded,
integrable, and Lipschitz continuous—a fortiori Hölder continuous—on (a,∞) for
all a ∈ R.

Corollary 8. If A : B → X is sequentially w-continuous, then

lim
τ→0, n→∞

‖A(U)− Aτ (Un)‖X = 0 (5)

for all U , Un ∈ B with w-limn→∞ Un = U.

Proof. Let ε > 0 be given. We estimate

‖A(U)− Aτ (Un)‖X ≤ ‖A(U)− Aτ (U)‖X + ‖Aτ (U)− Aτ (Un)‖X .
According to Lemmata 5 and 6 an nε ∈ N and a T ∈ (0, 1] exist such that the
addends on the right hand side are smaller than ε/2 for all τ ∈ (0, T ) and all n > nε.
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6 Hans–Christoph Kaiser et al.

3 Convexity and differentiability

In this section we state conditions on a function G such that the trace functional
tr(G(H +U)) is convex and differentiable with respect to the argument U ∈ Bs; the
gradient at U turns out to be G′(H + U) ∈ B1.

Assumption 9. Throughout this paper H is a self–adjoint operator on a separable,
infinite–dimensional Hilbert space H which has a compact resolvent and is semi–
bounded from below.

Lemma 10. Let G be a real valued, continuous function on R which is bounded on
[0,∞). If the mapping

A : B → B, A(U)
def
= G(H + U), U ∈ dom(A) = Bs (6)

is sequentially w-continuous, then

Aτ (U) = Gτ (H + U) for all τ ∈ (0, 1] and all U ∈ Bs.

Proof. Under the preconditions of Lemma 10 the operators A and Aτ , τ ∈ (0, 1], are
well defined. If x and y are arbitrary elements from the Hilbert space H and EH+U

is the spectral measure of the operator H + U , then

〈Aτ (U)x, y〉H =
1

τ

∫ τ

−τ
ω
(
t
τ

)
〈A(U − t)x, y〉H dt

=
1

τ

∫ τ

−τ
ω
(
t
τ

)
〈G(H + U − t)x, y〉H dt

=
1

τ

∫ τ

−τ
ω
(
t
τ

) ∫ ∞
−∞

G(λ− t) d〈EH+U(λ)x, y〉H dt

=

∫ ∞
−∞

1

τ

(∫ τ

−τ
ω
(
t
τ

)
G(λ− t) dt

)
d〈EH+U(λ)x, y〉H

= 〈Gτ (H + U)x, y〉H.

Given an operator H according to Assumption 9, we introduce a class of functions
G such that tr(G(H + U)) is well defined for all U ∈ Bs.

Definition 11. Let G : R→ [0,∞) be a continuous function and let H be according
to Assumption 9. We say G belongs to the class FH if G is decreasing, i.e. if s < t
implies G(s) ≥ G(t), and G(H + γ) ∈ B1 for each γ ∈ R.

Remark 12. G ∈ FH implies limt→∞G(t) = 0. If, additionally, G is abso-
lutely continuous, then −G′ is non–negative (because G is decreasing) and G(t) =
−
∫∞
t
G′(s) ds.
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The trace class condition on G(H + γ) can be expressed in terms of the spectral
distribution function (counting function)

ξH : R→ N, ξH(t)
def
= tr(EH(t)) = tr(EH((−∞, t)) =, t ∈ R, (7)

where EH is the spectral measure of H. ξH(t) is the number of eigenvalues (including
multiplicity) on the open interval (−∞, t).

Theorem 13. Let G : R→ [0,∞) be an absolutely continuous, decreasing function.
The function G belongs to FH if and only if

sup
λ∈[0,∞)

ξH(λ− γ)G(λ)−
∫ ∞

0

ξH(λ− γ)G′(λ) dλ <∞. (8)

for each γ ∈ R.

Proof. It suffices to demonstrate for each γ ∈ R: G(H + γ) ∈ B1 if and only if (8)
holds. G(H + γ) ∈ B1 implies for all t ∈ R:

tr(G(H + γ)) =

∫ ∞
−∞

G(λ+ γ) dξH(λ)

≥
∫ t−γ

−∞
G(λ+ γ) dξH(λ)

= G(t) ξH(t− γ)−
∫ t

−∞
G′(λ) ξH(λ− γ) dλ

≥ G(t) ξH(t− γ)−
∫ t

0

G′(λ) ξH(λ− γ) dλ;

it should be noted that both ξH and −G′ are non–negative functions, the latter one
because G is decreasing. Passing now to the supremum over all t ∈ [0,∞) we get
(8). Conversely, since H is semi–bounded from below (8) implies

∞ > sup
t∈[−γ,∞)

(
G(t+ γ)ξH(t)−

∫ t

−∞
G′(λ+ γ)ξH(λ) dλ

)
= sup

t∈[−γ,∞)

∫ t

−∞
G(λ+ γ) dξH(λ)

=

∫ ∞
−∞

G(λ+ γ) dξH(λ)

= tr(G(H + γ)).

We give a necessary and sufficient criterion for G to belong to the class FH for the
case that the spectral distribution function ξH of the operator H is asymptotically
equivalent to some power function.
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8 Hans–Christoph Kaiser et al.

Theorem 14. Let the spectral distribution function (7) of the operator H be such
that

0 < lim
λ→∞

λ−θξH(λ) <∞ (9)

for some exponent θ > 0. A decreasing, absolutely continuous function G : R →
[0,∞) belongs to the class FH if and only if

−
∫ ∞

0

λθG′(λ) dλ <∞. (10)

Proof. The proof rests on Theorem 13; first we prove that (10) implies G ∈ FH . Let

us define g
def
= −G′; there is g ≥ 0. We estimate the second addend in (8) for an

arbitrary γ ∈ R:∫ ∞
1+|γ|

ξH(λ− γ)g(λ) dλ ≤ sup
λ≥1+|γ|

(λ− γ)−θξH(λ− γ)

∫ ∞
1+|γ|

(λ− γ)θg(λ) dλ

≤ sup
λ≥1

λ−θξH(λ)

∫ ∞
1+|γ|

(λ− γ)θg(λ) dλ.

