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Abstract

In this paper we derive conditions for complete synchronization of two symmetri-

cally coupled identical systems of ordinary di�erential equations and di�erential-delay

equations. Using Lyapunov function approach we give an estimate of the region of

attraction of the synchronized solution. We also established that complete synchro-

nization is robust with respect to small perturbations of the identical systems.

1 Introduction

We consider the problem of complete synchronization of identical dynamical systems which

are symmetrically coupled. The dynamical systems under consideration are systems of

autonomous ordinary di�erential equations (ODE systems)

dx

dt
= f(x) (1.1)

with f : Rn ! Rn, and systems of autonomous di�erential-delay equations (DDE systems)

dx

dt
= f(x; x(t� 1)) (1.2)

with f : Rn � Rn ! Rn.

In what follows we restrict ourselves to the case of two symmetrically coupled identical

systems, that is, we study the non-autonomous ODE-system

dx

dt
= f(x) + g(t; x; y);

dy

dt
= f(y) + g(t; y; x)

(1.3)

with g : R+ �Rn � Rn ! Rn, as well as the non-autonomous DDE-system

dx

dt
= f(x; x(t� 1)) + g(t; x; x(t� 1); y; y(t� 1));

dy

dt
= f(y; y(t� 1)) + g(t; y; y(t� 1); x; x(t� 1))

(1.4)

with g : R+ �Rn � Rn � Rn � Rn ! Rn:

1



Our goal is to derive conditions on the function f and on the coupling term g in order to

guarantee a complete synchronization.

The phenomenon of complete synchronization has been studied by many researchers in

applied �elds such as electrical engineering [1], laser physics [2], coupled semiconductor

Josephson junctions [3], electro-chemical reactors [4] and others [5, 6]. Mathematical meth-

ods for studying this type of synchronization have been developed, in particular, in [7-10].

In [11, 12], the application of the uniform invariance principle to the synchronization prob-

lem was demonstrated. Rigorous results on coupled lattices of nonlinear oscillators are

given in [13].

The paper is organized as follows. In section 2 we recall necessary de�nitions from the

theory of dynamical systems. In section 3 we reconsider the general problem of complete

synchronization for coupled identical systems of ordinary di�erential systems. We prove

by applying the technique of Lyapunov functions that we can replace the usual Lipschitz

condition on f (see, e.g. [14]) by a one-sided Lipschitz condition. We derive conditions

for synchronization in a bounded region and give a lower estimate for a coupling constant

to ensure synchronization of linearly coupled systems. At the same time we estimate the

region of attraction of the synchronized solution. Section 4 is devoted to the problem of

robustness of complete synchronization. We perturb the identical systems and estimate the

synchronization error as a function of the perturbation. Section 5 generalizes the obtained

results to the case of di�erential-delay systems. In section 6 we illustrate some of the

obtained results by means of two modi�ed Goodwin oscillators describing a control system

for the production of an enzyme.

2 Preliminaries

Let j � j be the Euclidean norm in Rn. We de�ne the distance d(x;G) of a point x 2 Rn

from a subset G of Rn by

d(x;G) = inf
y2G

jx� yj:

A mapping ' : G �R! G is called a �ow on G if the following relations are satis�ed:

(i). '(x; 0) = x 8x 2 G.

(ii). '('(x; s); t) = '(x; s+ t) 8x 2 G; 8s; t 2 R:

(iii). ' : G � R! G is continuous.

It is obvious that G is invariant under the �ow ', that is, it holds '(G; t) � G for all t 2 R.

If we assume that f in (1.1) is such that to any initial value x 2 Rn there exists a unique

solution '(x; t) de�ned for all t, then ' satis�es the relations (i)�(iii), and we say that f

de�nes a �ow on Rn.

A mapping ' : G � R ! G is called a semi�ow on G if ' satis�es the properties (i) and

(iii) above, and instead of (ii) the property
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(ii') '('(x; s); t) = '(x; s+ t) 8x 2 G; 8s; t � 0.

