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1 Introduction

One of the simplest reaction-advection-di�usion equations is the scalar partial dif-

ferential equation

ut = uxx + f(u; ux) (1.1)

for one real variable u = u(t; x) and in one space dimension x: We mainly consider

periodic boundary conditions

u(t; 0) = u(t; 2�); ux(t; 0) = ux(t; 2�); (1.2)

alias x 2 S1 = IR=2� ZZ : The case of Neumann boundary conditions

ux(t; 0) = ux(t; 2�) = 0 (1.3)

has been studied in considerable detail in the literature for more or less general non-

linearities f = f(x; u; ux); [FR91], [Fie94], [FR96], [Wol02a], [Wol02b], the survey

[FS02], and the references there. In the case (N ) of (1.1) with Neumann boundary

conditions (1.3), bounded solutions u(t; x) tend to time independent equilibrium

solutions v(x) for t!1: The case (P) of (1.1) with periodic boundary conditions

(1.2), in contrast, features time periodic solutions which turn to be rotating waves

u(t; x) = v(x� ct); (1.4)

rotating at constant wave speed c 6= 0 around the circle x 2 S1; [AF88], [Mat88],

[MN97]. Heteroclinic orbits are solutions u(t; x) which converge to di�erent limiting

objects, here equilibria and rotating waves, for t! �1 and t! +1, respectively.

In the Neumann case (N ), heteroclinic orbits can only connect equilibria, due to

a variational structure; see [Zel68], [Mat78], [Mat88], [FR96]. In the periodic case

(P), heteroclinic orbits between rotating waves can arise. The central question of

the present paper, answered in theorems 1.3 and 1.4 below, is therefore the following:

given two rotating waves v;w, does there exist a heteroclinic orbit from v to w?

To answer this question, we �x the following technical setting and notation. We

consider nonlinearities f 2 C2; and solutions u(t; �) 2 X = Hs(S1); the fractional

Sobolev space with exponent s > 3
2
; so that X embeds into C1(S1). By standard

semigroup theory, (1.1), (1.2) de�nes a solution semi�ow on X. This settle existence

and uniqueness questions for the Cauchy problem with given initial data u(0; x) =

u0(x) in X. See [Hen81] or [Paz83] for details.

We also assume f is dissipative in the sense of [Hal88], [BV92]: there exists a large

absorbing ball in X which any solution u(t; �) eventually enters, after some time

which may depend on the initial condition u0 2 X. For speci�c su�cient condi-

tions on f , which entail dissipativeness, see for example [FR96]. As an important

consequence, we obtain a nonempty compact global attractor A of (1.1), (1.2). By

de�nition, A is the smallest set which attracts any bounded set of initial conditions,

for t! +1: Equivalently, A is the maximal compact invariant set, or the set of all

globally de�ned bounded solutions u(t; �) 2 X; t 2 IR:
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An explicit condition on f which ensures dissipativeness is the following:

j f(v; p) j � C0; for all v; p 2 IR; and

f(v; 0) � v < 0 for large jvj:
(1.5)

See for example [MN97] for less restrictive growth conditions on f which, following

[Am76], ensure dissipativeness. In the present paper we are only interested in the

dynamics on the global attractor A. Because A is bounded in C1-norm, we may

then modify f outside the values which (v; p) = (u; ux) attain on A. We may thus

assume (1.5) to hold, without loss of generality.

Homogeneous equilibria, rotating and frozen (alias stationary) waves are examples

of elements of the global attractor. De�ne the set E � X of homogeneous equilibria

of (1.1) to be the set of those e 2 IR; for which

f(e; 0) = 0: (1.6)

Clearly u(t; x) � e is then a spatially homogeneous equilibrium solution. Rotating

waves u = v(x� ct); c 6= 0; have been de�ned in (1.4) above, and constitute the set

R � X: Here we assume v to be nonconstant and include v(�) in R together with

its shifted copies v(�+ #); # 2 IR: Clearly, a rotating wave is a 2�-periodic solution

of the ordinary di�erential equation

0 = vxx + f(v; vx) + cvx; (1.7)

with c 6= 0: If v happens to solve (1.7) with rotation speed c = 0; then we call v a

frozen wave. The set F thus consists of all spatially nonhomogeneous equilibrium

solutions of (1.1), (1.2). Note that

E [ F [R � A: (1.8)

Indeed, equilibria and periodic solutions are globally bounded, for all t 2 IR; and

hence belong to the global attractor A.

Let H denote the set of heteroclinic orbits between di�erent elements of E [F [R.

Clearly H � A. In theorem 1.2, we will see that

E [ F [ R [H = A: (1.9)

To describe all heteroclinic orbits is therefore the central, and most di�cult, ingre-

dient to a full description of the global attractor. Note that E;F ;R require only

ODE information, as is involved in equations (1.6), (1.7) above. The heteroclinic

set H, in contrast, involves information on the PDE (1.1), (1.2).

To describe the heteroclinic set, we use two structural ingredients. The �rst ingredi-

ent, which in fact holds for x-dependent nonlinearities f = f(x; u; ux), is the Sturm

property. This property originated with Sturm [Stu36]; see [Ang88] for a more re-

cent account. Matano [Mat82] revived the relevance of this structure for the global

analysis of reaction-advection-di�usion equations. For any function ' 2 C1(S1);
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let the zero number z(') count the (even) number of strict sign changes of ': Let

u1(t; x); u2(t; x) denote any two solutions of (1.1) with periodic or Neumann bound-

ary conditions (1.2), (1.3). Then

z
�
u1(t; �)� u2(t; �)

�
(1.10)

is �nite, for any t > 0; and nonincreasing with t. Moreover z drops strictly, at any

multiple zero of x 7! u1(t0; x)� u2(t0; x): In other words, z drops strictly, at t = t0;

if and only if there exists x0 2 S
1 such that

u1(t0; x0) = u2(t0; x0)

u1x(t0; x0) = u2x(t0; x0):
(1.11)

We brie�y digress to give a typical argument involving zero numbers. Let v1; v2 2 R

be di�erent rotating waves. Then [MN97] have observed that v1(�+ #1)� v
2(�+ #2)

possesses only simple zeros, and in particular

(#1; #2) 7! z
�
v1(�+ #1)� v2(�+ #2)

�
� k (1.12)

does not depend on #1; #2: To see this fundamental fact, we argue indirectly. Let

'(t) := v1(� � c1t+ #1)� v2(� � c2t+ #2) 2 X; (1.13)

where c1; c2 denote the nonzero rotation speeds of the rotating waves v1; v2: With

any multiple zero of '(0), the zero number

t 7! z('(t)) (1.14)

would drop strictly, at t = 0: If c1=c2 is rational, then (1.14) is periodic. This is a

contradiction because, once dropped, z cannot ever recover its initial value at any

later time. Next suppose c1=c2 is irrational. Choose t1 < 0 such that '(t1) 2 X

possesses only simple zeros. Note that z(') is then constant, near ' = '(t1): By

density of '(t) on the torus of pairs (v1(�+ ~#1); (v
2(�+ ~#2)) 2 X �X; we then �nd

some possibly large time t2 > 0 such that

z('(t1)) = z('(t2)) < z('(t1)): (1.15)

The equality holds for '(t2) near '(t1); and the inequality follows from the Sturm

property (1.10). Indeed z('(t)) strictly drops, at t = 0, and t1 < 0 < t2: This

contradiction proves claim (1.12).

The second structural ingredient, which only holds for x-independent nonlinearities

f = f(u; ux), is S
1-equivariance. This property simply states that u(t; x + #) is

a solution of (1.1) with periodic boundary conditions (1.2), for any �xed # 2 S1;

whenever u(t; x) itself is a solution. Rotating waves u(t; x) = v(x � ct); in this

setting, are relative equilibria to the group action: the time orbit u(t; x) coincides

with the initial condition u(0; x) = v(x), shifted by �ct; and thus remains in a single

group orbit. We also note the invariance of the zero number z(') under shifts of

' 2 C1(S1):
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Hyperbolicity of equilibria and periodic orbits is the only remaining assumption for

formulating the main results, theorems 1.3 and 1.4 below. For a homogeneous

equilibrium v, we consider eigenvalues � of the linearization of (1.1) with periodic

or Neumann boundary conditions. We call v hyperbolic, if all eigenvalues � possess

nonzero real part. The number of eigenvalues � with strictly positive real part,

counting algebraic multiplicities, is called the unstable dimension or Morse index

i(v): For periodic orbits u(t; x), we require the trivial Floquet multiplier � = 1; with

eigenfunction ut; to be simple and to be the only Floquet multiplier on the complex

unit circle. The (strong) unstable dimension i(u) then counts the total algebraic

multiplicity of Floquet multipliers with modulus j�j > 1: For frozen wave equilibria,

we require normal hyperbolicity: all eigenvalues � possess nonzero real part, except

for a simple trivial eigenvalue � = 0 with eigenfunction given by vx. The Morse

index i(v) is then counted as for homogeneous equilibria above.

We recall that hyperbolic equilibria and periodic orbits v come along with their

stable and unstable manifolds W u(v) and W s(v): Note that

dimW u(v) = i(v) + 1; codimW s(v) = i(v) (1.16)

for periodic orbits v, by standard terminology. In case of rotating waves v we obtain v

as a hyperbolic frozen wave, in corotating coordinates. For consistency, we therefore

use the same notation W u(v);W s(v), for frozen wave equilibria v, even though �

as a tribute to conventional terminology � these manifolds ought to be called the

center unstable, and center stable manifold of v, respectively. In particular, (1.16)

then holds for v 2 F [R:

As Brunovsk�y has observed, [Bru00], the above hyperbolicity assumptions hold true

for a generic set of nonlinearities f(u; ux) in C
k; k � 3: As we will see in lemmas 4.4

and 5.3 below, hyperbolicity is related to the Sard property of a suitably de�ned

time map T (�):

Heteroclinic orbits in the Neumann case (N ) of (1.1), (1.3) have been studied by

[FR96]. We present this result in the signi�cantly re�ned and simpli�ed formulation

of [Wol02a], [Wol02b]. Let v1; v2 2 E [ F be two di�erent equilibria. We call v1; v2

k-adjacent, or k-(N )-adjacent, if the following holds:

z(v1 � v2) = k; (1.17)

and there does not exist an equilibrium w 2 E [ F such that

z(v1 � w) = z(v2 �w) = k; and

w(0) is between v1(0) and v2(0)
(1.18)

Theorem 1.1 Consider the Neumann case (N ) of (1.1), (1.3). Assume the non-

linearity f = f(x; u; ux) is C
2
dissipative, and all equilibria v 2 E [F are hyperbolic.

Then the global attractor A decomposes into equilibria and heteroclinic orbits:

A = E [ F [H: (1.19)
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In particular, any orbit in A n (E [ F) is heteroclinic, connecting two di�erent

equilibria.