If λ ≥ 1 + |γ|, then (λ− γ)θ ≤ (λ+ |γ|)θ ≤ 2θλθ; thus:∫ ∞
1+|γ|

ξH(λ− γ)g(λ) dλ ≤ 2θ sup
λ≥1

λ−θξH(λ)

∫ ∞
0

λθg(λ) dλ

which yields ∫ ∞
0

ξH(λ− γ)g(λ) dλ <∞. (11)

As for the first addend in (8) we note that for all λ ∈ [0,∞):

G(λ) =

∫ ∞
λ

g(s) ds =

∫ ∞
λ

s−θsθg(s) ds

≤ λ−θ
∫ ∞
λ

sθg(s) ds ≤ λ−θ
∫ ∞

0

sθg(s) ds.

Hence, taking into account the precondition (10):

sup
λ≥0

λθG(λ) ≤
∫ ∞

0

sθg(s) ds <∞.

Now we get

sup
λ≥1+|γ|

ξH(λ− γ)G(λ) ≤ sup
λ≥1+|γ|

(λ− γ)−θξH(λ− γ) sup
λ≥1+|γ|

(λ− γ)θG(λ)

≤ 2θ sup
λ≥1

λ−θξH(λ) sup
λ≥1

λθG(λ)

≤ 2θ sup
λ≥1

λ−θξH(λ)

∫ ∞
0

sθg(s) ds,
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Convexity of trace functionals. . . 9

which yields according to (9) and (10):

sup
λ≥0

ξH(λ− γ)G(λ) <∞. (12)

(12) and (11) imply (8), thus by Theorem 13 G belongs to FH .

Due to (9) constants c > 0 and λ0 ∈ R exist, such that

c λθ ≤ ξH(λ) for all λ ≥ λ0

If G ∈ FH , then, according to Theorem 13

−
∫ ∞
λ0

λθG′(s) ds ≤ − 1

c

∫ ∞
λ0

ξH(s)G′(s) ds <∞,

which implies (10).

If G ∈ FH , then

G(H − ‖U‖B) ≥ G(H + U) ≥ 0 for all U ∈ Bs.

Hence, G(H + U) ∈ B1 and we can define the functional φ : Bs → R

φ(U)
def
= tr(G(H + U)), U ∈ dom(φ)

def
= Bs, G ∈ FH . (13)

Lemma 15. If G ∈ FH , then the mapping

Bs 3 U 7−→ G(H + U) ∈ B1 (14)

and the functional (13) are sequentially w-continuous.

Proof. Let {Un}n∈N be a sequence from Bs so that w-limn→∞ Un = U . We decom-
pose

(H + Un − i)−1 − (H + U − i)−1

=
(
(H + Un − i)−1(U − Un) + 1

)
(H + U − i)−1(U − Un)(H + U − i)−1.

w-limn→∞ Un = U implies, as (H +U − i)−1 is compact, (H +U − i)−1(U −Un)→ 0
in the strong operator topology and (H + U − i)−1(U − Un)(H + U − i)−1 → 0
in the uniform operator topology. The sequence {Un}n∈N is bounded, let us say
by r. Hence, {(H + Un − i)−1(U − Un) + 1}n∈N is bounded in B and we obtain
H + Un → H + U in the norm resolvent sense. Thus, [25, Theorem VIII.20(a)]

applies mutatis mutandis to h
def
=
√
G and the sequence {H + Un}n∈N and we get

h(H+Un)→ h(H+U) in the uniform operator topology. Let λj(U), λj(Un), j ∈ N,
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10 Hans–Christoph Kaiser et al.

n ∈ N, be the eigenvalues of H +U and H +Un, respectively, counting multiplicity.
Since H + Un converges to H + U in the norm resolvent sense one has

lim
n→∞

λj(Un) = λj(U) for all j ∈ N,

see [16, IV §3.5], which yields, due to the continuity of G:

lim
n→∞

G
(
λj(Un)

)
= G

(
λj(U)

)
for all j ∈ N. (15)

As H + Un≥H − r there is λj(Un) ≥ λj(−r), for all j, n ∈ R. Due to the monotone
decay of G we now get

G
(
λj(Un)

)
≤ G

(
λj(−r)

)
, for all j, n ∈ R, (16)

which implies

tr
(
G(H + Un)

)
=
∞∑
j=1

G
(
λj(Un)

)
≤

∞∑
j=1

G
(
λj(−r)

)
= tr

(
G(H − r)

)
<∞.

Using (15) and (16) one obtains

lim
n→∞

tr
(
G(H + Un)

)
= tr

(
G(H + U)

)
. (17)

G(H + Un), n ∈ N, and G(H + U) are trace class operators, hence, h(H + Un) =(
G(H + Un)

)1/2
, n ∈ N, and h(H + U) =

(
G(H + U)

)1/2
belong to the Schmidt

class. Thus, we get from (17)

lim
n→∞

∥∥(G(H + Un)
)1/2∥∥

B2
=
∥∥(G(H + U)

)1/2∥∥
B2

(18)

which yields

sup
n∈N

∥∥(G(H + Un)
)1/2∥∥

B2
<∞.

Thus, taking into account the weak compactness of the unit ball of B2, we find that(
G(H + Un)

)1/2
converges to

(
G(H + U)

)1/2
weakly in B2. Together with (18) this

implies

lim
n→∞

∥∥(G(H + Un)
)1/2 −

(
G(H + U)

)1/2∥∥
B2

= 0.