We note that if ' is a semi�ow on G then G is positively invariant with respect to ', that

is, we have '(G; t) � G for all t 2 R+.

Let A and B be subsets of Rn. We say that the set A attracts the set B under the semi�ow

' if

d('(x; t);A)! 0 as t!1 8x 2 B:

A subset A of G is called an attractor of the semi�ow ' on G if the following relations hold

(i). A is compact.

(ii) '(A; t) � A 8t 2 R.

(iii) There is a neighborhood U of A in G such that A attracts U .

Let z := (x; y) 2 Rn � Rn. We denote by  (z; t) = ( 1(z; t);  2(z; t)) a solution of (1.3)

satisfying  1(z; 0) = x,  2(z; 0) = y.

De�nition 2.1 Let W be some subset of Rn�Rn such that for z 2 W the solution  (z; t)

of (1.3) exists for t � 0. We say that two identical symmetrically coupled autonomous

ODE-systems do completely synchronize for z 2 W if it holds

j 1(z; t)�  2(z; t)j ! 0 as t!1: (2.1)

Remark 2.2 The problem of complete synchronization for z 2 W consists in deriving con-

ditions under which the components describing the behavior of the subsystems are asymp-

totically identical, that is, for z 2 W the solution  (z; t) of (1.3) satis�es

d( (z; t);P)! 0 as t!1;

where P is de�ned by P := f(x; y) 2 Rn � Rn : x = yg: It is easy to verify that P is

invariant with respect to system (1.3).

In order to de�ne the concept of complete synchronization for di�erential-delay systems

we need the following notation.

Let C be the space of continuous functions mapping [�1; 0] into Rn. We denote by  (�) :

[�1; T ]! Rn�Rn a solution of the DDE-system (1.4) de�ned on the interval [�1; T ] and

satisfying  (�)(0) = (�1; �2); where �1; �2 2 C represent initial functions.

De�nition 2.3 Let V be some subset of C � C such that for � 2 V the corresponding

solution  (�) of (1.4) is de�ned on [�1;1). We say that two symmetrically coupled au-

tonomous DDE-systems do completely synchronize for � 2 V if

j 1(�)(t)�  2(�)(t)j ! 0 as t!1:

Remark 2.4 As in the case of ODE systems, complete synchronization means that the

components describing the behavior of the subsystems are asymptotically identical, i.e. we

have

d( (�)(t);P)! 0 as t!1 for all � 2 V;
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3 Conditions for complete synchronization of autonomous

ODE systems

We consider system (1.3) under the following assumptions

(A1). The function f satis�es a global one-sided Lipschitz condition in B � Rn, that is,

there is a constant l (l can be negative!) such that

(f(x)� f(y))T (x� y) � ljx� yj2 8x; y 2 B; (3.1)

where zT means the transpose of the column vector z.

(A2). Let g : R+�B�B ! Rn be continuous. There are two constants �0 2 R and 0 2 R

such that

(g(t; x1; y)� g(t; x2; y))
T (x1 � x2) � �0jx1 � x2j

2

8 (t; y) 2 R+
� B; 8 x1; x2 2 B;

(3.2)

(g(t; x; y1)� g(t; x; y2))
T (y1 � y2) � 0jy1 � y2j

2

8 (t; x) 2 R+
� B; 8 y1; y2 2 B:

(3.3)

Inequality (3.2) says that g(t; x; y) is uniformly one-sided Lipschitzian in x, from (3.3) it

follows that g is uniformly strictly monotone in y in case of a positive 0.