Consider any two di�erent equilibria v1; v2 2 E [ F : Let k := z(v1 � v2): Then

there exists a heteroclinic orbit between v1 and v2 if, and only if, v1 and v2 are

k-(N )-adjacent. Moreover, there is a unique heteroclinic orbit u(t; x), such that

z(v1 � u(t; �)) = z(v2 � u(t; �)) = k (1.20)

for all t 2 IR. In particular u(t; 0) moves monotonically between v1(0) and v2(0).

The heteroclinic orbit runs in the direction of decreasing Morse index.

We now consider the case (P) of periodic boundary conditions. The analogue of the

�rst part of theorem 1.1 has been established by [AF88], as follows.

Theorem 1.2 Consider the S1
-equivariant case (P) of (1.1), (1.2) with dissipative

C2
-nonlinearity f = f(u; ux) and with hyperbolic homogeneous equilibria, frozen and

rotating waves. Then the global attractor A decomposes into homogeneous equilibria

E, frozen wave equilibria F , rotating waves R and their heteroclinic orbits H:

A = E [ F [R [ H: (1.21)

In particular, any periodic orbit is a rotating wave, and any orbit in An (E [F [R)

is heteroclinic, connecting two di�erent elements v1; v2 of E [ F [R:

We emphasize that (1.21) in particular excludes the possibility of homoclinic orbits

u(t; x); asymptotic to the same orbit v 2 E [F [R for t! �1: This was observed

by Matano and Nakamura, [MN97].

The main result of the present paper, concerns heteroclinic connectivity, that is,

which pairs v1; v2 2 E [ F [ R possess a heteroclinic orbit with v1; v2 as limits

for t ! �1: To formulate this result, we have to slightly modify our notion of

k-adjacency. Similarly to (1.17), (1.18) above, two di�erent v1; v2 2 E [ F [ R are

called k-adjacent in (P), or simply k-(P)-adjacent, if the following holds:

z(v1 � v2) = k (1.22)

and there does not exist an element w 2 E [ F [R such that

z(v1 �w) = z(v2 � w) = k; and

maxx2S1 w(x) is strictly between maxS1 v
1 and maxS1 v

2:
(1.23)

We note that z(v1� v2) is well-de�ned and time-independent, for any two di�erent

elements v1; v2: For rotating waves v1; v2 2 R this follows from the Sturm property;

see (1.12) above. The other cases, involving frozen waves or homogeneous equilibria,

are even easier and are left to the reader as a warm-up. In particular, we observe

that k-(P)-adjacency of v1; v2 2 E [F [R persists under shifts vj(x) 7! vj(x+#j).
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For v1; v2 2 E [ F [ R we denote stable and unstable manifolds W s(vj);W u(vj)

as explained above. We call v1 and v2 connected, if either W u(v1) \ W s(v2), or

W u(v2)\W s(v1), is not empty. Note that in the case of frozen waves, this establishes

the existence of a heteroclinic orbit u(t; x) converging to suitably shifted copies

vj(x+#j), only. For orbits u(t; x) converging to rotating waves, i.e. to time periodic

orbits, likewise the asymptotic phases for t! �1 are not prescribed.

Theorem 1.3 Let the assumptions of theorem 1.2 hold, for the S1
-equivariant peri-

odic case (P). Let v1; v2 be two di�erent elements of E[F[R, and let k := z(v1�v2):

Then v1 and v2 are connected if, and only if, they are k-(P)-adjacent. In particular,

there is a heteroclinic connecting orbit u(t; x), satisfying

z(v1 � u(t; �)) = z(v2 � u(t; �)) = k for all t 2 IR: (1.24)

We repeat that some care is needed in the precise interpretation of this theorem. We

consider phase-shifted copies v2(x) = v1(x+#) of frozen waves F as representing the

same element of F , rather than di�erent ones. Similarly, consider v1; v2 representing

di�erent frozen waves. We then call v1; v2 connected by a heteroclinic orbit u(t; �), if

this orbit converges to suitably phase-shifted copies vj(x+ #j). This interpretation

is common use for rotating waves v1; v2, that is, for time periodic orbits. Indeed,

the above theorem then does not make any claims about the asymptotic phases of

the heteroclinic orbit, for t! �1.

The above result fails to determine the time direction of heteroclinic orbits between

k-(P)-adjacent elements v1; v2 2 E[F[R. To close this gap we restate the following

result of [MN97]:

Theorem 1.4 Under the assumptions of theorem 1.2, let u(t; x) be an orbit of (P)

from v1 for t! �1; to v2; for t! +1; with both v1 and v2 in E [ F [ R. Then

u runs in the direction of decreasing (strong) unstable dimension, that is

i(v1) > i(v2): (1.25)

We now outline the proof of theorems 1.3 and 1.4 which occupies the remaining sec-

tions of the paper. In section 2 we prove the easy �only if� part of theorem 1.3. This

will be an easy consequence of the Sturm property (1.10), (1.11). Under the name

of �blocking principle�, a very similar argument has already been used in [BF88] to

exclude heteroclinic connections. In section 3 we review the strong Morse-Smale

property, which is absolutely central to our proof of the �if� part of theorem 1.3.

For the Neumann case (N ), this property has been discovered independently by

[Hen85], [Ang86]. For the S1-equivariant periodic case (P), the Morse-Smale prop-

erty is established in section 3 following [FuOl90]. Loosely speaking it states that

hyperbolicity of E[F[R alone is su�cient to imply transverse intersections of stable

and unstable manifolds. This automatic transversality between stable and unstable

manifolds of hyperbolic periodic orbits has been shown to hold in some special classes

of �nite-dimensional systems, [Pal78], [FuOl90]. The in�nite-dimensional case has
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recently been considered in [Oli02], where a class of retarded functional di�erential

equations is studied. Following work of [PS70], [Pal69], in the �nite-dimensional

case, and of [Oli02] in the in�nite-dimensional case, the strong Morse-Smale prop-

erty implies local C0-orbit conjugacy of the �ows on the global attractors, under

C2-small perturbations of the nonlinearity f . Remarkably, the strong Morse-Smale

property fails for x-dependent nonlinearities f = f(x; u; ux). We will mainly use the

strong Morse-Smale property to show that nonempty heteroclinic connections be-

tween v1; v2 2 E [F [R, cannot disappear under any global, dissipative homotopies

of the nonlinearity f = f(u; ux), as long as v
1; v2 remain hyperbolic and k-adjacent.

We also observe that theorem 1.4 is a simple consequence of theorem 1.3 and the

strong Morse-Smale property.

The �rst such homotopy is introduced in section 4: freezing of rotating waves.

For example we will show that, in absence of homogeneous equilibria of saddle

type, any disc bounded by a rotating wave v1 and containing a second wave v2,

in the (v; vx)-plane, is �lled with rotating waves � albeit of di�erent wave speeds

and of inappropriate spatial period. Passing to coordinates which corotate at this

nonuniform wave speed c(v; vx), to be constant along each of these intermediate

rotating waves, all these rotating wave speeds freeze to zero. In addition the phase

portrait (1.7) of these frozen waves, with c = c(v; vx), becomes integrable in the

disk. Moreover, hyperbolicity of the rotating waves v1 and v2, as well as their

spatial periods, are preserved during the homotopy. By Morse-Smale transversality,

this preserves their connectivity by heteroclinic orbits.

In section 5, by a second homotopy, we further modify the nonlinearity f = f(u; ux)

in the disc to become even in ux. Again the strong Morse-Smale property preserves

connectivity. Moreover, the frozen rotating wave equation (1.7), already equipped

with wave speeds c � 0; now becomes x-reversible, in addition. From the equivari-

ance point of view, the symmetry group S1 = SO(2) of x-shifts is now enhanced to

O(2), by the additional re�ection x 7! 2� � x.

As a �rst bene�t, we can determine the unstable dimensions of rotating (and frozen)

waves v from their lap number `(v) = z(vx) by a time map argument reminiscent of

the Neumann case; see lemma 5.3. Together with theorem 1.4 this determines, in

particular, the time direction of the heteroclinic orbit between v1 and v2, in theorem

1.3.

After freezing and the above symmetrization, we will choose suitably shifted copies

of the already frozen waves such that they attain their maximum at x = 0: In partic-

ular, the hyperbolic frozen waves v1; v2 now satisfy Neumann boundary conditions

(1.3), in addition to the periodic boundary conditions (1.2). Moreover, both hyper-

bolicity and k-adjacency is preserved, under this Neumann interpretation. Cutting

S1 at x = 2�, in section 6, theorem 1.1 provides us with a Neumann heteroclinic

orbit u(t; x) from v1 to v2, satisfying (1.20). In general, however the boundary values

u(t; x) might di�er, at x = 0 and x = 2�.

This is where the re�ection symmetry x 7! 2��x strikes in section 7: by uniqueness

of u and re�ection symmetry of v1; v2, the heteroclinic orbit u(t; x) will be 2�-
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periodic in x. Indeed

u(t; 2� � x) = u(t; x);

also holds at x = 0: Because also

ux(t; 2�) = ux(t; 0) = 0;

by the Neumann boundary condition (1.3), the periodic boundary conditions (1.2)

are automatically satis�ed by the Neumann-heteroclinic orbit u(t; x). Thus we have

found a heteroclinic orbit u between v1 and v2, for the periodic problem (P); and

after two homotopies. Since (u; ux)(t; x) attains only values in the disc, Morse-

Smale transversality provides survival of the heteroclinic orbit u(t; x) under both

homotopies, and proves theorem 1.3.

We conclude the paper, in section 8, with a retrospective of the main lines of proof,

and with a few remarks on remaining cases. We also recall some of the di�cul-

ties, and chances, concerning the intriguing open case f = f(x; u; ux) of not S1-

equivariant, x-dependent nonlinearities with x on the circle.
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2 Blocking and k-adjacency

In this short section, we prove the easy �only if� part of theorem 1.3.

Assume v1; v2 2 E [ F [ R possess a heteroclinic orbit u(t; x) from v1 to v2. Let

k := z(v1 � v2): We show, indirectly, that v1; v2 must then be k-adjacent under

periodic boundary conditions (P) as given in (1.2). Suppose they are not. Then

there exists w 2 E [ F [R satisfying (1.23) above, that is

z(v1 �w) = z(v2 � w) = k; and

maxw is between maxv1 and maxv2:
(2.1)

Note that (2.1) also holds, if we replace v1; w; v2 by arbitrarily shifted copies, or by

any small perturbation inX � C1(S1). The heteroclinic orbit u(t; �) which converges

to v1; v2; (or a shifted copy) for t! �1; t! +1; respectively, therefore satis�es

z (u(�t; �)� w) = k; (2.2)

for all su�ciently large positive t. Again we emphasize that w in (2.2) may also be

replaced by any spatially shifted copies.
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Continuity of maxS1 , on the other hand, implies that

max
x2S1

u(t0; x) = max
x2S1

w(x) (2.3)

holds, for some t0 2 IR. Shifting w, if necessary, we may assume that the maximum

is attained at the same point x = x0 2 S
1; for both sides of (2.3). Therefore

u(t0; x)� w(x) (2.4)

possesses a multiple zero, at x = x0: By the Sturm property the zero number of the

di�erence (2.4) must drop strictly, as time evolves. Therefore

z(u(+t; �)� w) < z(u(�t; �)� w); (2.5)

for su�ciently large t > 0: Since (2.5) contradicts (2.2), this proves the �only if�

part of theorem 1.3.