Finally, using the estimate∥∥(G(H + Un)
)
−
(
G(H + U)

)∥∥
B1

≤
(∥∥(G(H + Un)

)1/2∥∥
B2

+
∥∥(G(H + U)

)1/2∥∥
B2

)
×
∥∥(G(H + Un)

)1/2 −
(
G(H + U)

)1/2∥∥
B2

one obtains the sequential w-continuity of (14), and hence, the sequential w-conti-
nuity of (13).
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Proposition 16. (J. v. Neumann [20, chapter V.3]) If G ∈ FH is convex, then the
functional (13) is convex.

A comprehensive proof of Proposition 16 is given in [18]. — The convex, continu-
ously differentiable functions from FH can be characterized as follows:

Lemma 17. Let G : R → [0,∞) be continuously differentiable. G is convex and
belongs to FH if and only if G(H) ∈ B1 and −G′ ∈ FH .

Proof. Since G is a continuously differentiable, convex function −G′ is a continuous,
decreasing function and

G(z) + (y − z)G′(z) ≤ G(y) for all y, z ∈ R. (19)

With z = t+ γ and y = t+ γ − 1 one obtains due to the non–negativity of G:

−G′(t+ γ) ≤ G(t+ γ − 1) for all t, γ ∈ R.

Therefore,

0 ≤ tr
(
−G′(H + γ)

)
≤ tr

(
G(H + γ − 1)

)
=
∥∥G(H + γ − 1)

∥∥
B1
<∞

for all γ ∈ R. Hence, −G′(H + γ) ∈ B1 for each γ ∈ R, and thus, −G′ ∈ FH .

Conversely, if −G′ ∈ FH then by definition −G′ is continuous, non–negative, and
decreasing. Thus, G is decreasing, convex, and non–negative. The convexity of G
implies by specifying y = t and z = t+ γ in (19):

G(t+ γ) ≤ G(t) + γG′(t+ γ), for all t, γ ∈ R.

Therefore,

0 ≤ tr
(
G(H + γ)

)
≤ tr

(
G(H)

)
+ γ tr

(
G′(H + γ)

)
≤

∥∥G(H)
∥∥
B1

+ γ
∥∥G′(H + γ)

∥∥
B1

< ∞

for all γ ∈ R. Hence, G(H + γ) ∈ B1 for each γ ∈ R, and thus, G ∈ FH .

Lemma 18. If G ∈ FH , then Gτ ∈ FH for all τ > 0.

Proof. The assertion follows directly from Lemma 15, Remark 2, and the Defini-
tions 11 and 3. Let G be from FH . The mollified function is smooth. As G is
non–negative and the mollifier ω is non–negative, Gτ is non–negative for all τ > 0.
Gτ is also decreasing: if s < t, then G(s)≥G(t), hence

Gτ (s) =
1

τ

∫ τ

−τ
ω
(
θ
τ

)
G(s− θ) dθ ≥ 1

τ

∫ τ

−τ
ω
(
θ
τ

)
G(t− θ) dθ = Gτ (t).

Finally, according to Lemma 15 the map (14) is sequentially w-continuous. Hence,
Definition 3, Remark 4 (there replacing X by B1) and Lemma 10 ensure Gτ (H+γ) ∈
B1 for all γ ∈ R.
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12 Hans–Christoph Kaiser et al.

Lemma 19. Let G : R→ R be continuous; if G is bounded on [0,∞), then

‖Gτ (H + U)‖B ≤ sup
λ(U)−1≤t<∞

G(t) <∞ for all U ∈ Bs, τ ∈ (0, 1], (20)

where λ(U) is the smallest eigenvalue of the operator H + U .

Proof. The assertion follows directly from the precondition and (1); one estimates:

‖Gτ (H + U)‖B ≤ sup
λ(U)≤t<∞

Gτ (t)

= sup
λ(U)≤s<∞

1

τ

∫ τ

−τ
ω
(
t
τ

)
G(s− t) dt ≤ sup

λ(U)−τ≤t<∞
G(t).

Proposition 20. (see M. Sh. Birman and M. Z. Solomyak [3, Theorem 6.1 and
Theorem 7.8]) Let G be a real–valued, continuously differentiable function on R such
that for each a ∈ R the derivative G′ is bounded, integrable, and Hölder continuous
on (a,∞). If W ∈ Bs

1, then the function

R 3 s 7−→ G(H + sW ) ∈ B1

is continuously differentiable and

d

ds
tr (G(H + sW ))

∣∣
s=t

= tr (G′(H + tW )W ) for all t ∈ R. (21)

Theorem 21. Let G ∈ FH be continuously differentiable. If G′ is bounded on [0,∞)
and

Bs 3 U 7−→ G′(H + U) ∈ B1 is sequentially w-continuous, (22)

then the functional (13) is Fréchet differentiable and its gradient

∂φ : Bs → Bs
1 ⊆ (Bs)∗

is given by
∂φ(U) = G′(H + U) for all U ∈ Bs. (23)

Proof. According to Remark 12 the function G′ is integrable on [0,∞). Let us first
assume that G′ is additionally Hölder continuous. Then, due to Proposition 20, the
map Υ : R→ B1,

Υ(s)
def
= G(H + U + sW ), s ∈ R, U ∈ Bs, W ∈ Bs

1,

is continuously differentiable and there is for all s ∈ R, U ∈ Bs, and W ∈ Bs
1:

φ(U + sW )− φ(U) =

∫ s

0

tr(G′(H + U + tW )W ) dt. (24)
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If G′ is not Hölder continuous we regard the mollified functions (1) of G. According
to Lemma 6 and Lemma 18 each of the functions Gτ , τ ∈ (0, 1], satisfies the pre-
conditions of Theorem 21. Moreover, the functions Gτ are Hölder continuous, see
Remark 7. Thus, (24) is valid for each Gτ , τ ∈ (0, 1]:

φτ (U + sW )− φτ (U) =

∫ s

0

tr(G′τ (H + U + tW )W ) dt. (25)

As for passing to the limit τ → 0 on the left hand side of (25): according to
Lemma 15, the mapping (14) is sequentially w-continuous, hence, Lemma 5 (there
replacing X by B1) applies to (14). In view of passing to the limit τ → 0 on the
right hand side of (25) we note: the assertion of Lemma 5 holds for the mapping
(22); the integrand

tr (G′τ (H + U + tW )W ) ≤ ‖G′τ (H + U + tW )‖B ‖W‖Bs
1

is uniformly bounded for all τ ∈ (0, 1] and all t ∈ [0, s], see Lemma 19. Hence, we
can pass to the limit τ → 0 in (25) and get (24) for all G which are in agreement
with the preconditions of Theorem 21.

If W ∈ Bs, then there is a sequence of self–adjoint trace class operators {Wn}n∈N

such that w-limn→∞Wn = W . (24) applies to each Wn:

φ(U + sWn)− φ(U) =

∫ s

0

tr(G′(H + U + tWn)Wn) dt. (26)

Passing in (26) to the limit n → ∞, thereby observing (22), one obtains that the
functional φ is Gâteaux differentiable and has the gradient (23).

According to (22) and (23), ∂φ is w-continuous. This implies that the functional (13)
is not only Gâteaux but also Fréchet differentiable, see e.g. [28, Proposition 4.8(c)].

Remark 22. If we tighten the preconditions of Theorem 21 such that G belongs to
the Besov space B1

∞,1, then the proof becomes much easier using results by Peller
[23, § 6], see also [5, Theorem 2.5], instead of Proposition 20.

Theorem 23. If G ∈ FH is continuously differentiable and convex, then the func-
tional (13) is Fréchet differentiable and its gradient (23) is monotone.

Proof. According to Lemma 17 there is −G′ ∈ FH . Hence, G′ is bounded on [0,∞)
and due to Lemma 15 one has (22). Thus, by Theorem 21 the functional (13) is
Fréchet differentiable and has the gradient (23). According to Proposition 16, the
functional φ is convex. This implies that its gradient ∂φ is monotone, see e.g. [11,
chapter III Lemma 4.10].
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14 Hans–Christoph Kaiser et al.

Definition 24. Let G be from FH . By means of the functional (13) related to G we
define the functions ΓU : R→ R, U ∈ Bs:

ΓU(t)
def
= φ(U − t) = tr(G(H + U − t)), U ∈ Bs, t ∈ R. (27)

Lemma 25. Let G be from FH and let ΓU be according to Definition 24. For any
U ∈ Bs:

1. the function ΓU is non–negative and continuous;

2. if G is convex, then ΓU is convex;

3. if G is continuously differentiable and convex, then the function ΓU is differ-
entiable and

Γ′U(t) = − tr
(
∂φ(U − t)

)
= − tr

(
G′(H + U − t)

)
, t ∈ R; (28)

4. if G is strictly decreasing, then ΓU is strictly increasing and

lim
t→∞

ΓU(t) =∞ and lim
t→−∞

ΓU(t) = 0. (29)

Proof. The non–negativity of G implies directly the non–negativity of ΓU and the
continuity of ΓU follows from Lemma 15. If G is convex, then Proposition 16 ensures
the convexity of ΓU . One obtains the differentiability of ΓU and (28) by means of
the chain rule from Theorem 23. As for the monotonicity and asymptotics of ΓU : if
U ∈ Bs, then H+U has a compact resolvent; let λj(U), j ∈ N, be the eigenvalues of
H+U counting multiplicity. Since, according to the preconditions, G is non–negative
and strictly decreasing, t1 < t2 implies

0 < G(λj(U)− t1) < G(λj(U)− t2) for all j ∈ N.

Hence, ΓU(t1) < ΓU(t2) for t1 < t2. To get the first assertion in (29) we estimate

lim
t→∞

∑
j∈N

G(λj − t) = lim
l→∞

∑
j∈N

G(λj − λl) ≥ lim
l→∞

l G(0) =∞.

The second assertion in formula (29) follows from the majorant criterion, due to the
convergence of

∑
j∈NG(λj). Consequently

lim
t→−∞

∑
j∈N

G(λj − t) =
∑
j∈N

lim
t→−∞

G(λj − t) = 0,

see also Remark 12.

Lemma 26. Let ΓU be according to Definition 24. If V , W ∈ Bs and V ≤ W , then
ΓV (t) ≥ ΓW (t) for all t ∈ R.

Proof. Let λj(U), j ∈ N, be the eigenvalues of H+U , U ∈ Bs, counting multiplicity.
If V ≤ W , then the maximum principle implies λj(V − t) ≤ λj(W − t) for all t ∈ R.
Hence, ΓV (t) ≥ ΓW (t) for all t ∈ R.
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4 Statistical operators

In the conceptual framework of quantum mechanics H +U is a Hamiltonian with a
kinetic energy part H and a potential energy part U . Let f be a strictly decreasing
thermodynamic equilibrium distribution function for the quantum system under
consideration. We define a generalized Fermi level ε(U) such that f(H +U − ε(U))
is a statistical operator, that is a density matrix, see e.g. [20, IV.1]. This statistical
operator is anti–monotone and continuous with respect to the argument U .

Definition 27. We define the functional G : Bs ×R→ R,

G(U, t)
def
= 1− tr(f(H + U − t)), U ∈ Bs, t ∈ R, (30)

where f ∈ FH is assumed to be strictly decreasing.