Proposition 3.1 Suppose the hypotheses (A1) and (A2) to be ful�lled with B = Rn. More-

over, we assume that there is a subset W 2 Rn � Rn such that for z 2 W the solution

 (z; t) = ( 1(x; y; t);  2(x; y; t)) of (1.3) exists for t � 0. Then, for z 2 W the following

estimate holds

j 1(x; y; t)�  2(x; y; t)j � e��tjx� yj; (3.4)

where

� := 0 � �0 � l: (3.5)

Proof. We introduce the function V : Rn � Rn ! R+ by V (x; y) := jx � yj2. Under our

assumptions, for z 2 W the derivative of V ( (z; t)) with respect to system (1.3) satis�es

dV ( (z; t))

dt
=

d

dt

�
( 1(z; t)�  2(z; t))

T ( 1(z; t)�  2(z; t))
�

= 2( 1(z; t)�  2(z; t))
T (f( 1(z; t)) + g(t;  1(z; t);  2(z; t))

�f( 2(z; t))� g(t;  2(z; t);  1(z; t)))

= 2( 1(z; t)�  2(z; t))
T (f( 1(z; t))� f( 2(z; t)))

+2( 1(z; t)�  2(z; t))
T (g(t;  1(z; t);  2(z; t))� g(t;  2(z; t);  1(z; t)))

� 2lj 1(z; t)�  2(z; t)j
2
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+2( 1(z; t)�  2(z; t))
T (g(t;  1(z; t);  2(z; t))� g(t;  2(z; t);  2(z; t)))

+2( 1(z; t)�  2(z; t))
T (g(t;  2(z; t);  2(z; t))� g(t;  2(z; t);  1(z; t)))

� (2l + 2�0 � 20)j 1(z; t)�  2(z; t)j
2 = �2�V ( (z; t)):

From the inequality

dV

dt
� �2�V (3.6)

we obtain the estimate (3.4).

In view of the Proposition 3.1 we have the following result

Theorem 3.2 Suppose the assumptions (A1) and (A2) to be ful�lled with B = Rn. More-

over, we assume that for all z 2 Rn � Rn the solution  (z; t) = ( 1(x; y; t);  2(x; y; t)) of

(1.3) exists for t � 0. Then, under the additional condition

� := 0 � �0 � l > 0 (3.7)

system (1.3) synchronizes completely in Rn � Rn.

Proof. The proof follows immediately from (3.4), (3.7).

A special case of system (1.3) is the case of linearly di�usively coupled identical systems

dx

dt
= f(x) +K(y � x);

dy

dt
= f(y) +K(x� y)

(3.8)

Concerning the vector �eld f and the coupling matrix K we assume:

(A3). The function f satis�es a global Lipschitz condition in Rn, that is, there is a positive

constant L such that

jf(x)� f(y)j � Ljx� yj 8x; y 2 Rn: (3.9)

(A4). The coupling matrix K has the form K = kI, where I is the identity in Rn and k is

positive.

In [14] the following result about complete synchronization of (3.8) has been proved.

Theorem 3.3 Suppose the hypotheses (A3) and (A4) to be valid. Then, under the condi-

tion

k > L=2

system (3.8) completely synchronizes in Rn � Rn.
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If we put g(t; x; y) � K(y � x) in (1.3), then we get system (3.8). Thus, under the

hypothesis (A4) the relations

�0 = �k; 0 = k

hold. Hence, we get from Theorem 3.2 the following result which generalizes Theorem 3.3.

Corollary 3.4 Suppose f and K satisfy hypotheses (A1) and (A4) with B = Rn. Further-

more, we assume that for all z 2 Rn �Rn (3.8) has a solution  (z; t) = ( 1(z; t);  2(z; t))

de�ned for t � 0. Then, under the condition

k > l=2 (3.10)

system (3.8) completely synchronizes in Rn � Rn.

System (3.8) describes two autonomous systems which are bidirectionally coupled. If we

consider the unidirectional coupling

dx

dt
= f(x) +K(y � x);

dy

dt
= f(y);

(3.11)

then we can treat the problem of complete synchronization by the same approach. As a

result we get

Theorem 3.5 Suppose f and K satisfy hypotheses (A1) and (A4) with B = Rn. Addition-

ally we assume that for all z 2 Rn�Rn there exists a unique solution  (z; t) of (3.11) for

t � 0. Then, under the condition k > l system (3.11) completely synchronizes in Rn�Rn.

Theorem 3.5 can be formulated also in the following way.

