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Abstract

In this paper we are concerned with three typical aspects of the Monte

Carlo approach. First there is a certain �eld of application, namely physical

systems described by the Boltzmann equation. Then some class of stochastic

models is introduced and its relation to the equation is studied using proba-

bility theory. Finally Monte Carlo algorithms based on those models are con-

structed. Here numerical issues like e�ciency and error estimates are taken

into account. In Section 1 we recall some basic facts from the kinetic theory

of gases, introduce the Boltzmann equation and discuss some applications.

Section 2 is devoted to the study of stochastic particle systems related to the

Boltzmann equation. The main interest is in the convergence of the system

(when the number of particles increases) to the solution of the equation in an

appropriate sense. In Section 3 we introduce a modi�cation of the standard

�direct simulation Monte Carlo� method, which allows us to tackle the problem

of variance reduction. Results of some numerical experiments are presented.
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1. Kinetic theory and Boltzmann equation

Kinetic theory describes a gas as a system of many particles (molecules) performing

a chaotic motion. Particles interact through binary collisions, during which the

two involved particles change their velocities. It is assumed that momentum and

energy are conserved so that the pre-collisional velocities v;w and the post-collisional

velocities v�; w� are coupled via the relations

v
� + w

� = v + w ; kv�k2 + kw�k2 = kvk2 + kwk2 : (1)

0Plenary talk at the 5th International Conference on Monte Carlo and Quasi-Monte Carlo
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Since the number of gas molecules is huge (1019 per cm3 at standard conditions),

it would be impossible to study the behaviour of each individual molecule. Instead

a statistical description is used � some function f(t; x; v) representing the relative

amount of gas particles at time t having a position close to x and a velocity close to

v : The basis for this statistical theory was provided in the second half of the 19th

century. James Clerk Maxwell (1831-1879) found the distribution function of the

gas molecule velocities in thermal equilibrium,

feq(v) =
1

[2� T ]3=2
exp

�
�
kvk2

2T

�
; v 2 R3

: (2)

The number T corresponds to the temperature of the gas. Ludwig Boltzmann

(1844-1906) studied the problem if a gas starting from any initial state reaches the

Maxwellian distribution (2). In [Bol72] he established the equation

@

@t
f(t; x; v) + (v;rx)f(t; x; v) = (3)Z

R3

dw

Z
S2

deB(v;w; e)

h
f(t; x; v�) f(t; x; w�)�f(t; x; v) f(t; x; w)

i

governing the time evolution of the distribution function

f(t; x; v) ; t � 0 ; x 2 D � R3
; v 2 R3

:

Here r denotes the vector of partial derivatives, ( :; : ) is the scalar product and S2

is the unit sphere in R3
: The collision transformation

v
� = v

�(v;w; e) = v + e (e;w � v) ; (4)

w
� = w

�(v;w; e) = w + e (e; v � w)

satis�es (1). The collision kernel B is determined by the interaction potential be-

tween molecules. For the hard sphere model (billiard collisions) it takes the form

B(v;w; e) = c j(v � w; e)j ; for some c > 0 :

The classical Boltzmann equation (3) is used in such applications, where the

mean free path (the average distance between subsequent collisions of molecules)

is not negligible compared to the characteristic length scale of the problem. This

means that either the mean free path is large, or the characteristic length is tiny.

A typical example with large mean free path is the reentry of a space shuttle into

the atmosphere. Above an altitude of about 120 km ; the mean free path is larger

than 1m and collisions between gas molecules can be neglected (free molecular �ow).

Below an altitude of about 70 km ; the mean free path is smaller than 1mm and

local equilibria are reached due to the huge number of collisions. The distribution

function takes the form

f(t; x; v) =
%(t; x)

[2� T (t; x)]3=2
exp

�
�
kv � U(t; x)k2

2T (t; x)

�
;
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where

%(t; x) =

Z
R3

f(t; x; v) dv ;

U(t; x) =
1

%(t; x)

Z
R3

v f(t; x; v) dv ;

T (t; x) =
1

3 %(t; x)

Z
R3

kv � U(t; x)k2 f(t; x; v) dv

are the local density, bulk velocity and temperature. The time evolution of these

macroscopic quantities is determined by the �uid dynamics equations. Instead of

�nding one function of seven variables one has to �nd �ve functions of four variables

each, which is much easier. Between the free molecular regime and the �uid dynamics

regime the Boltzmann equation is relevant. Its solution delivers the necessary input

information for the �uid dynamics equations. Another �eld of application, where the

mean free path is large, is vacuum technology (e.g., material processing via vapour

deposition).