Due to Lemma 25 (there replacing G by f) the functional (30) is well defined and

if w-lim
n→∞

Un = U and lim
n→∞

tn = t, then lim
n→∞

G(Un, tn) = G(U, t), (31)

if t1 < t2, then G(U, t1) > G(U, t2) for all U ∈ Bs, (32)

lim
t→∞
G(U, t) = −∞ and lim

t→−∞
G(U, t) = 1 for all U ∈ Bs. (33)

Theorem 28. If f ∈ FH is strictly decreasing, then for any U ∈ Bs the equation
G(U, t) = 0 has a unique solution t = ε(U). The functional ε : Bs → R is increasing,
i.e. if V ≤ W , then ε(V ) ≤ ε(W ). Moreover, ε : Bs → R is sequentially w-
continuous, i.e. w-limn→∞ Un = U implies limn→∞ ε(Un) = ε(U).

Proof. For any fixed U ∈ Bs the function R 3 t 7→ G(U, t) is continuous and strictly
decreasing, see (31), (32). This implies in conjunction with (33) that the equation
G(U, t) = 0 has a unique solution for any U ∈ Bs.

If V ≤ W , then Lemma 26 (there replacing G by f) implies

0 = G(V, ε(V )) ≤ G(W, ε(V )).

This yields ε(V ) ≤ ε(W ), due to (32).

Now, let {Un}n∈N ⊂ Bs be a sequence with w-limn→∞ Un = U . Then {Un}n∈N is
bounded in B, let us say by r. This yields −r ≤ Un ≤ r, hence,

ε(−r) ≤ ε(Un) ≤ ε(r) for all n ∈ N,

thence {ε(Un)}n∈N is precompact. Let us assume there were a subsequence {Unk}k∈N

such that
lim
k→∞

ε(Unk) = t 6= ε(U).

Then (31) implies

G(U, ε(U)) = 0 = G(Unk , ε(Unk)) = G(U, t).

Hence, ε(U) = t.
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Definition 29. A function f ∈ FH , see Definition 11, is said to belong to the class
EH ⊂ FH , if it is strictly decreasing, and F (H) ∈ Bs

1, where

F (t)
def
=
∫∞
t
f(s) ds.

For f ∈ EH , the functional ε : Bs → R defined by the unique solution of the equation
G(U, ε(U)) = 0 is called the (generalized) Fermi level. Moreover, the functional
Φ : Bs → R,

Φ(U)
def
= tr(F (H + U − ε(U))− ε(U) = φ(U − ε(U))− ε(U) (34)

is well defined, where φ is the functional (13) with respect to the function F .

Remark 30. Theorem 28 ensures the existence of the Fermi level ε(U). f ∈ EH if
and only if f is the negative derivative of a function F ∈ FH which is continuously
differentiable and strictly convex, see Lemma 17. If f is a strictly decreasing function
in agreement with the preconditions of Theorem 14, then f ∈ EH .

Theorem 31. If f ∈ EH , then Φ from Definition 29 is convex.

Proof. Since f is decreasing the function F (t)
def
=
∫∞
t
f(s) ds is convex. Thus, ac-

cording to Lemma 25 (there replacing G by F ), for any U ∈ Bs the function ΓU ,
referring to G = F , is convex and differentiable, hence

ΓU(z) + (y − z)Γ′U(z) ≤ ΓU(y), y, z ∈ R, U ∈ Bs. (35)

Let V , W be from Bs and let t be from the interval [0, 1]. Inserting

U = tW + (1− t)V, z = ε(tW + (1− t)V ), y = ε(W ) + (1− t)ε(V )

into (35), thereby observing (28) and the implicit definition tr
(
f(H+U−ε(U))

)
= 1

of the Fermi level, one obtains

tr
(
F
(
H + tW + (1− t)V − tε(W )− (1− t)ε(V )

))
≥ tr

(
F
(
H + tW + (1− t)V − ε(tW + (1− t)V )

))
+ tε(W ) + (1− t)ε(V )− ε(tW + (1− t)V ),

or in terms of the functional (13) (there replacing G by F ) and (34)

Φ
(
tW + (1− t)V

)
≤ φ

(
t
(
W − ε(W )

)
+ (1− t)

(
V − ε(V )

))
− tε(W )− (1− t)ε(V ).

Now, the convexity of φ, see Proposition 16, provides the assertion.
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Theorem 32. Let f ∈ EH be continuously differentiable and let f ′ be bounded on
[0,∞). If the map

Bs 3 U 7−→ f ′(H + U) ∈ Bs
1 is sequentially w-continuous, (36)

then the Fermi level ε is Fréchet differentiable and its gradient is given by

∂ε(U) =
f ′(H + U − ε(U))

tr(f ′(H + U − ε(U))
∈ Bs

1 ⊂ (Bs)∗ for all U ∈ Bs; (37)

∂ε : Bs → Bs
1 is sequentially w-continuous.

Proof. According to Theorem 21 (there replacing G by f) the functional (30) has
continuous partial derivatives

∂1G(U, t) ∈ Bs
1 ⊂ (Bs)∗, ∂2G(U, t) ∈ R∗ ∼= R

on Bs ×R which are given by

〈∂1G(U, t),W 〉 = − tr
(
f ′(H + U − t)W

)
,

∂2G(U, t) = tr
(
f ′(H + U − t)

)
.

Since f ′ is negative, ∂2G(U, t) < 0 for all U ∈ Bs and t ∈ R. Thus, by the Implicit
Function Theorem, for every U ∈ Bs there is a neighbourhood U ⊂ Bs of U and a
Fréchet differentiable function ε : U → R such that G(U, ε(U)) = 0 for all U ∈ U ;
the Fréchet derivative ∂ε : U → (Bs)∗ is given by (37) and it is sequentially w-
continuous in B1. Finally, the nuclearity of ∂ε(U) follows from the precondition
(36).