Theorem 3.6 Let y� : R+ ! Rn be any half-trajectory of (1.1) starting for t = 0 at y.

Then, under the assumptions of Theorem 3.5, there exists a linear feedback controller such

that system (3.11) tracks this target trajectory, that is, it holds

lim
t!1

j 1(x; y; t)� y�(t)j = 0:

A coupling of identical systems of the type

dx

dt
= f(x) + g(t; x; y);

dy

dt
= f(y)� g(t; x; y);

(3.12)

where g satis�es

g(t; x; x) � 0 8t � 0; x 2 Rn; (3.13)
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can be considered as a generalization of the linear di�usive coupling. At the same time,

(3.12) is a special case of system (1.3) when g ful�lls

g(t; x; y) � �g(t; y; x) 8t � 0; x; y 2 Rn (3.14)

which implies the validity of (3.13). It is easy to verify that a function g(t; x; y) which

satis�es a uniform one-sided Lipschitz condition with respect to x with the constant �0
and ful�lls relation (3.14), also satis�es a one-sided Lipschitz condition with respect to y

and with the same Lipschitz constant. Thus, we get from Theorem 3.2 the result

Theorem 3.7 Suppose f satis�es hypothesis (A1) and g satis�es the inequality (3.2) and

the relation (3.14). Moreover, we assume that that for all z 2 Rn�Rn (3.12) has a unique

solution  (z; t) = ( 1(z; t);  2(z; t)) de�ned for t � 0. Then, under the condition

�2�0 � l > 0

system (3.12) synchronizes completely in Rn.

The assumptions of Theorem 3.2 do not guarantee that  (z; t) stays in a bounded region

for t � 0. In the sequel we consider identical systems with a generalized di�usive coupling

and derive conditions to ensure that the complete synchronization takes place in a �nite

region.

Concerning the uncoupled system (1.1) we suppose

(A5). There exist positive numbers R and  and a di�erentiable function V : jxj � R! R+

such that

(i) V (x) > 0.

(ii) V (x)!1 as jxj ! 1.

(iii) V 0(x)f(x) � �.

(iv) V 0(x) is uniformly continuous.

Assumption (A5) implies that system (1.1) is dissipative. Thus, it has a global attractor A.

With respect to the the coupling we consider a generalized di�usive coupling, that is, we

study systems of type (3.12). We suppose

(A6) g is continuous and satis�es (3.13). Additionally, to any " there is a Æ = Æ(") such

that uniformly for t � 0 it holds

jg(t; x; y)j � " for jx� yj � Æ:

Theorem 3.8 Suppose the assumptions of Theorem 3.7 hold. Additionally, we assume

that the hypotheses (A5) and (A6) are valid. Then system (3.12) completely synchronizes

for z 2 Rn � Rn, where the synchronized state belongs to some bounded set.

Proof. We de�ne a Æ-neighborhood of P by PÆ := f(x; y) 2 Rn � Rn : jx� yj � Æg. Let

�0 be some given positive number. According to hypothesis (A6) there is a Æ0 such that

uniformly for t � 0

jg(t; x; y)j � �0 for jx� yj � Æ0: (3.15)

7



Under the hypotheses of Theorem 3.7, inequality (3.4) holds with � > 0 such that any

trajectory of (3.12) eventually enters the Æ0- neighborhood of P. By assumption (A5),

V 0(x) is uniformly continuous for jxj � R. Hence, there is a Æ1, Æ1 � Æ0, such that

jV 0(x)� V 0(y)j � 1 for jx� yj � Æ1:

We de�ne the subregions PR

Æ1
and Ps

Æ1
of PÆ1

, by

P
R

Æ1
:= f(x; y) 2 PÆ1

: jxj � R; jyj � Rg; P
s

Æ1
:= f(x; y) 2 PÆ1

n P
R

Æ1
g

In PR

Æ1
we de�ne the function W by

W (x; y) := V (x) + V (y):

For the function W it holds

(i): W > 0 for jxj > R; jyj > R.