3 Hyperbolicity and the strong Morse-Smale prop-

erty

In this section we review, and slightly adapt the strong Morse-Smale property. We

consider the Neumann case (N ) of (1.1), (1.3), as well as the case (P) of (1.1)

with periodic boundary conditions (1.2); see proposition 3.1. Along the way, we

collect some facts concerning unstable dimensions, zero numbers and lap numbers

of equilibria and rotating waves.

Consider the Neumann case (N ) �rst, and let v1; v2 denote two hyperbolic equi-

libria. Let W u(v1) denote the unstable manifold of v1, of dimension given by the

Morse index i(v1): Similarly, let W s(v2) denote the stable manifold of v2, of codi-

mension i(v2): Based on the Sturm property (1.10), (1.11), [Hen85] and [Ang86]

have concluded that transversality of these manifolds must hold automatically:

W u(v1) \ W s(v2): (3.1)

Note that the intersection may be empty: this is the case where there does not exist

a heteroclinic orbit running from v1 to v2. If the intersection is nonempty, that is,

if a heteroclinic orbit from v1 to v2 exists, then the set of all heteroclinic orbits is

an embedded submanifold of the underlying Sobolev space X, of dimension

0 < dim
�
W u(v1) \W s(v2)

�
= i(v1)� i(v2): (3.2)

In particular, this excludes homoclinic orbits which possess the same equilibrium

as �- and !-limit set. Moreover, (3.2) excludes the possibility of heteroclinic cycles

which describe a closed oriented path of heteroclinics between hyperbolic equilibria.

Indeed, the Morse index drops strictly along every heteroclinic orbit.
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We also remark that the strong Morse-Smale property (3.1) holds true, more gen-

erally, for x-dependent nonlinearities f = f(x; u; ux), in the Neumann case (N ).

This is not the case, for f = f(x; u; ux), under periodic boundary conditions (P).

In fact, [SF92] have shown that any planar autonomous vector �eld can then be

realized, for suitable f = f(x; u; ux); in an invariant linear subspace of X = Hs(S1).

In particular homoclinic orbits to hyperbolic equilibria become possible.

This failure of the strong Morse-Smale property is the deeper technical reason why

we have restricted our analysis of heteroclinic connectivity to the S1-equivariant case

of x-independent nonlinearities f = f(u; ux), in the present paper. The following

proposition 3.2 is a slight adaptation of work by Fusco and Oliva on the strong Morse-

Smale property for �nite-dimensional, spatially discrete cyclic Jacobi systems, which

share the Sturm property with our periodic case (P). We prepare with some facts

on the zero numbers on stable and unstable manifolds.

Proposition 3.1 Consider the periodic case (P) of (1.1), (1.2).

(a) Let e 2 E be a homogeneous, hyperbolic, unstable equilibrium, with unstable

manifold W u(e) and stable manifold W s(e): Then i(e) = dimW u(e) is odd,

and

z(u0 � e) < i(e) < z(~u0 � e); (3.3)

for any u0 2 W
u(e) n feg, ~u0 2 W

s(e) n feg:

(b) Let v 2 F [R be a hyperbolic rotating or frozen wave, with unstable manifold

W u(v) and stable manifold W s(v): Then

dimW u(v) = i(v) + 1 ; codimW s(v) = i(v) (3.4)

For any given lap number `(v) := z(vx) � 2; moreover,

i(v) 2 f`(v)� 1; `(v)g: (3.5)

More speci�cally, only the following two cases occur.

In the more stable case, i(v) = `(v)� 1; we have

z(u0 � v) < `(v) � z(~u0 � v); (3.6)

for any u0 2 W u(v); ~u0 2 W s(v); which do not lie on the rotating wave orbit

v:

In the more unstable case, i(v) = `(v); we have

z(u0 � v) � `(v) < z(~u0 � v); (3.7)

for any u0 2 W
u(v); ~u0 2 W

s(v) orbit v. In either case, we have

z(u0 � v) � i(v) < z(~u0 � v): (3.8)

11



Proposition 3.2 Consider the periodic case (P) of (1.1), (1.2). Let v1; v2 2 E [

F [R be hyperbolic homogeneous equilibria, or hyperbolic frozen or rotating waves.

Let W u(v1) denote the unstable manifold of v1 and W s(v2) the stable manifold of

v2: Then transversality holds:

W u(v1) \ W s(v2): (3.9)

Moreover, if W u(v1) \W s(v2) 6= ;; then

i(v1) > i(v2): (3.10)

Proof of proposition 3.1: Claims (a) are immediate, because the eigenfunctions of

the linearization at a homogeneous S1-invariant equilibrium e are the representation

subspaces

hcos kx; sin kxi (3.11)

k = 0; 1; 2; � � � where z(cos kx) = z(sin kx) = 2k: Indeed (u(t) � e)=ju(t) � ej ap-

proaches an eigenspace hcos kx; sin kxi, for t ! �1 and u(0) in the appropriate

stable or unstable manifold of e. The Sturm property (1.10) then implies claim

(3.3). See also [BF86], [AF88], for similar arguments.

Claim (b), (3.4) follows by de�nition; see (1.16). Claim (b), (3.5) involves a decom-

position of the Floquet eigenspaces, according to zero number z = 2k, very similar

to � but less explicit than � (3.11) above. See [AF88] and also [FuOl90] for details.

The lap number `(v) = z(vx) enters diacritically, because vt = cvx is the Floquet

eigenfunction of the trivial Floquet multiplier 1, and thus separates the strongly

stable from the strongly unstable Floquet eigenspace. This sketches the proof of

proposition 3.1. ./

Proof of proposition 3.2: We �rst observe that claim (3.10) is an immedi-

ate consequence of proposition 3.1(b). Indeed, choose a heteroclinic orbit u(t) 2

W u(v1) \W s(v2) 6= ;: Then (3.8) implies

i(v2) < z(u(�t)� v2) = z(v1 � v2) = z(v2 � v1) = z(u(t)� v1) � i(v1) ; (3.12)

provided t > 0 is chosen large enough. This proves (3.10).

To show transversality, (3.9), we invoke [FuOl90], theorem 4. In the technically

completely analogous �nite-dimensional setting of Jacobi systems, transversality

was shown there to hold, unless v1 and v2 are both equilibria. Either by repeating

their arguments, verbatim, or else by symmetric �nite di�erence discretization of

(1.1), their results extend to the present case.

To deal with equilibria, we �rst eliminate all frozen waves by passing to a new

coordinate system which rotates at a suitable nonzero speed c0 :

~ut = ~uxx + f(~u; ~ux) + c0~ux : (3.13)

Due to S1-equivariance of the original system (1.1), on S1, the transversality prop-

erty (3.9) is not a�ected by this adjustment. By hyperbolicity, all rotating waves of
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(1.1) are isolated, hence �nite in number, with a �nite number of associated wave

speeds. These can easily be avoided by c0, so that all frozen waves of (1.1) become

rotating waves, in (3.13), and none of the rotating waves of (1.1) is frozen.

With all frozen wave equilibria thus eliminated, we only have to deal with the

possibility that v1 and v2 in (3.9) are both in fact homogeneous equilibria. The

spectral analysis of proposition 3.1(a) then precisely provides the su�cient (and

necessary, in view of the example [SF92]) condition, under which [FuOl90], theorem

5, asserts transversality (3.9) to hold. This completes the proof of proposition 3.2.

./

Proof of theorem 1.4: Let there exist an orbit u(t; x) from v1 to v2, both in

E [F [R. Then W u(v1)\W s(v2) 6= ;; and theorem 1.4 follows because proposition

3.2, (3.10) asserts i(v1) > i(v2): Note in particular that i(v1) > i(v2) implies v1 6= v2.

Therefore u(t; x) must be heteroclinic, indeed. This proves theorem 1.4. ./

We can now prove the �if� part of our main result, theorem 1.3, in case k = z(v1 �

v2) = 0. First suppose at least one of v1; v2 is a rotating or frozen wave, say v1.

Moreover v2 � v1 is of constant sign, say positive. Then `(v1) = z(v1x) � 2; because

x 2 S1 and v1 is not identically constant. Therefore, proposition 3.1(b) implies

instability, i(v1) � 1: This instability was already observed, in the more general

context of strongly monotone dynamical systems, by [Hir85]. By positivity of the

�rst eigenfunction, we obtain a trajectory

u(t; x) > v1(t; x) (3.14)

inW u(v1): Let w 2 E[F[R be the !-limit set of u. If w 6� v2, then w prevents v1; v2

from being 0-adjacent. Therefore w � v2: Finally, suppose both v1 and v2 2 E � IR

are homogeneous equilibria and therefore z(v1� v2) = 0. Note that f(v; 0) changes

sign at v if, and only if, v 2 E: Moreover, the one-dimensional �ow

_u = f(u; 0); u 2 IR (3.15)

embeds into (1.1), (1.2). Therefore 0-adjacent elements v1; v2 of E possess an ob-

vious x-homogeneous heteroclinic orbit (3.15). Together with section 2, this proves

theorem 1.3 for k = 0:

To prove theorem 1.3 for k-adjacent v1; v2 2 E [ F [ R with k > 0 we construct

several homotopies, in the following chapters, which preserve both k-adjacency and

hyperbolicity of v1 and v2. The following lemma ensures that possible heteroclinic

orbits between v1 and v2 are neither created nor destroyed by such homotopies.

Lemma 3.3 Let v1; v2 2 E [F [R be hyperbolic and k-adjacent for a C1
-family f �

of C2
-nonlinearities, 0 � � � 1. For � = 0, assume that there exists a heteroclinic

orbit u(t; �), u(t; �)! v1;2 for t!�1, such that

z(u(t; �)� vj) = k: (3.16)

for j = 1; 2 and all real t. Then v1; v2, or suitably shifted copies of v1; v2, possess a

heteroclinic orbit with this property, for all 0 � � � 1.

13



Proof: Let T � [0; 1] denote the set of � for which there exists a connecting orbit

u(t; �) 2 W u(v1)\W s(v2) satisfying (3.16). Note that 0 2 T , by assumption. By the

assumed hyperbolicity of v1; v2, and the Morse-Smale property W u(v1) \ W s(v2),

the set T is open in [0; 1]. The lemma is proved, once we show that T is also closed.