Theorem 33. If f ∈ EH , then the functional (34) is Fréchet differentiable, and

∂Φ(U) = −f(H + U − ε(U)) ∈ Bs
1 for all U ∈ Bs. (38)

The mapping ∂Φ : Bs → Bs
1 is monotone and sequentially w-continuous.

Proof. Since f is decreasing the function F (t)
def
=
∫∞
t
f(s) ds is convex and, according

to Theorem 23, the functional (13) (there replacing G by F ) is Fréchet differentiable.
Let us first assume that f meets the preconditions of Theorem 32. Then the gener-
alized Fermi level ε is Fréchet differentiable. Hence, the function s 7→ Φ(U + sW ),
s ∈ R, U,W ∈ Bs is differentiable in s = 0 and

d

ds
Φ(U + sW )

∣∣
s=0

= tr (∂φ (U − ε(U)) (W − tr (∂ε(U)W )))− tr (∂ε(U)W )

= − tr (f(H + U − ε(U))W ) ;
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thereby (23), (37), and tr
(
f(H + U − ε(U))

)
= 1 are taken into account. Hence,

if f meets the preconditions of Theorem 32, the functional Φ is Gâteaux differen-
tiable and has the gradient (38). Moreover, Lemma 15 and Theorem 28 assure the
sequential w-continuity of ∂Φ. Thus,

Φ(U + sW )− Φ(U) = −
∫ s

0

tr(f(H + U + tW − ε(U + tW ))W ) dt. (39)

for all s ∈ R, and U , W ∈ Bs. Let us now assume f ∈ EH . Then for each τ > 0
the mollified function fτ meets the preconditions of Theorem 32, thus (39) applies
to fτ for each τ > 0. We pass to the limit τ → 0. First we show

lim
τ→0

ετ (U) = ε(U) for all U ∈ Bs. (40)

According to the Definition 29 of the Fermi level ετ

tr(fτ (H + U − ετ (U))) = 1 for all τ > 0,

or in terms of (30):

0 = 1− 1

τ

∫ τ

−τ
ω

(
t

τ

)
tr (f(H + U − ετ (U)− t)) dt

=
1

τ

∫ τ

−τ
ω

(
t

τ

)
G(U, ετ (U) + t) dt, for all τ > 0.

As t 7→ G(U, t) is strictly decreasing this implies

G(U, ετ (U) + τ) < 0 < G(U, ετ (U)− τ).

Hence,
G(U − τ, ετ (U)) < 0 = G(U − τ, ε(U − τ))

and consequently
ε(U − τ) < ετ (U). (41)

Analogously one obtains
ε(U + τ) > ετ (U). (42)

Thus, observing the sequential w-continuity of the Fermi level,

ε(U) ≤ lim inf
τ→0

ετ (U) ≤ lim sup
τ→0

ετ (U) ≤ ε(U).

Next, we show
lim
τ→0

Φτ (U) = Φ(U). (43)

We estimate

|Φτ (U)− Φ(U)| ≤ |φτ (U − ετ (U))− φ(U − ε(U))|+ |ετ (U)− ε(U)| .
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Each term on the right hand side of this estimate tends to zero as τ → 0: for the
last term this is true due to (40); for the first term Corollary 8 and (40) imply the
assertion. Next, we show for all U , W ∈ Bs:

lim
τ→0

tr (fτ (H + U − ετ (U))W ) = tr (f(H + U − ε(U))W ) . (44)

To that end we estimate

‖fτ (H + U − ετ (U))− f(H + U − ε(U))‖B1

≤ ‖fτ (H + U − ετ (U))− fτ (H + U − ε(U))‖B1

+ ‖fτ (H + U − ε(U))− f(H + U − ε(U))‖B1
.

According to Lemma 15, f ∈ FH implies the sequential w-continuity of the mapping

Bs 3 U 7→ f(H + U) ∈ B1.

Hence, Corollary 8 provides

lim
τ→0
‖f(H + U − ε(U))− fτ (H + U − ετ (U))‖B1

= 0 for all U ∈ Bs

and a fortiori (44). According to (41), (42) and Theorem 28

ε(U − 1) < ετ (U) < ε(U + 1) for all τ ∈ (0, 1],

hence, for any V , W ∈ Bs the set

{V + tW − ετ (V + tW ) : t ∈ [0, s], τ ∈ (0, 1]}

is bounded in B. Thus, due to the sequential w-continuity of the mapping

Bs 3 U 7→ f(H + U − ε(U)) ∈ Bs
1,

for any V , W ∈ Bs a constant c = c(V,W ) exists such that

tr (fτ (H + V + tW − ε(V + tW ))W )

≤ ‖fτ (H + V + tW − ε(V + tW ))‖B1
‖W‖B < c

for all t ∈ [0, s], and all τ ∈ (0, 1], see Remark 2 and Lemma 6. Due to Lebesgue’s
dominated convergence theorem we obtain

lim
τ→0

∫ s

0

tr (fτ (H + U + tW − ετ (U + tW ))W ) dt

=

∫ s

0

tr (f(H + U + tW − ε(U + tW ))W ) dt

for all s ∈ R and all U , W ∈ Bs. This in connection with (43) proves (39) for all
f ∈ EH .
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The sequential w-continuity of ∂Φ is a consequence of Lemma 15 (there replac-
ing G by f) and Theorem 28. The functional (34) is not only Gâteaux but also
Fréchet differentiable because ∂Φ is sequentially w-continuous, see e.g. [28, Proposi-
tion 4.8(c)]. Finally, the monotonicity of the gradient ∂Φ follows from Theorem 31
and [11, Lemma 4.10, Ch. III].