(ii): W (x; y)!1 as jzj = j(x; y)j ! 1.

(iii): For (x; y) 2 PR

Æ1
we have by hypothesis (A5)

dW

dt

����
(3:12)

=
@V (x)

@x
(f(x) + g(t; x; y)) +

@V (y)

@y
(f(y)� g(t; x; y))

=
@V (x)

@x
f(x) +

@V (y)

@y
f(y) +

�
@V (x)

@x
�
@V (y)

@y

�
g(t; x; y)

� �2 +

����@V (x)

@x
�
@V (y)

@y

���� jg(t; x; y)j
� �2 +  = � < 0:

Thus, we can conclude that system (3.12) is dissipative and the synchronized state belongs

to the region Ps

Æ1
.

In the case of autonomous coupling

dx

dt
= f(x) + g(x; y);

dy

dt
= f(y)� g(x; y);

(3.16)

where g satis�es

g(x; x) � 0; (3.17)

we can prove a more precise result.

Theorem 3.9 Assume the hypotheses of Theorem 3.2 and assumption (A5) to be ful�lled.

Let g(x; y) be uniformly continuous in a small neighborhood of P and satis�es (3.17).

Then system (3.16) completely synchronizes in Rn � Rn, where the omega-limit set S of

the corresponding trajectory belongs to P \ A�A = f(x; y) : x = y 2 Ag, where A is the

global attractor of (1.1).
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Proof. Under the assumptions of Theorem 3.2 system (3.16) generates a semi�ow  on

Rn �Rn. We note that the hyperplane P is invariant under the semi�ow  . According to

(3.17), the dynamics of (3.16) on P is governed by system (1.1). Assumption (A5) implies

the dissipativity of (1.1) and the existence of a global attractor A � Rn of system (1.1).

Similarly to the proof of Theorem 3.8 we can show that the functionW (x; y) = V (x)+V (y)

implies that the coupled system is dissipative. Therefore, there exists a global attractor

D � Rn � Rn of system (3.16). Since P is exponentially attracting for all orbits, we have

D � P. Since P is invariant under the semi�ow  and since  has a global attractor

P \ A�A on P, it follows D = P \A�A.

In what follows we consider the linearly di�usively coupled system (3.8) and relax the

assumption (A5) for system (1.1) by the following two hypotheses.

(A5:1) f is continuously di�erentiable f 2 C1(G; Rn) in some region G � Rn. The corre-

sponding system (1.1) generates a semi�ow ' on G with a global attractor A in G. (A5:2)

There exists a convex set UA � G containing A with the properties

(i). UA is positively invariant under the semi�ow '.

(ii). A attracts UA.

Theorem 3.10 We assume the hypotheses (A1), (A4) with B = WA and k > l=2, and

the assumptions (A5:1) and (A5:2) to be valid. Then system (3.8) completely synchronizes

for z 2 WA = WA �WA and the omega-limit set of the trajectory  (z; t) belongs to the

invariant set S = P \ (A�A).

Proof. It follows from [15] that under the conditions A5:1 and A5:2, the region WA is

positively invariant with respect to (3.8). In analogy to Theorem 3.2 we can prove that

under the additional hypotheses of Theorem 3.10, system (1.3) completely synchronizes

for z 2 WA. Therefore, we have only to prove that S attracts WA. But this follows

immediately from the inequality (3.4), which has been used to establish the �rst part of

the theorem, and the positive invariance of WA.

The property that f is continuously di�erentiable inWA, can be used to derive a condition

ensuring that f satis�es a one-sided Lipschitz condition in WA. To this end we introduce

the symmetric matrix M(x) by

M(x) := f 0(x) + (f 0(x))T ; (3.18)

where f 0 is the Jacobian matrix of f . If we denote by �(x) the maximum of all eigenvalues

of M(x) (they are real) and if we introduce the number

�� = sup
x2WA

�(x); (3.19)

then we have for all x; y 2 WA

(f(x)� f(y))T (x� y) = (f 0(�x)(x� y))T (x� y) �
��

2
jx� yj2: (3.20)

Consequently, we have

9



Corollary 3.11 We assume the hypotheses of Theorem 3.10 to be satis�ed, except (A1).