Consider therefore any convergent sequence T 3 �n ! � 2 [0; 1] with associated

heteroclinics un(t; �). By compactness of the semi�ow we may assume convergence

of un(0; �) to some initial condition u0 2 X at parameter � . Consider the bounded

global solution u(t; �) through u(0; �) = u0. We now show that vj; j = 1; 2, or a

phase shifted copy of them, is in the !-limit set !(u0). The analogous argument for

�(u0), which will complete the proof, will be omitted.

Let w 2 !(u0) � E [ F [R. Suppose indirectly, that w is neither a shifted copy of

v1, nor of v2. Then w � vj possesses only simple zeros. By continuity of the zero

number, (3.16) therefore implies

z(w � vj) = z(u(t; �)� vj) = z(un(t; �)� vj) = k (3.17)

for su�ciently large t; n and for j = 1; 2. This takes care of one of the condi-

tions (1.23) involved in violations of k-adjacency. Because (3.16) also implies that

maxS1 un(t; x) is strictly between maxS1 v
1(x) and maxS1 v

2(x), the same holds for

maxS1 w(x). Here we use w 6= v1; v2, also after phase-shifts. This takes care of

the other condition in (1.23) and shows that w prevents k-adjacency of v1; v2. Our

indirect argument therefore shows that w coincides with a shifted copy of either v1

or v2.

Similarly we prove that �(u0) coincides with a shifted copy of v1 or v2. Because

homoclinic orbits do not exist here, this proves that u(t; �) is an orbit, connecting v1

and v2. A forteriori, u(t; �) is a transverse intersection of the respective stable and

unstable manifolds and hence also satis�es (3.16), by (3.17). This proves � 2 T .

Hence T is also closed and the lemma is proved. ./

4 Nesting, freezing, and hyperbolicity

At the end of the previous section we have proved our main result, theorem 1.3, in

case k = z(v1 � v2) = 0: From now on, we therefore assume

k = z(v1 � v2) � 2 (4.1)

for the even zero number k on the circle. Moreover, we �x the numbering v1; v2 such

that

max
S1

v2 > max
S1

v1: (4.2)

In proposition 4.1 below, we show that v1 must then be contained in the interior of

the closed orbit of v2; in the phase plane (v; vx). We call this fact �nesting�. In lemma

4.2, central to the entire paper, we show how all relevant rotating waves can be frozen

to zero wave speed, simultaneously, even if the individual wave speeds are di�erent.
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Lemma 4.3 then shows how a freezing homotopy a�ects neither hyperbolicity nor,

due to section 3, transversality and heteroclinic connectivity.

The following proposition is essentially due to Matano and Nakamura, [MN97]. We

include a proof, for the convenience of the reader.

Proposition 4.1 Let assumptions (4.1), (4.2) above hold for v1; v2 2 E [ F [ R.

Then

(i) the 2�-periodic, possibly constant x-orbit (v1(x); v1x(x)) of v1 lies inside the

2�-periodic, non-constant x-orbit (v2(x); v2x(x)) of v
2

(ii) k = z(v1 � v2) = `(v2) = z(v2x):

Proof: As we have noted in the introduction, the x-orbits of v1 and v2 cannot

intersect, or else z(v1 � v2) would have to drop. If minv2 > max v2, then k =

z(v1 � v2) = 0, contrary to assumption (4.1). Therefore the Jordan curve theorem

implies

minv2 < minv1 � maxv1 < maxv2: (4.3)

This establishes our nesting claim (i).

We prove claim (ii), z(v1� v2) = `(v2), next. By (4.3), v2� v1 changes sign at least

once between any two adjacent extrema of v2(x); x 2 S1: Therefore z(v1 � v2) �

`(v2): Because the x-orbit of v1 is nested strictly inside the x-orbit of v2, we also

observe

sign(v2x � v1x) = sign v2x 6= 0 (4.4)

at any zero of v2 � v1: Therefore v2 � v1 changes sign at most once between two

adjacent extrema of v2(x), x 2 S1, and hence z(v1 � v2) � `(v2). Together this

proves z(v1 � v2) = `(v2), and the proposition. ./

As a preparation for the freezing homotopy, we study the rotating wave equation

0 = vxx + f(v; vx) + cvx ; (4.5)

with the wave speed c 2 IR as a parameter. Recall that nonconstant periodic so-

lutions v(x) of (4.5) with minimal period T > 0 indeed give rise to rotating wave

solutions, for c 6= 0, or frozen wave solutions, for c = 0, of (1.1), (1.2) on the circle

x 2 S1 = IR=nT ZZ ; for any n 2 IN:We can also view (4.5) as a rather simple problem

of global Hopf bifurcation for the planar system

vx = p

px = �f(v; p)� cp
(4.6)

with parameter c. Note that equilibria (e; 0) 2 E of (4.6) undergo a single Hopf

bifurcation, as c increases, when

fv(e; 0) > 0: (4.7)
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We then call e a center, even though (e; 0) will actually be a saddle of (4.6) for large

j c j : We call e a saddle, if fv(e; 0) < 0, that is, if (e; 0) is a saddle of (4.6) for all

values of c 2 IR. We now investigate the properties of the set C � IR
2, which consists

of all centers (e; 0) and of all points (v; p); for which there exists a parameter value

c such that the orbit of (4.6) through (v; p) is periodic. We call C the cyclicity set.

Lemma 4.2 below is inspired by [MN97].

Lemma 4.2 Assume the C2
-nonlinearity f satis�es the dissipativeness condition

(1.5). Moreover suppose all zeros e of v 7! f(v; 0) are simple. Then the cyclicity set

C de�ned above is bounded, and open. Furthermore, if C is nonempty, there exist

C2
-functions

c; T : C ! IR (4.8)

with the following properties.

(i) For each nonstationary point (v; p) 2 C; the value c(v; p) indicates the unique

wave speed c for which (v; p) lies on a periodic orbit of system (4.6). Similarly,

T (v; p) indicates the minimal period.

(ii) The wave speeds c are uniformly bounded on C.

(iii) The minimal periods T tend to in�nity, at the boundary @C of C:

(iv) @C consists of saddles, and of points which are homoclinic or heteroclinic to

saddles, for some parameter c.

Proof: By dissipativeness condition (1.5), we have f(v; 0)v < 0 for large jvj: There-

fore v 7! f(v; 0) possesses at least one zero which is a saddle. If this saddle is

the only zero of f(�; 0), then C is empty. If, however, f(�; 0) possesses additional

zeros, then one of them must be a center and C is nonempty. In this case, the

same sign constraint ensures uniform bounds, on the maximum and minimum of v,

on any bounded solution of (4.6). Together with the bounds (1.5) on f this shows

boundedness of C.

We now prove openness of C. By standard Hopf bifurcation of (4.6) at centers (e; 0)

with parameter c = �fp(e; 0) and limiting period T = 2�=
p
fv(e; 0); the cyclicity set

C contains neighborhoods of centers. Next consider some nonstationary (v0; p0) 2 C;

at parameter c0 and with minimal period T0 > 0. Let '(v; p; T; c) denote the �ow

(4.6) with �time� x = T: Then

'(v; p; T; c)� (v; p) = 0 (4.9)

at (v0; p0; T0; c0): By the implicit function theorem, openness of C follows if we can

show that

det('T ; 'c) 6= 0; (4.10)

for the 2� 2 matrix of partial derivatives 'T ; 'c at (v0; p0; T0; c0):
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To show (4.10), we abbreviate v = (v; p); and

v = v(x) := '(v0; p0; x; c0)

� = �(x) := 'c(v0; p0; x; c0)

f = f(v; c) := (p;�f(v; p)� cp) :

(4.11)

With the Jacobian fv along v(x) and the partial derivative fc we observe

vx = f(v; c)

(vx)x = fv � vx

�x = fv � � + fc :

(4.12)

Denoting transpose by 0 and letting J =

�
0 �1

1 0

�
, we also de�ne a solution v�(x)

by
(v�)x = �fv

0
� v�

v�(0) = Jvx(0) 6= 0 :
(4.13)

Then v�(x) 6= 0; for all x, and

d

dx
(v�(x)

0
vx(x)) = 0 : (4.14)

This invariance of the scalar product, together with the initial condition for v�(0),

implies

v�(x) = �(x)Jvx(x) (4.15)

for some strictly positive scalar function �(x): Similarly to (4.14) we also observe

that
d

dx
(v�(x)

0
�(x)) = (v�)

0
x� + v

0
��x

= (�f 0
v
� v�)

0
� + v

0
�(fv � � + fc)

= v0�fc = �(Jvx)
0fc

= �(Jf)0fc = ��p2 < 0 ;

(4.16)

except at the discrete points x where p(x) = 0: Here we have used (4.12), (4.13),

and (4.15). Because �(0) = 0; by (4.11), we can now conclude

�(T ) det('T ; 'c) = �(Jvx)
0
� jx=T = v0�� jx=T

=
R T

0
d

dx
(v0��)dx = �

R T

0
�p2dx < 0 :

(4.17)

This proves claim (4.10) and openness of the cyclicity set C:

We now show that any nonstationary v0 2 C can be periodic for only one unique

value of the wave speed c. Suppose, indirectly, that there exist two solutions

v1(x);v2(x) of (4.6) with wave speeds c1; c2, respectively. Without loss of gener-

ality, assume c1 < c2: If p0 6= 0; then it is easy to see that v2(x) must transversely

enter the interior of the closed curve v1(x); and cannot leave it. For p0 = 0, the

same statement holds true, but with a cubic tangency at x = 0: This contradicts

the assumption that v1(x) is a closed curve, and proves existence of the wave speed

function c = c(v0; p0): Existence of the minimal period function T = T (v0; p0) is
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then obvious. Di�erentiability of the function c follows from the implicit function

theorem applied to (4.9). Di�erentiability of the minimal period T follows, similarly,

because period doubling bifurcations and the like are impossible in planar systems.

This proves part (i) of the lemma.

A singular perturbation argument for c ! �1; together with dissipativeness of f

shows that (4.6) cannot possess periodic solutions for jcj above a certain threshold C:

This proves boundedness of c, (ii). For an alternative argument involving integration

by parts see also [MN97].

To prove (iii) suppose, indirectly, that the minimal periods Tn remain bounded as

points (vn; pn) 2 C with bounded wave speeds cn approach a point (v0; p0) 2 @C:

Without loss of generality assume Tn ! T0; cn ! c0: Because minimal periods are

uniformly bounded from below [AbRo67], [Yor69], we have T0 > 0 and (v0; p0) 2 C:

Because C is open, this contradicts (v0; p0) 2 @C; and proves (iii).