Remark 34. Theorem 33 states, in particular, that f(H + U − ε(U)) is a sta-
tistical operator for any thermodynamic equilibrium distribution function f from
EH and any U ∈ Bs. Indeed, f(H + U − ε(U)) is non–negative, nuclear, and
tr (f(H + U − ε(U))) = 1. Hence, the mean value of an observable W ∈ Bs is given
by tr (f(H + U − ε(U))W ) . If W ∈ Bs is a non–negative operator, then

tr (f(H + U − ε(U))W ) = tr
(√

W f(H + U − ε(U))
√
W
)
≥ 0

for all U ∈ Bs.

5 Schrödinger operators

If f is a thermodynamic equilibrium distribution function for the quantum systems
related to the Hamiltonians H+U , then the negative gradient (38) of the functional
(34) is a density matrix for each U ∈ Bs, see Remark 34. With regard to the real
space representation of quantum mechanics we investigate the mapping −∂Φ for the
special case that H is a space of square integrable functions and U is induced by
an essentially bounded, real–valued function u. It turns out that the corresponding
density matrices can be represented by the non–negative, integrable functions.

Let H = L2(µ) be a space of square integrable, complex–valued functions on a
σ–finite measure space (Y,S, µ); further, let L1(µ) and L∞(µ) be the spaces of
integrable and essentially bounded functions on (Y,S, µ). Each element u from the
space L∞(µ) induces a bounded multiplication operator π(u) on L2(µ). In this sense
L∞(µ) embeds into B.

Lemma 35. Let (Y,S, µ) be a σ–finite measure space. If

π : L1(µ)∗ ∼= L∞(µ) −→ B

is the natural embedding, then the dual mapping

π∗ : B∗ −→ L∞(µ)∗ ∼= L1(µ)∗∗

has the following properties:

1. the restriction of π∗ to the sub-space B1 ⊂ B∗ maps onto L1(µ);

2. the restriction of π∗ to the sub-space Bs
1 ⊂ (Bs)∗ maps onto L1

R(µ);
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3. the restriction of π∗ to the self–adjoint, non–negative trace-class operators
maps onto the real–valued, non–negative functions from L1(µ).

Proof. First, we show that for a trace class operator K the functional

L∞(µ) 3 u 7−→ tr(Kπ(u))

is not only from L∞(µ)∗ but from the pre-dual L1(µ) of L∞(µ). Any trace-class
operator K is given by two Hilbert-Schmidt operators K1, K2 such that K = K1K2.
Each of the Hilbert-Schmidt operators K1, K2 is an integral operator with kernel
k1, k2 ∈ L2(µ× µ), respectively. For every u ∈ L∞(µ) the function k0

def
= k2(1 ⊗ u)

belongs to L2(µ × µ). Thus, k0 is the kernel of an integral operator K0 which is a
Hilbert-Schmidt operator. Hence, K1K0 = Kπ(u) is a trace class operator and

tr(Kπ(u)) = tr(K1K0) =

∫ ∫
k1(s, t)k0(t, s) dµ(t) dµ(s)

=

∫ ∫
k1(s, t)k2(t, s) dµ(t)u(s) dµ(s).

Therefore, the functional π∗(K) ∈ L∞(µ)∗ is given by the integrable function

s 7−→
∫
k1(s, t)k2(t, s) dµ(t).

Hence, the restriction of the embedding operator π to the subspace B1 of B maps
into L1(µ). The range of π∗|B1 is closed because

(π∗|B1)∗ = π : L1(µ)∗ = L∞(µ) −→ B1
∗ = B

and the range of π is closed in B, see [26, Theorem 4.14]. Moreover, the range of
π∗|B1 is dense in L1(µ), because π = (π∗|B1)∗ is injective, see [26, Theorem 4.12].

The second assertion can be proved by applying the above argument mutatis mu-
tandis to the embedding operator π|L∞R (µ) : L∞R (µ)→ Bs.

Finally, π maps the non–negative cone of L∞R into the non–negative cone of Bs.
Hence, π∗ maps the non–negative cone of Bs∗ into the non–negative cone of L∞R (µ)∗.
Therefore, π∗ maps the self–adjoint, non–negative trace-class operators onto the
functions u ∈ L1

R(µ) for which
∫
uv dµ ≥ 0 for all v from the non–negative cone of

L∞R , that is just the non–negative cone of L1
R(µ).

Each element u from the space L∞R (µ) induces a self–adjoint, bounded multiplication
operator π(u) on L2(µ). If f belongs to the class EH from Definition 29, then,
according to Theorem 33, the functional (34) is Fréchet differentiable and its gradient
at π(u) ∈ Bs is the trace class operator ∂Φ(π(u)) = −f(H + π(u)− ε(π(u))).

Preprint 835, Weierstrass Institute for Applied Analysis and Stochastics, Berlin 2003



22 Hans–Christoph Kaiser et al.

Theorem 36. Let (Y,S, µ) be a σ–finite measure space. If f ∈ EH , then the
restriction of the mapping (38) to the space L∞R (µ) maps into the non–positive cone
of the space L1

R(µ) and the mapping

π∗∂Φπ : L∞R (µ)→ L1
R(µ)

is monotone and continuous.

Proof. If u ∈ L∞R (µ), then π(u) ∈ Bs, thence −∂Φ(π(u)) is a non–negative, self–
adjoint trace-class operator and, according to Lemma 35, π∗(−∂Φ(π(u))) is a real–
valued, non–negative µ-integrable function.

The second assertion follows from the monotonicity and sequential w-continuity of
∂Φ, see Theorem 33, and the fact that the embedding operator π : L∞ → B is linear
and continuous, see e.g. [11, III Lemma 1.4].