Then, under the additional condition k > ��=4 system (3.8) completely synchronizes for

z 2 WA = WA�WA where the closure of the synchronized state belongs to S = P\(A�A):

4 Robustness of synchronization

In the previous sections we studied symmetric coupling of two identical autonomous ODE

systems. In this section we consider symmetric coupling of perturbed identical systems,

that is, we consider the system

dx

dt
= f(x) + "h1(t; x; y) + g(t; x; y);

dy

dt
= f(y) + "h2(t; x; y) + g(t; y; x);

(4.1)

where " is a positive parameter. Concerning the perturbations h1 and h2 we assume

(A8). For i = 1; 2, the functions hi : R
+ � B � B ! Rn are continuous and uniformly

bounded in R+ � B � B, that is

jhi(t; x; y)j � m0 8 (t; x; y) 2 R+
� B � B:

Theorem 4.1 Suppose the hypotheses (A1); (A2) and (A8) to be satis�ed. Additionally,

we assume that for z 2 B � B the solution  (z; t) = ( 1(z; t);  2(z; t)) of (4.1) is de�ned

for all t � 0. Then it holds

j 1(x; y; t)�  2(x; y; t)j � 2"
m0

�
+ e��t

�
�2"

m0

�
+ jx� yj

�
8z 2 B; t � 0 (4.2)

where � is de�ned by � := 0 � �0 � l (see (3.5)).

Proof. Let V : B�B ! R+ be de�ned by V (x; y) = jx� yj2. The derivative of V ( (z; t))

along a solution  (z; t) of (4.1) is

dV ( (z; t))

dt
= 2( 1(x; y; t)�  2(x; y; t))

T (f( 1(x; y; t) + g(t;  1(x; y; t);  2(x; y; t))

+ "h1(t;  1(x; y; t);  2(x; y; t))� f( 2(x; y; t))� g(t; y;  1(x; y; t))

� "h2(t;  1(x; y; t);  2(x; y; t))

� �2�j 1(x; y; t)�  2(x; y; t)j
2 + 4"m0j 1(x; y; t)�  2(x; y; t)j

= �2�V ( (z; t)) + 4"m0

p
V ( (z; t)):

The solution of the initial value problem

dV

dt
= �2� �V + 4"m0

p
V ; V (0) = V0 > 0
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is

V (t) =
h
2"
m0

�
+ e��t

�
�2"

m0

�
+
p
V0

�i2
:

Hence, we have

V ( (z; t)) = j 1(x; y; t)�  2(x; y; t)j
2
�

h
2"
m0

�
+ e��t

�
�2"

m0

�
+ jx� yj

�i2
for t > 0. This implies the validity of the relation (4.2).

From Theorem 4.1 we obtain

Corollary 4.2 Under the hypotheses of Theorem 4.1 and under the additional assumption

� > 0, the solution  (z; t) enters eventually a given small Æ-neighborhood of the hyperplane

P provided " is su�ciently small.

Under the conditions of Corollary 4.2 the slightly perturbed identical systems in (4.1)

approach the synchronized state of the identical systems with an error characterized by

2"m0=�. Thus, Corollary 4.2 represents a robustness result for complete synchronization

of symmetrically coupled identical systems.