To prove (iv), consider (v0; p0) 2 @C: If (v0; p0) is an equilibrium, then p0 = 0 and

v0 = e is a saddle, because centers belong to the open set C:

Next suppose v0 = (v0; p0) 2 @C is not an equilibrium. Choose

C 3 vn ! v0 : (4.18)

Without loss of generality assume convergence of the associated wave speeds

cn = c(vn)! c0 ; (4.19)

and consider (4.6) with wave speed c = c0: Note that the trajectory v(x) of v0 is

bounded, by uniform boundedness of the trajectories vn(x) 2 C: To prove (iv) we

have to show that the !-limit set and the �-limit set of v0 consist of equilibria (e; 0),

only.

Suppose, indirectly, that there exists a non-equilibrium w0 2 !(v0): Because v0 62 C

cannot be periodic, the trajectory v(x) of v0 must intersect a Poincaré section to

the �ow at w0 in�nitely often, and at in�nitely many di�erent intersection points.

Already two distinct intersection points, however, contradict the periodicity of vn(x);

for some large n. This contradiction proves claim (iv), and the lemma. ./

With the wave speed function c = c(v; p) of lemma 4.2 at hand, we now consider

the frozen system

0 = vxx + f(v; vx) + c(v; vx)vx ; (4.20)

de�ned for (v; vx) 2 C; for the moment. By construction, the function c(v; vx) is in

fact a �rst integral of (4.20). Indeed, c(v0) is the unique wave speed parameter c of

(4.6), for which the orbit v(x) through v0 = (v0; p0) becomes periodic. Therefore

all points on the periodic orbit v(x) share the same value c = c(v(x)):

As an aside, we mention that the condition for c(v; p) to be a �rst integral is equiv-

alent to the nonlinear hyperbolic conservation law

pcv � (pc+ f)cp = 0 : (4.21)
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Figure 4.1: Gaps in the cyclicity domain C (hashed). The limiting wave speeds for the

three homoclinic orbits to the saddle e satisfy c1 > c2 > c3; in this example.

Note the degeneracy at p = f = 0: It is therefore not surprising that c cannot be

de�ned everywhere, as a �rst integral. See �gure 4.1 for an example, where the gap

of C between the inner homoclinic lobes and the outer lobe would have to be �lled

by rarefaction fans.

For the purposes of our boundary value problem (P) on x 2 S1 = IR=2� ZZ , how-

ever, rotating waves (4.6), (4.20) with minimal periods T > 2� are irrelevant. We

therefore modify and extend c(v) now, by an arbitrary, globally de�ned, bounded

C2-function outside the set C0 of v 2 C with T (v) � 3�:With this extension of c(v)

we now consider the freezing homotopy

ut = uxx + f � (u; ux); x 2 S1;

where f � (v; p) := f(v; p) + �c(v; p)p ;
(4.22)

for 0 � � � 1: Clearly (4.22) preserves all rotating wave solutions (v; vx) of (1.1),

(1.2), reducing their wave speeds

c� = (1� � )c0 (4.23)

to zero, by � = 1: Indeed

0 = vxx + f � (v; vx) + (1 � � )c(v; vx)vx : (4.24)

Note that (4.22) may, in general, introduce additional spurious rotating or frozen

waves, for � > 0; which are not present in the original problem for � = 0: However,

a careful choice of the extension of c(v) outside the set C0 avoids this nuisance in the

following way. Consider the gap associated to the saddle point (v; p) = (e; 0) and its

three homoclinic orbits corresponding to the limiting wave speeds c1 > c2 > c3; (see

again Figure 4.1 for this generic situation). Let B"(e) denote an open ball of radius
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" > 0 centered at the saddle point (e; 0). For small " > 0 the set C\B"(e) consists of

three open disjoint sectors determined by the three homoclinic orbits. In C nB"(e)

we leave c(v) unchanged, as given by lemma 4.2. In B"(e) we modify c(v) only in

the sectors corresponding to the wave speeds c1 and c3, adjusting C
2-smoothly so

that c(e; 0) = c2. For f
� de�ned in this way, any spurious periodic orbit is con�ned

to the annular regions outside C0, but inside the homoclinic orbits corresponding

to c1 or c3. Indeed, the annular region corresponding to c1 bounds a subset of C0

which, for wave speeds c 6= c1, is either positively or negatively invariant. Taking "

su�ciently small we conclude that in this annular region a spurious periodic orbit

occurs only for wave speeds "-close to c1. Continuous dependence of solutions of

(4.22) with respect to parameters �nally implies that the period T of this orbit is

very large, say T > 3�. The same reasoning applies to the region corresponding to

c3 completing the argument.

Lemma 4.3 Consider a periodic solution v = (v; vx) of the freezing homotopy

(4.24), with x-period 2� and wave speed c� = (1 � � )c0: Then the corresponding

rotating or frozen wave solution

u(t; x) := v(x� c� t) (4.25)

of (4.22), which freezes for � = 1; is hyperbolic for all 0 � � � 1; if it is hyperbolic

for � = 0:

To prove lemma 4.3, we �rst relate the two cases i(v) 2 f`(v) � 1; `(v)g of the

unstable dimension i(v) of hyperbolic rotating or frozen waves, as established in

proposition 3.1(b), to a monotonicity property of the x-period T , in lemma 4.2. To

this end, let v0 2 C be a rotating or frozen wave solution of (4.6) with wave speed

c0. By lemma 4.2, v0(x) lies in a local family v�(x) of rotating or frozen waves.

Without loss of generality, we parametrize this family by its maxima:

v�(0) = (�; 0) ;

v�xx(0) < 0 :
(4.26)

By lemma 4.2 we have the corresponding wave speeds and minimal periods

c� := c(�; 0); T � := T (�; 0) : (4.27)

The following lemma is reminiscent of stability results involving the time map, in

the Neumann case (N ); see [STW80], [Smo83], [BC84].

Lemma 4.4 In the above setting, the rotating or frozen wave solution u(t; x) :=

v0(x� c0t) is hyperbolic if, and only if,

_T := @�T (�; 0) j�=0 6= 0 : (4.28)
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Proof: Let k = `(v0) = z(v0
x
) � 2: Then T 0 = 4�=k. We only consider the case

k = 2 here, where 2� = T 0 is the minimal period. The more general case k > 2

is precisely analogous, and is omitted. Passing to a corotating coordinate system

(t; x), we may also assume c0 = 0; so that v0 is a frozen wave.

Denoting _= @� j�=0 we may di�erentiate the rotating wave family

0 = v�xx + f(v�; v�x ) + c�v�x
� = v�(0) = v�(T �)

0 = v�x (0) = v�x (T
�)

(4.29)

with respect to �, at � = 0, to obtain

0 = L _v + _cv0x
1 = _v(0) = _v(2�)

0 = _vx(0) = _vx(2�) + v0xx(2�) �
_T :

(4.30)

Here we have abbreviated L to denote the linearization

Lw = wxx + fpwx + fvw (4.31)

with fv; fp evaluated at v0(x):

Note that � is an eigenvalue of the frozen wave v0(x); if and only if we �nd a

nontrivial eigenfunction w 2 X = Hs(S1) such that

�w = Lw : (4.32)

The trivial eigenvalue � = 0 comes with the kernel eigenfunction w = v0x of zero

number z(v0x) = k = 2: The two instability cases of proposition 3.1(b), as enumerated

in (3.5), are decided on by sign� for the second eigenfunction w with z(w) = k = 2:

We now construct this second eigenfunction, based on _v:

First suppose _T = 0: Then _v 2 X is 2�-periodic, by (4.30), and

L _v = � _cv0x : (4.33)

Moreover _v is linearly independent of v0x, because _v(0) 6= 0 = v0x(0). Therefore the

frozen wave v0 is not hyperbolic, if _T = 0:

Conversely, suppose v0 is not hyperbolic. Then we can solve the initial value problem

0 = L _v + _cv0x
1 = _v(0)

0 = _vx(0)

(4.34)

uniquely for _v, and obtain _v as a unique linear combination of v0x and the second

generalized eigenfunction w. Periodicity of both v0x and w implies 2�-periodicity of

_v; and hence

v0xx(2�) �
_T = 0 ; (4.35)
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by (4.30). Because

v0xx(2�) < 0 (4.36)

at the maximum of v0(x); this implies _T = 0; as claimed in lemma 4.4. ./

Proof of lemma 4.3: We embed the solution v := v
0 2 C of lemma 4.3 into a

family v
� 2 C as in (4.26), (4.27). Then lemma 4.4 implies that _T 6= 0, because

u is hyperbolic for � = 0. Since the freezing homotopy neither changes any of the

solutions v�; nor any of the x-periods T �; lemma 4.4 also implies the hyperbolicity

of u, for any 0 � � � 1: This proves lemma 4.3. ./

5 Re�ection symmetry

In this section we provide the second crucial homotopy which, together with the

freezing homotopy (4.22), will help to prove theorem 1.3 in section 7. This second

homotopy

ut = uxx + f � (u; ux) (5.1)

connects a nonlinearity f0 = f(v; p) with a reversible nonlinearity f1 = f1(v; p)

which is even in p:

f1(v;�p) = f1(v; p): (5.2)

The homotopy will be de�ned by a family of symmetrizing transformations C� of

the cyclicity set C introduced in section 4; see lemma 4.2. The transformations will

have the form

Q� : (v; p) 7! (v; q�(v; p)) : (5.3)

For � = 1; all periodic orbits (v; vx) in the cyclicity set C1 = Q1(C) will be ax-

isymmetric with respect to the v-axis. Working with frozen waves, throughout this

section, the second order frozen wave equation

0 = vxx + f � (v; vx) ; (5.4)

which results from the symmetrizing transformation Q� , will then be x-reversible

on C1, for � = 1: This establishes the symmetry (5.2).

To de�ne the symmetrizing transformation Q� , consider any (v0; p0) 2 C0 on an

x-periodic orbit v(x) = (v(x); vx(x)) of (5.4), for � = 0: If p0 6= 0; that is if v0 is

neither the maximum nor the minimum of v(x), then there exists a unique second

point (v0; p
0
0) on the same orbit. Indeed vx(x) 6= 0 between extrema of v(x). Note

that p0 and its mirror point p00 have opposite sign. We de�ne

(q�(v0; po))
�1

:= (1� � )
1

p0
+

1

2
�

�
1

p0
�

1

p00

�
: (5.5)

For � = 1; we obtain the harmonic mean of p0 and �p00: Our de�nition of q� ; Q�

is motivated by the period invariance property (5.9) of the following lemma. A
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straightforward calculation shows that the homotopy f � in the nonlinearity of (5.4)

is then given explicitly by

f � ÆQ� =
�
q�pf � q�vp

�
� q�=p : (5.6)

Lemma 5.1 Let f 2 C5
. The transformation q�(v; p) de�ned in (5.5) is of class

C2
on the open cyclicity set C = C0; with the properties

q�(v; 0) := 0 (5.7)

q�p(v; p) > 0: (5.8)

In particular Q�(v; p) = (v; q�(v; p)) de�nes a continuous family of C2
-di�eomorphisms

from C onto its image C� = Q�(C).