Corollary 37. If a thermodynamic equilibrium distribution function f belongs to
the class EH , then the density

N (u)
def
= −π∗(∂Φ(π(u))) = π∗(f(H + π(u)− ε(π(u)))), u ∈ L∞R (µ)

associated to f and the Hamiltonian H+π(u) is non–negative and µ-integrable. The
mapping N : L∞R (µ)→ L1

R(µ) is continuous and anti–monotone.

Remark 38. For a wide range of thermodynamic equilibrium distribution functions
f the mapping N can be continuously and anti–montone extended to potentials u
from other summability classes than L∞(µ), for instance from L2(µ). This is possi-
ble, in particular, if the functions from L2(µ) (regarded as multiplication operators)
are infinitesimally small with respect to H and f decays rapidly enough.

6 Self–adjoint elliptic differential operators

For Schrödinger–type operatorsH on a bounded domain Ω ⊂ Rn, n > 0, the spectral
distribution function usually is asymptotical equivalent to a power function, that
means for some θ > 0:

0 < lim
λ→∞

λ−θξH(λ) <∞; (45)

θ is the critical exponent of H. Theorem 14 states a sufficient condition on a
thermodynamic equilibrium distribution function f in terms of the critical exponent
of H such that Corollary 37 applies. Birman and Solomyak proved (45) for a large
class of self–adjoint elliptic differential operators thereby explicitly calculating the
critical exponent.

In the following we regard self–adjoint elliptic differential operators acting on func-
tions defined on a bounded domain Ω of the Rn with values which are complex k×k
matrices. We abbreviate Dj

def
= −∂/∂xj. If σ = (σ1, σ2, . . . , σn) is a multi–index,

then |σ| def
= σ1 + σ2 + . . .+ σn and Dσ def

= Dσ1
1 D

σ2
2 . . . Dσn

n .
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Assumption 39. Let Ω ⊂ Rn be a bounded domain and let a : Ω → Cν2
be a

matrix–valued measurable function, such that a(x) is a block–matrix consisting of
symmetric k × k matrices a(x) = {aσς}|σ|=|ς|=l , where σ and ς are multi–indices,
l ∈ N is a given number, and ν is k times the number of multi–indices σ with
|σ| = l. We assume that the matrix a(x) is non—negative and invertible for almost
every x ∈ Ω and

‖a‖Cν2 ∈ L1
loc(Ω), ‖a−1‖Cν2 ∈ Lκ(Ω),

1

κ
<

2l

n
, 1 ≤ κ ≤ ∞. (46)

Proposition 40. ([4]) Under Assumption 39 the sesquilinear form

h[u, v]
def
=

∑
|σ|=|ς|=l

∫
Ω

〈aσς(x)Dσu,Dςv〉Ck dx, u, v ∈ C∞0 (Ω,Ck) (47)

is symmetric, positive, and closable in the Hilbert space L2(Ω,Ck). The closure of
h uniquely determines a self–adjoint, positive operator H on L2(Ω,Ck).

Proposition 41. ([4, Theorem 2]) Under Assumption 39 the critical exponent of
the operator H from Proposition 40 is n/(2l).

The sesquilinear form h can be perturbed by forms of lower order without changing
the critical exponent of the associated operator.

Proposition 42. ([4, Theorem 2]) Let us assert Assumption 39 and let 2j be a
non–negative integer such that j < l. Then the sesquilinear form

b[u, v]
def
=

∑
|σ|+|ς|=2j

|σ|≤l, |ς|≤l

∫
Ω

〈bσς(x)Dσu,Dςv〉Ck dx, u, v ∈ C∞0 (Ω,Ck) (48)

is relatively compact with respect to h, if the coefficients bσς are measurable functions
with symmetric k×k matrix–values such that for all multi–indices σ, ς from the range
of the sum in (48) holds:

bσς ∈ Lκσς (Ω,Ck), 1 < κσς ≤ ∞, 1
κ

+ 1
κσς

< 2 l−j
n

1
κ

+ 2
κσς

< 2 l−|σ|
n

+ 1, 1
κ

+ 2
κσς

< 2 l−|ς|
n

+ 1.

The sum h + b of the forms (47) and (48) is semi–bounded from below and closable
in L2(Ω,Ck). The critical exponent of the self–adjoint, semi–bounded (from below)
operator associated to the closure of h + b is the critical exponent of H, namely
n/(2l).

Proposition 43. ([4, Theorem 2]) Let us assert Assumption 39 and let 2j be a
non–negative integer such that j < l. Then the sesquilinear form

b[u, v]
def
=

∑
|σ|+|ς|=2j

|σ|≤l, |ς|≤l

∫
Ω

〈 dµσς(x)Dσu,Dςv〉Ck , u, v ∈ C∞0 (Ω,Ck) (49)
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is relatively compact with respect to h, if the µσς are symmetric k × k matrices of
finite Borel measures such that for all multi–indices σ, ς from the range of the sum
in (49) holds:

1

κ
< 2

l − |σ|
n
− 1,

1

κ
< 2

l − |ς|
n
− 1.

The sum h + b of the forms (47) and (49) is semi–bounded from below and closable
in L2(Ω,Ck). The critical exponent of the self–adjoint, semi–bounded (from below)
operator associated to the closure of h + b is the critical exponent of H, namely
n/(2l).

Remark 44. One can sum up perturbations (48) and (49) for j = 0, 1, . . . , l− 1. If
Proposition 42 or Proposition 43 applies to each of the addends, then the assertion of
these Propositions holds mutatis mutandis for the sum of the perturbations. — For
results about the critical exponent of elliptic operators on manifolds see e.g. [1, 2].

Proposition 41 comprises, inter alia, the kinetic energy part of Schrödinger operators,
including one–electron Hamiltonians in effective mass approximation with piecewise
continuous effective mass tensors. Proposition 42 provides for such Hamiltonians
with an additional magnetic field term.
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