5 Coupled systems with time delay

In this section we consider two identical di�erential-delay systems which are symmetrically

coupled. More precisely, we investigate the system

dx(t)

dt
= f(x(t); x(t� 1)) + g(t; x(t); x(t� 1); y(t); y(t� 1));

dy(t)

dt
= f(y(t); y(t� 1)) + g(t; y(t); y(t� 1); x(t); x(t� 1))

(5.1)

with f : Rn � Rn ! Rn; g : R+ � Rn � Rn � Rn � Rn ! Rn. Analogously to the

case of ordinary di�erential equations, we assume that the function f satis�es a one-sided

Lipschitz condition with respect to the �rst variable. With respect to the second variable f

is assumed to obey a usual Lipschitz condition. Similar properties are assumed concerning

the function g. Summarizing we suppose:

(A9). There are constants l1; l2; �1; �2; 1; 2 such that for all t 2 R+; x; y; xi; yi; �; �; �i; �i 2

Rn the following inequalities hold

(f(x1; y)� f(x2; y))
T
(x1 � x2) � l1jx1 � x2j

2;

jf(x; y1)� f(x; y2)j � l2jy1 � y2j;

(g(t; x1; y; �; �)� g(t; x2; y; �; �))
T (x1 � x2) � �1jx1 � x2j

2;

jg(t; x; y1; �; �)� g(t; x; y2; �; �)j � �2jy1 � y2j;

(g(t; x; y; �1; �)� g(t; x; y; �2; �))
T
(�1 � �2) � 1j�1 � �2j

2;

jg(t; x; y; �; �1)� g(t; x; y; �; �2)j � 2j�1 � �2j;

(5.2)

11



Theorem 5.1 Suppose the hypothesis (A9) to be satis�ed. Let V be some subset of C � C

such that for � 2 V (5.1) has a unique solution  (')(t) = ( 1(�1; �2; t);  2(�1; �2; t))

de�ned on [�1;1). Then, under the additional condition

l1 + l2 + �1 + �2 � 1 + 2 < 0

the following inequality holds

j 1(�1; �2; t)�  2(�1; �2; t)j � e��tj�1 � �2jC ; (5.3)

where j�jC = sup�1�t�0 �(t), and � > 0 is uniquely determined from the equation

2� = 1 � �1 � l1 � (2 + �2 + l2)e
�: (5.4)

Proof. As in the proof of Proposition 3.1, we use the function V : Rn � Rn ! R+

de�ned by V (x; y) := jx � yj2. In order to simplify notation in the proof, we will write

 (�)(t) =  (t), since this will not create a misunderstanding in the context of the proof.

The derivative of V with respect to a solution  (�)(t) of (5.1) reads

1

2

dV

dt
( ((t)) =

d

dt

�
( 1(t)�  2(t))

T ( 1(t)�  2(t))
�

= ( 1(t)�  2(t))
T (f( 1(t);  1(t� 1))� f( 2(t);  2(t� 1))

+g(t;  1(t);  1(t� 1);  2(t);  2(t� 1))

�g(t;  2(t);  2(t� 1);  1(t);  1(t� 1)))

= ( 1(t)�  2(t))
T [f( 1(t);  1(t� 1))� f( 1(t);  2(t� 1))

+f( 1(t);  2(t� 1))� f( 2(t);  2(t� 1))

+g(t;  1(t);  1(t� 1);  2(t);  2(t� 1))

�g(t;  1(t);  2(t� 1);  2(t);  2(t� 1))

+g(t;  1(t);  2(t� 1);  2(t);  2(t� 1))

�g(t;  2(t);  2(t� 1);  2(t);  2(t� 1))

+g(t;  2(t);  2(t� 1);  2(t);  2(t� 1))

�g(t;  2(t);  2(t� 1);  1(t);  2(t� 1))

+g(t;  2(t);  2(t� 1);  1(t);  2(t� 1))

�g(t;  2(t);  2(t� 1);  1(t);  1(t� 1))]:

Now using (A9) we obtain

1

2

dV

dt
� l2j 1(t)�  2(t)j � j 1(t� 1)�  2(t� 1)j

+l1j 1(t)�  2(t)j
2 + �2j 1(t)�  2(t)j � j 1(t� 1)�  2(t� 1)j

12



+�1j 1(t)�  2(t)j
2
� 1j 1(t)�  2(t)j

2

+2j 1(t)�  2(t)j � j 1(t� 1)�  2(t� 1)j

� (l1 + �1 � 1)j 1(t)�  2(t)j
2

+(l2 + �2 + 2)j 1(t)�  2(t)j � j 1(t� 1)�  2(t� 1)j

� (l1 + �1 � 1)j 1(t)�  2(t)j
2

+(l2 + �2 + 2)j 1(t)�  2(t)j sup
t�1���t

j 1(�)�  2(�)j:

Hence, we have shown that the function W (t) = V ( (t)) satis�es the following inequality

dW (t)

dt
�

1

2
(l1 + �1 � 1)W (t) +

1

2
(l2 + �2 + 2) sup

t�1���t

W (�); t � 0: (5.5)

Applying Halanay's inequality [16, 17] we get

W (t) � e��t sup
�1���0

W (�); t � 0;

where � is determined as in (5.4). This implies (5.3).

Remark 5.2 Theorem 5.1 can be proved in the same manner for DDE systems with non-

constant bounded delay �(t). Our choice of �xed delay was made only to simplify notations.

6 Application

We illustrate our results by means of a model describing the feedback control mechanism

for the production of an enzyme (see [18], 145 �.). It represents a slight generalization of

a model proposed by Goodwin (Goodwin oscillator, see [19])

dx1

dt
=

1

1 + xm3
� x1;

dx2

dt
= x1 � x2;

dx3

dt
= x2 � 0:5x3:

(6.1)

Here, x1; x1; x3 represent the concentrations of the mRNA, the enzyme and the product,

respectively, m is the Hill coe�cient. It is known (see, e.g., [18]) that for m � 8 system

(6.1) has a stable limit cycle � as a global attractor, otherwise it has a stable equilibrium

point as a global attractor. It is easy to verify that the parallelepiped

G := f0 � x1 � 1; 0 � x2 � 1; 0 � x3 � 2g (6.2)
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is a positively invariant set for (6.1). For the following we set m = 20. The symmetric

matrix M(x) introduced in (3.18) has the form

M(x) =

0
BBBBBBB@

�2 1 �
20x193

(1 + x3)20

1 �2 1

�
20x193

(1 + x3)20
1 �1

1
CCCCCCCA

The maximal eigenvalue �� of M(x) in G can be estimated by �� � 6: Thus, applying

Corollary 3.11, we get that two linearly di�usively coupled Goodwin oscillators completely

synchronize for k > 1:5 and that the limit cycle � located in the plane x = y attracts

all points from the set G � G of the phase space. Figure 1 illustrates the limit cycle �

located in the invariant manifold P and Figure 2 shows how the �synchronization error�

j 1(z; t)�  2(z; t)j tends to zero with the increasing of time for k = 2:0.

0 0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
1

x
2

Figure 1: An orbit approaching asymptotically stable limit cycle of system (6.1)

In order to illustrate our result on the robustness of complete synchronization, we consider

two non-identical Goodwin oscillators which are linearly di�usively coupled, that is, we

consider the system

dx

dt
= f(x) + "g(t; x) + k(y � x);

dy

dt
= f(y) + k(x� y); (6.3)

where x; y 2 R3, f is determined by the right hand side of (6.1), g(t; x) = (x2 sin t; 0; 0)
T ,

k is the coupling constant, and " is a perturbation parameter. For k = 2 we have

m0 := max
t2R;x2G

jg(t; x)j � 1; l � ��=2 = 3; 0 = 2; �0 = �2; � = 0 � �0 � l = 1

such that from Theorem 4.1 we obtain the following estimate for the synchronization error

�(t) := jx(t; x0; y0)� y(t; x0; y0)j � 2"+ e��t
�
� 2"+ jx� yj

�
:
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Figure 2: Behavior of the �synchronization error� �(t) := j 1(x; y; t)�  2(x; y; t)j:
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Figure 3: Behavior of the synchronization error j 1(x; y; t)� 2(x; y; t)j for two nonidentical

Goodwin oscillators (6.3) with " = 0:1 (a) and " = 0:2 (b).
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Numerical calculations for two di�erent values of the perturbation parameter are shown in

Fig. 3 (note the di�erent scales of the vertical axis).
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