The period function T (v; p), de�ned in lemma 4.2, is invariant under the homotopy

Q� :

T �(Q�(v; p)) = T (v; p) ; (5.9)

where T �
refers to the transformed nonlinearity f � :

Corollary 5.2 Frozen waves and homogeneous equilibria remain hyperbolic under

the symmetrizing transformations Q� :

Proof of corollary 5.2: For frozen waves this follows from hyperbolicity lemma

4.4, and the period invariance (5.9) of lemma 5.1, under the symmetrizing transfor-

mations Q� : For homogeneous equilibria, the claim is obvious from the construction

of f � : ./

Proof of lemma 5.1: We prove di�erentiability and monotonicity (5.8) of q�(v; �)

�rst. For (v; p) 2 C; p 6= 0; these claims are obvious, because fvg� IR de�nes a local

Poincaré section to
vx = p

px = �f(v; p) :
(5.10)

Indeed the map

p0 = '(v; p); (5.11)

is C5 and 'p 6= 0; for p 6= 0. By the nesting property of proposition 4.1(i), we

observe

'p(v; p) < 0: (5.12)

This proves q� 2 C5 and (5.8), for p 6= 0:

We now consider the case p = 0 and v = v0 not a center. For v near v0 and small

jpj let

� =  (v; p) (5.13)

near v0 be such that (�; 0) lies on the same orbit of (5.9) as (v; p). By the �ow box

theorem,

(v; p) 7! ( (v; p); 0) (5.14)
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is a local C5-di�eormorphism. Moreover (5.10) and vxx = f(v; p) 6= 0 imply

 (v; 0) = v

 p(v; 0) = 0

 pp(v; 0) 6= 0 :

(5.15)

By the one-dimensional Morse Lemma, there exists an �-dependent local di�eomor-

phism
h(v; p) = ~p

h(v; 0) = 0

hp(v; 0) 6= 0

(5.16)

such that the transformed  , given by ~ (v; ~p) :=  (v; p); simply satis�es

~ (v; ~p) = ~p2 + v : (5.17)

See for example ([Arn71], sec. 12). Note that v just enters as a parameter. The

transformation h is only of class C3, in general. In ~p-coordinates (5.17) we then

simply have ~p0 = �~p. This proves our di�erentiability and monotonicity claims for

' and q� , except at centers.

Let (v0; 0) be a center, without loss of generality with v0 = 0: Similarly to (5.13),

we then de�ne  locally by

�2 =  (v; p); (5.18)

where (0; �); with � � 0; lies on the same orbit of (5.9) as (v; p): By the Hopf

bifurcation theorem,  is in fact of class C4: See for example [CR77], [Van89]. Again

we lose one derivative here. Moreover

 (0; p) = p2

 p(v; 0) = 0

 pp(v; 0) 6= 0 :

(5.19)

Applying the one-dimensional Morse Lemma with parameter v, as in (5.15), (5.17)

above, we obtain
~ (v; ~p) = ~p2 +  (v; 0) (5.20)

at the expense of another two derivatives. Again ~p0 = �~p and all di�erentiability

and monotonicity claims for ' and q� are proved.

It only remains to check the period invariance property (5.9) which will be crucial to

the preservation of hyperbolicity throughout our symmetrizing homotopy (5.4). Let

v0(x) = (v0(x); p0(x)) 2 C0 be any periodic orbit of the symmetrization homotopy

(5.4), for � = 0: Let a = minv0, b = maxv0. We can then write

v0x(x) = p0(x) = P 0
�(v

0(x)) ; (5.21)

separately for the bottom part of v0(x); where p0(x) � 0; and for the top part,

where p0(x) � 0: The minimal period T 0(v0(x)) = T (v0(x)) is then given by

T 0(v0) =

Z T 0

0

dx =

Z b

a

�
1

P 0
+(v)

�
1

P 0
�(v)

�
dv ; (5.22)
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simply by substituting v0(x) for x, separately on either part of v0(x): Note conver-

gence of the integrals, by existence of T 0:

The same derivation (5.21), (5.22) applies throughout the symmetrization homotopy

by Q�(v; p) = (v; q�(v; p)): We may replace the superscript �0� by �� �, if we de�ne

P �

�(v) := q�(v; P 0
�(v)) : (5.23)

Therefore (5.5) implies

T �(v�) =

Z
b

a

�
1

P �
+(v)

�
1

P �
�(v)

�
dv = (1� � )T 0(v0) + �T 1(v1) : (5.24)

By de�nition of the mirror point p00 to p0, the map p0 7! p00 just interchanges P
0
+(v)

and P 0
�(v), for any v: Therefore (5.5) implies

T 1(v1) =
R b

a

�
1

P 1
+
(v)
� 1

P 1
�

(v)

�
dv

= 1
2

R b

a

��
1

P 0
+(v)

� 1

P 0
�

(v)

�
�

�
1

P 0
�

(v)
� 1

P 0
+(v)

��
dv

= T 0(v0) :

(5.25)

Together, (5.24) and (5.25) prove the period invariance property (5.9), and the

lemma. ./

In the reversible frozen form

vt = vxx + f(v; vx)

f(v;�p) = f(v; p)
(5.26)

it is now easy to re�ne lemma 4.4 and determine the unstable dimension i(v0) 2

f`(v0) � 1; `(v0)g of a rotating wave v0 by its lap number `(v0) = z(v0x), explicitly.

As in lemma 4.4, we consider v0 as embedded into a rotating wave family v� of

minimal period T �; see (4.26)�(4.29).

Lemma 5.3 In the setting of lemma 4.4, the sign of

_T = @�T (�; 0) j�=0 6= 0 (5.27)

decides the unstable dimension of a hyperbolic rotating or frozen wave v0 to be given

by

i(v0) = `(v0)� 1 , _T > 0

i(v0) = `(v0) , _T < 0
(5.28)

Proof: By lemmas 4.3, 4.4 and corollary 5.2 above, we may �rst freeze and sym-

metrize the rotating wave family v
�(x), without loss of generality. In particular

_c = 0 in (4.29). Again we restrict to k = `(v0) = 2; T 0 = 2�; for simplicity. From

(4.29), (4.31) we recall that _v = @�v j�=0 satis�es

0 = L _v

1 = _v(0) = _v(2�)

0 = _vx(0) = _vx(2�) + v0xx(2�)
_T

(5.29)
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with v0
xx
(2�) = v0

xx
(0) < 0 at v0(0) = maxv0: Here L denotes the linearization at

v0(x); by now frozen. In comparison, let w satisfy

�w = Lw : (5.30)

If w happens to be 2�-periodic, and if moreover z(w) = 2; then w is an eigenfunction

of � and
i(v0) = `(v0)� 1; if � < 0

i(v0) = `(v0); if � > 0 :
(5.31)

We therefore construct �, �rst, and then de�ne w with the above properties.

To construct � consider the initial value problem

0 = L ~w � � ~w

1 = ~w(0)

0 = ~wx(0) :

(5.32)

Note that ~w = _v; for � = 0, by (5.29). Let ~w := ( ~w; ~wx): For positive �, the nonzero

vector ~w rotates slower than _v = ( _v; _vx); whereas for negative � it rotates faster.

See for example [CL55], [Har64]. We can in fact choose � of the appropriate sign

such that ~w(x)=j ~w(x)j becomes 2�-periodic, and z( ~w) = 2: Comparing ~w(x) with

the reference solution _v(x); for � = 0; we conclude from (5.29) that

� < 0; if �v0xx(2�)
_T > 0

� > 0; if �v0xx(2�)
_T < 0 :

(5.33)

Here we have used that the orbits v
�(x) are nested, by proposition 4.1(i), and

_v(x)=j _v(x)j describes the limiting direction of the di�erence vector v�(x) � v0(x);

for �& 0: The 2�-periodicity of ~w=j ~wj implies

~w(2�) = �; ~wx(2�) = 0; (5.34)

for some positive �:

We now invoke reversibility (5.26) of f . Because v0(2�) = v0(0); v0x(2�) = v0x(0) = 0;

reversibility implies

v0(2� � x) = v0(x): (5.35)

Similarly, (5.32), (5.33) imply

~w(2� � x) = � ~w(x) ; (5.36)

simply because ~w(2�� x) solves the reversible linear equation 0 = L ~w� � ~w if, and

only if, ~w(x) does. Relation (5.36) then follows because ~w(2��x) and � ~w(x) satisfy

the same initial conditions at x = 0: Inserting x = 2� into (5.36), however, implies

1 = ~w(0) = � ~w(2�) = �2 ; (5.37)

and therefore � = �1: Because � was positive, we conclude 2�-periodicity of ( ~w; ~wx):

With z( ~w) = 2; we have thus constructed an eigenfunction w = ~w: Combining (5.31),

(5.33) therefore proves the lemma. ./
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At this stage, we have �rst frozen all rotating waves and second symmetrize the

resulting nonlinearity, at least as far as periodic orbits of

0 = vxx + f(v; vx) (5.38)

of x-period T � 3� in C are concerned. We remark that, conversely, any rotating

wave solution of

0 = vxx + f(v; vx) + cvx (5.39)

is necessarily frozen, c = 0; provided that f(v;�p) = f(v; p) is reversible along the

rotating wave pro�le (v; p) = v(x): Without loss of generality, suppose vx(0) = 0:

Indeed, reversibility implies that ~v(x) := v(�x) also solves (5.39), albeit with wave

speed �c, along with v(x) itself. By (1.12)�(1.14), di�erent rotating waves possess

disjoint orbits, in the (v; vx)-plane. Since ~v(0) = v(0) = (v(0); 0); the two rotating

wave orbits ~v and v must therefore coincide. Therefore their wave speeds coincide,

�c = c; which implies c = 0:

6 Cut and paste: Neumann versus S1

In this section we compare frozen waves, their hyperbolicity and heteroclinic orbit

for (1.1), in the case (P) of periodic boundary conditions (1.2), x 2 S1 = IR=2� ZZ ,

with the case (N ) of Neumann boundary conditions (1.3), at x = 0; 2�: Throughout

this section, we assume reversibility of the nonlinearity f ,

f(v;�p) = f(v; p) : (6.1)

We recall that any rotating or frozen wave solution v of (P) is then frozen, auto-

matically, and hence satis�es

0 = vxx + f(v; vx) ; (6.2)

see (5.39) above.

The �cut� transition passes from (P) to (N ), by cutting the periodic circle S1 at

x = 2�; to become the Neumann interval 0 � x � 2�. The paste� transition,

conversely, passes from (P) to (N ), by pasting solutions of the Neumann problem

together at x = 0; 2�: Clearly, successful pasting requires identical boundary values

of the solution, at x = 0; 2�: The following lemma collects the various aspects of our

cut-and-paste procedure.

Lemma 6.1 (i) Let f(e; 0) = 0 de�ne a homogeneous equilibrium of both (P)

and (N ): Then e is hyperbolic for (P) if and only if fv(e; 0) 6= k2; k 2 ZZ , while

e is hyperbolic for (N ) if and only if fv(e; 0) 6= (k=2)2; k 2 ZZ . The respective

Morse indices, iP and iN ; satisfy

iP(e) = 1 + 2
hp

fv(e; 0)
i

if fv(e; 0) > 0

iN (e) = 1 +
h
2
p
fv(e; 0)

i
if fv(e; 0) > 0

iP(e) = iN (e) = 0 if fv(e; 0) < 0

(6.3)
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where [�] denotes the integer part.

(ii) Let v(x) be a frozen wave solution of (6.2), positioned such that

vx(0) = 0 : (6.4)

Then v(x) is an equilibrium of both (P) and (N ). Moreover v is hyperbolic for

(P) if and only if it is hyperbolic for (N ) and we have

iP(v) = iN (v)� 1 : (6.5)

(iii) Conversely, let v(x) be an equilibrium of (N ) with even lap number `(v) =

z(vx) � 2: Then v is a frozen wave solution of (P), positioned such that (6.4)

holds.

(iv) Let v1; v2 be k-adjacent equilibria of (P), homogeneous or nonhomogeneous,

positioned such that

vj(0) = max
x2S1

vj(x) j = 1; 2 : (6.6)

Then v1; v2 are k-adjacent equilibria for (N ).

(v) Let u(t; x) be any solution of (N ) in W 1;1; such that

u(t; 0) = u(t; 2�) (6.7)

for all t in an open interval. Then u(t; x) also solves (P), for those t.

Proof: The proof of (i) is an elementary computation, involving sines and cosines.

To prove (ii), note that also vx(2�) = 0; by 2�-periodicity of the frozen wave v(x).

Hyperbolicity of v is equivalent, for (P), to _T 6= 0 for the associated time map. See

lemma 4.4. Because reversibility (6.1) freezes all rotating waves, anyways, the time

map T � = T �
P near v in fact coincides with the usual time map T �

N of the Neumann

problem, up to a factor 2:

T �

P = 2T �

N : (6.8)

Indeed, by reversibility, the Neumann time map T �
N is given by half the minimal

periods of the associated orbits of (6.2). Therefore

_TP = 2 _TN ; (6.9)

in obvious notation. Hyperbolicity for (N ) is equivalent to _TN 6= 0; see for example

the proof in [BC84]. The hyperbolicity claim of (ii) therefore follows from lemma

4.4.

To prove the relation (6.5) of the unstable dimensions, we recall from lemma 5.3

that

iP(v) 2 f`(v); `(v)� 1g; (6.10)
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depending on the sign of _TP . Similarly,

iN (v) 2 f`(v) + 1; `(v)g; (6.11)

with the analogous dependence on the sign of _TN . This proves claim (6.5), and (ii).

Claim (iii) is an obvious special case of (v). Indeed

v(2�) = v(0) (6.12)

for even `: Together with the Neumann boundary condition vx(2�) = vx(0) = 0; this

shows that v is a frozen wave of (P).

Consider claim (iv) next, with k � 2: The simple case k = 0 is omitted. Let v1; v2

be k-adjacent in (P) with maxima attained at x = 0: To prove k-adjacency in (N ),

suppose w is an equilibrium of (N ), such that

z(v1 �w) = z(v2 �w) = k ;

v2(0) > w(0) > v1(0) :
(6.13)

By nesting proposition 4.1 and non-intersection of frozen waves,w(x) is then trapped

in the annulus between v2(x) and v1(x). In particular, we may also assume w(0) =

maxw: Nesting, again, then implies

k = z(v1 � w) = `(w) = z(wx) : (6.14)

Note that k = z(v1 � v2) is even here. Therefore (iii) exhibits w as a frozen wave

of (P): Because w(0) = maxw; vj(0) = maxvj, this contradicts the k-adjacency of

v1; v2 in (P), and thus proves (iv).

To prove (v), simply observe that the solution u(t; �) 2 W 1;1([0; 2�]; IR) of (N )

also de�nes a weak solution u(t; �) 2 W 1;1(S1; IR); simply by pasting x = 0 and

x = 2�: This follows from assumption (6.7) and the Neumann boundary condition

ux(t; 0) = 0 = ux(t; 2�). By standard regularity theory, this solution coincides with

a solution in X = Hs(S1); s > 3
2
, as considered here. This completes the proof of

the lemma. ./

7 Proof of theorem 1.3

We �rst recall that the easy �only if� part of theorem 1.3 has already been proved

in section 2. The �if� part has been proved at the end of section 3, for k = 0. We

therefore consider k-adjacent hyperbolic v1; v2 2 E[F[R for the periodic boundary

value problem (P) of (1.1), (1.2), with k � 2: We assume that

max
x2S1

v1(x) < max
x2S1

v2(x) (7.1)

so that v1(x) = (v1(x); v1x(x)) is contained inside v2(x) = (v2(x); v2x(x)), by nesting

proposition 4.1. We have to establish the existence of a connecting orbit u(t; x)

between v1 and v2, which satis�es (1.24).
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Suppose �rst that the closed disc D bounded by v2(x) belongs to the cyclicity set

C. Since C does not contain saddles, this disc contains exactly one homogeneous

equilibrium e which is a center, that is, fv(e; 0) > 0: We remark that if v1 62 E we

have a closed annulus between v
1(x) and v

2(x) and e is contained in the disc inside

v
1(x). Of course the annulus degenerates to a disk if v1(x) � e.

In the previous situation, we invoke freezing lemma 4.2 and the freezing homotopy

f � , (4.22). Because periodic solutions in C are una�ected by this homotopy � only

their wave speeds are � v1 and v2 remain k-adjacent. By lemma 4.3, v1 and v2 also

remain hyperbolic. Due to lemma 3.3, a heteroclinic connection, satisfying (1.24),

persists under this process. We may therefore assume f frozen to start with, without

loss of generality.

Once f is frozen in the closed disk bounded by v2(x), we apply the symmetriz-

ing homotopy (5.6) induced by the symmetrizing transformations q� ; Q� ; see (5.3),

(5.5), and lemma 5.1. By corollary 5.2, the frozen waves or homogeneous equilibria

Q� (v1); Q�(v2) remain hyperbolic throughout the homotopy. Moreover, k-adjacency

is again preserved. As before, from lemma 3.3 we obtain the persistence of connec-

tivity of v1; v2 throughout this second homotopy. We may therefore assume f in D

to be frozen and reversible to start with, without loss of generality.

We now invoke the cut-and-paste lemma 6.1 twice. By (ii) we may consider v1; v2 as

hyperbolic equilibrium solutions of the Neumann problem (N ) on 0 � x � 2�. To

this end, we use the possibility of phase-shifts. Indeed, we may assume that v1; v2

attain their maxima at x = 0, by simply shifting v1; v2, separately, in x 2 S1: Recall

that k-adjacency in (P) persists under phase-shifts and, by lemma 6.1 (iv), implies

k-adjacency in (N ).

By theorem 1.1, there exists a heteroclinic orbit u(t; x) of (N ), between v1 and v2.

Suppose we can show that

u(t; 0) = u(t; 2�) (7.2)

holds for all real t: Then cut-and-paste lemma 6.1(v) implies that u(t; x) is also

a heteroclinic orbit between v1 and v2 for the original problem (P) with periodic

boundary conditions.

To prove (7.2) for the Neumann heteroclinic orbit u, we recall from theorem 1.1

that for k-adjacent v1; v2 there exists a special heteroclinic orbit u with constant

zero numbers

z(u(t; �)� v1) = z(u(t; �)� v2) = z(u(t1; �)� u(t2; �)) = z(v1 � v2) = k (7.3)

for all real t and all real t1 6= t2:Moreover the heteroclinic orbit with these properties

is unique in (N ), up to time shift. Note that u(t; x) = (u(t; x); ux(t; x)) has to be

contained in D for all t 2 IR. Indeed, any intersection of the two curves v2(x) and

u(t; x), x 2 S1, for some t 2 IR, leads to a dropping of z(u(�; t) � v2(� + #)) for

some # 2 S1. This obviously contradicts (7.3), if # = 0. For # 6= 0, we obtain a

contradiction to the dropping of the zero number from proposition 4.1 as follows.

30



For the limits v1, v2 of u(t; x) for t! �1, we have

z(v1(�)� v2(�+ #)) = l(v2) = k (7.4)

and

z(v2(�)� v2(�+ #)) = l(v2x) = k: (7.5)

By reversibility symmetry of f inD, we in fact have now constructed two heteroclinic

orbits u(t; x) and u(t; 2�� x) between v1 and v2, which must coincide up to a time

shift, by uniqueness:

u(t+ #; x) = u(t; 2� � x): (7.6)

Applying (7.6) twice, we have

u(t+ 2#; x) = u(t; x) (7.7)

for x = 0; 2� and all t: On the other hand, t 7! u(t; x) is strictly monotone at x = 0,

by theorem 1.1. Therefore # = 0 in (7.7), (7.6) and claim (7.2) is proved. Moreover,

(7.3) implies (1.24), and theorem 1.3 is now proved under the assumption that the

closed disk D bounded by v2 belongs to the cyclicity set C. Indeed, we have shown

that

u(t; x) 2 D (7.8)

for all t; x. Moreover, k-adjacency is de�ned via the non-existence of certain w(x) 2

E [ F [ R, and the imposed conditions (1.22), (1.23) enforce w(x) 2 D, for all x.

Therefore the f -homotopies and transformations can be de�ned arbitrarily outside

D, without a�ecting the constructed heteroclinic orbit u(t; x) between v1 and v2.

This was the case under our initial assumption that D was contained in the cyclicity

set C.

We now drop this assumption, �nally, and deal with cyclicity sets C which exhibit

gaps in the disk D. Such gaps can be caused, only, by saddle points v� = (v�; 0) in

the disk D, for which

fv(v
�) < 0 ; (7.9)

see lemma 4.2 (iv). To complete the proof of theorem 1.3 it is therefore su�cient to

construct an additional homotopy, again denoted f � ; 0 � � � 1; which removes all

saddles in D together with some rotating or frozen waves. Due to lemma 3.3 this

will not interfere with the existence of connecting orbits between v1 and v2, as long

as hyperbolicity and k-adjacency of v1 and v2 are preserved.

Clearly, v� either belongs to the disk inside v1, in which case we have

v� < max v1 ; (7.10)

or lies in the annulus between v1 and v2: In this situation we assume

maxv1 < v� < maxv2 ; (7.11)

without loss of generality. Otherwise re�ect u 7! �u:
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To prepare for the saddle removal f � , we assume the saddle v� is chosen to be

the maximal one in D. Because f(maxv2; 0) > 0; there also exists an equilibrium

v+ 2 (v�;maxv2) such that

fv(v
+) > 0 (7.12)

holds for v+ = (v+; 0). Note that v+ is a center, and therefore v+ 2 C: Because

v
� is a saddle, not in C; the boundary of the C-component C+ of the center v+ also

contains a saddle (v�; 0): By maximality of v� in D, we therefore have v� = v�:

Moreover, @C+ is homoclinic to v�; and C+ itself is the bubble-shaped interior of

the homoclinic boundary. See Figure 7.1.

It is important to observe that @C+ indeed becomes a homoclinic orbit for some wave

speed c+. This follows by choosing C+ 3 vn ! @C+ as in the proof of lemma 4.2,

and choosing a convergent subsequence of the bounded sequence cn of associated

wave speeds. Arguing as for periodic orbits, the homoclinic bubble

C
+ is

8<
:

positively

positively and negatively

negatively

9=
; invariant for

8<
:

c > c+

c = c+

c < c+
(7.13)

See also Fig. 4.1 and the arguments there.

With B"(v
�) an "-ball around v� we de�ne

C+
"

:= B"(v
�) [ C+: (7.14)

To construct the �nal part of the saddle removal homotopy f � ; we choose " > 0

small, below, and let f � � f outside C+" ; for 0 � � � 1. Inside, we choose any

smooth homotopy, for 0 � � � Æ < 1, such that

f Æ(v; 0)

�
= 0

> 0
for

v� � v � v+

v < v� or v > v+
(7.15)

f � (v; 0)

�
< 0

> 0
for

v� < v < v+

v < v� or v > v+
; 0 � � < Æ (7.16)
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f � (v�) = f � (v+) = 0 ; jf � j � C0 ; Lip(f
� ) � L0 + 1 : (7.17)

Here C0 is a bound for f0 which was introduced in the explicit dissipativeness

condition (1.5) above. Lip denotes the Lipschitz constant and L0 := Lip(f0) on D.

We claim, and prove below, that conditions (7.15)�(7.17) ensure that hyperbolicity

and k-adjacency of v1;v2 are preserved throughout the homotopy f � , for 0 � � � Æ,

provided that " is chosen small enough. A �nal homotopy segment

f � := f Æ + � � Æ (7.18)

for Æ � � � 1 then removes the interval [v�; v+] of equilibria which was produced

at � = Æ: For Æ su�ciently close to 1, k-adjacency of v1;v2 must persist during this

�nal step, being an open property. Likewise, hyperbolicity remains una�ected.

We now prove that the homotopy f � ; 0 � � � Æ; with (7.15)�(7.17) indeed preserves

hyperbolicity and k-adjacency of v1;v2: Hyperbolicity is trivial, because v1 and v2

are contained outside C+" and hence f � � f in a neighborhood of v1;v2:

To prove the persistence of k-adjacency, we have to exclude the possibility of intro-

ducing any new solution w 2 E [F [R; for some � , which satis�es (1.23) and hence

would destroy the k-adjacency of v1; v2. We argue indirectly: suppose w 2 E[F[R;

does destroy the k-adjacency of v1; v2, for some � . In particular z(vj � w) = k for

both j = 1; 2. Proposition 4.1 implies that w(x) = (w(x); wx(x)) is contained in

the annulus between v1(x) and v2(x). Since f � � f0 outside C+" , we must have

w(x) 2 C+" , for some x, say for x = 0: Also w(x1) = (w(x1); 0) with w(x1) < minv1;

for some x1; because z(v
1�w) = k � 2: In particular w(x1) 62 (C+ [@C+): Indepen-

dently of the wave speed cw of w, �ow invariance (7.13) of C+ [ @C+ (which is either

positively or negatively invariant) now implies w(x0) 2 B"(v
�), for some x0: Indeed

(7.13) prevents w(x) from entering, or leaving, C+ through @C+ n B"(v
�) � @C+" ,

because f � � f there.

For small " > 0, we now reach a contradiction between w(x0) 2 B"(v
�); near v�;

and the positioning of w(x1): Because Lip(f
� ) � L0 + 1 on D, f � (v�) = 0, and

jw(x0)� v�j < "; the Gronwall Lemma implies

jw(x1) � v
�j � "eLjx1�x0j (7.19)

for L := L0+2+c0: Here c0 is an a priori bound for the wave speed jcj, depending on

the bound C0 for jf
� j: Indeed the rotating wave term cp is then Lipschitz in p = ux

with Lipschitz constant c0:

The positioning of w(x1) and 2�-periodicity of w now imply

0 < v� �minv1 < jw(x1)� v
�
j � "e2�L: (7.20)

For small "; this is a contradiction, which proves that our saddle removal homotopy

f � indeed preserves hyperbolicity and k-adjacency of v1; v2.

Finally, because the number of saddles is �nite, we can remove all saddles in the

disc D bounded by v2, successively, by �nitely many of the above homotopies.
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Together with the saddles, we have removed all gaps of the cyclicity set inside D.

Hence D � C. The arguments at the beginning of this section then prove the

existence of a heteroclinic orbit u(t; x) between v1 and v2 at the end of the �nal

homotopy. Moreover this heteroclinic orbit satis�es assumption (3.16) of lemma

3.3. Therefore, backtracking all homotopies, any two k-adjacent and hyperbolic

elements v1; v2 2 E [ F [ R, or suitably x-shifted copies, possess a heteroclinic

connection with property (3.16), alias (1.24). This completes the proof of theorem

1.3.

8 Discussion

In the present paper we have established heteroclinic orbits for one-dimensional

parabolic reaction-advection-di�usion equations, in the S1-equivariant case of non-

linearities f = f(u; ux) which do not depend on x 2 S1 explicitly. More pre-

cisely, for any two hyperbolic homogeneous equilibria, frozen or rotating waves

v1; v2 2 E [ F [R, we have given a necessary and su�cient condition for a hetero-

clinic orbit to connect them. Heteroclinicity was understood up to phase shifts of

v1; v2, only. See theorems 1.3 and 1.4 for complete technical details.

Putting our result in perspective, we conclude by outlining several related problems.

Motivated by the S1-equivariance generated by x-shifts we can attempt to charac-

terize unique heteroclinic orbits, which represent all heteroclinics between v1 and

v2, much in the spirit of the results for the Neumann case in [Wol02a]. Our set-up,

in contrast, has applied di�erent phase shifts #1; #2 to v
1; v2, separately, to enforce

a reduction to Neumann boundary conditions after freezing.

A geometric setting for this problem would be the 2-torus (#1; #2) 2 T 2 generated

by the translates (v1(�+#1); v
2(�+#2)). We can then distinguish the heteroclinic set

H � T 2, de�ned by the asymptotic phases #1; #2 of any heteroclinic orbit. Clearly

H is invariant under the diagonal action # 7! (#1 + #; #2 + #) of S1-equivariance

on T 2. By transversality and k-(P)-adjacency, H is a closed submanifold of T 2.

If i(v1) � i(v2) � 2, then H is also open, for dimensional reasons. Then H = T 2

and all asymptotic phases are realized by heteroclinic orbits. If i(v1) � i(v2) = 1,

in contrast, then H consists of one or several S1 group orbits on T 2. Uniqueness,

however, has not been proved.

A completely di�erent description of orbits u(t; �) in unstable manifolds W u(v1)

has been pursued in [AF88]. For arbitrary non-increasing time tracks t 7! �(t)

compatible with the constraints of zero numbers, the existence of orbits u(t; �) 2

W u(v1) has been shown, which realize the prescribed time track �:

z(u(t; �)� v1(t; �)) = �(t): (8.1)

In addition, certain phase conditions could be prescribed.

Our present result, in contrast, has singled out a heteroclinic orbits with � � k =
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const.. Phase constrains, however, have been lost. It has not been attempted, but

seems desirable to reconcile both approaches in a geometric way.

Our result is centrally based on a reduction from the case (P) of periodic boundary

conditions to the case (N ) of separated boundary conditions: freezing, symmetriza-

tion, and the cut-paste process are crucial steps of this reduction. This immediately

raises the question of the precise geometric relationship between the class AN of all

Neumann attractors and the class AP of all S1-equivariant attractors under periodic

boundary conditions � of course under the respective generic hyperbolicity assump-

tions. Our cut-paste process clearly indicates that these two classes are closely

related.

Very detailed descriptions of the Neumann class have been given by Brunovský,

Fiedler, Rocha and Wolfrum; see [BF86, BF88, FR91, Fie94, Fie96, FR96, FR99,

FR00, Wol02a, Wol02b]. Although these descriptions coincide, in principle, the

details of presentation di�er substantially. For elegance of formulation, we have

favoured the Wolfrum approach here. Alternatively, it seems feasible, to develop an

analog of the permutation approach of Fusco, Fiedler, and Rocha to explicitly and

computationally encode all possible constellations of zero numbers z(vi � vj) and

Morse indices i(vj) which can arise in the S1-context. In particular the braid type

of E [ F [R, seen as curves (x; v(x); vx(x)) 2 S
1 � IR

2, comes to mind here.

The Poincaré�Bendixson result of Fiedler, Mallet-Paret [FMP89], and, indepen-

dently, Nadirashvili [Nad90] indicates, that general x-dependent nonlinearities f =

f(x; u; ux) lead to global attractors A which consist of equilibria, periodic and het-

eroclinic or homoclinic orbits. Again periodic boundary conditions x 2 S1 are

assumed, but S1-equivariance � a central technical ingredient to our result � is lost.

A simple �ow embedding due to [SF92] realizes any planar �ow in global attractors

A. In particular, homoclinic orbits to hyperbolic equilibria do occur. As indicated

above, a braid description of periodic orbits and equilibria seems possible. The ho-

moclinic lack of an automatic Morse-Smale property, however, in the sense of Henry,

Angenent, and Oliva [Hen85, FuOl90, Ang86] still seems to pose a severe obstacle

to this problem.

Returning to our original S1-equivariant problem, we conclude with the problem of

viscous pro�le solutions in the singular limit

ut = "2uxx + f(u; ux); x 2 S1 (8.2)

for "& 0. The case of separated boundary conditions has been studied successfully

by Härterich; see [Här98, Här99]. In particular, for nonlinearities of balance law

type

f(u; ux) = a(u)x + b(x); (8.3)

su�cient conditions have been derived such that the global attractor A" possesses

a �nite-dimensional limit for "& 0. The separated boundary conditions, however,

force boundary layers to occur which are of course pinned to the boundary of x. In

the periodic case x 2 S1 of a single conservation law, b(x) � 0, a celebrated result

by Dafermos shows convergence of u(t; �) to its spatial average for t!1, provided
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a(u) possesses isolated in�ection points; see [Daf85]. Hopefully, our results for " > 0

may provide an access to this interesting problem, for more general nonlinearities

f(u; ux).
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