However, there are also applications in our common environment. At stan-

dard atmospheric pressure and temperature 250 C ; the mean free path of an oxy-

gen molecule is about 50nm : The molecule travels at an average velocity of about

500m=s su�ering about 1010 collisions per second. Its diameter is about 0:3nm so

that it travels a distance of 150 times its diameter between collisions. Applications

with a tiny characteristic length scale are engineering of micro-electro-mechanical

systems (MEMS) or calculating the �ows in a disc drive (read/write head �oats less

than 50nm above the surface of the spinning platter).

The physical values mentioned above are only rough estimates, but they illustrate

the qualitative picture. We refer to [Cer88], [CIP94] concerning the theory of the

Boltzmann equation, and to [Cer98] concerning the history of kinetic theory.

2. Stochastic models and convergence

In this section some sketch of the history of the subject is given. Stochastic models

for the Boltzmann equation are based on systems of particles imitating the behaviour

of the gas molecules in a probabilistic way. The main interest is in proving rigor-

ously the convergence of the system (when the number of particles increases) to the

solution of the equation in an appropriate sense.

We consider a stochastic particle system

Z
(n)(t) =

�
x1(t); v1(t); : : : ;xn(t); vn(t)

�
; t � 0 ; (5)

determined by an in�nitesimal generator of the form

A(n)(�)(z) =

nX
i=1

(vi;rxi
)(�)(z)+ (6)

1

2n

X
1�i 6=j�n

Z
S2

h
�(J(z; i; j; e))� �(z)

i
q
(n)(xi; vi; xj; vj; e) de ;
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where � is an appropriate test function,

z = (x1; v1; : : : ;xn; vn) ; xi; vi2R
3
; i = 1; : : : ; n ;

q
(n) is an intensity function and

[J(z; i; j; e)]k =

8<
:

(xk; vk) ; if k 6= i; j ;

(xi; vi + e(e; vj � vi)) ; if k = i ;

(xj; vj + e(e; vi � vj)) ; if k = j ;

(7)

is the jump transformation. Here we assume D = R3 so that no boundary condi-

tions are involved. We recall the pathwise behaviour of the system (5), which is a

piecewise-deterministic process in the sense of [Dav93, Section 2]. Starting at z the

process moves according to the free �ow, i.e.

Z
(n)(t) =

�
x1 + t v1; v1; : : : ;xn + t vn; vn

�
;

until a random jump time �1 is reached. The probability distribution of this time is

determined by

Prob(�1 > t) = exp

�
�

Z
t

0

�
(n)(Z(n)(s)) ds

�
; t � 0 ;

where

�
(n)(z) =

1

2n

X
1�i 6=j�n

Z
S2

q
(n)(xi; vi; xj; vj; e) de : (8)

At the random time �1 the process jumps into a state z1 ; which is obtained from the

state z0 = (x01; v
0

1; : : : ;x
0

n
; v

0

n
) of the process just before the jump by a two-particle

interaction. Namely, two indices i; j and a direction vector e are chosen according

to the probability density

q
(n)(x0

i
; v

0

i
; x

0

j
; v

0

j
; e)

2n�(n)(z0)
(9)

and the velocities v0
i
; v

0

j
are replaced using the collision transformation (4).

The study of the relationship between the process (5) and the Boltzmann equa-

tion (3) was started by M. A. Leontovich (1903-1981) in the paper [Leo35] in 1935.

Note that a version of Kolmogorov's forward equation for a Markov process with

density p and generator A reads

@

@t
p(t; z) = A�

p(t; z) : (10)

Let p(n)(t; z) denote the n�particle distribution function of the process (5). Applying

properties of the collision transformation (4) and some symmetry assumption on

4



q
(n)
; one obtains from (10) the equation

@

@t
p
(n)(t; z) +

nX
i=1

(vi;rxi
) p(n)(t; z) = (11)

1

2n

X
1�i6=j�n

Z
S2

h
p
(n)

(t; J(z; i; j; e))� p
(n)

(t; z)

i
q
(n)

(xi; vi; xj; vj; e) de :

Using the method of generating functions, Leontovich �rst studied the cases of

�monomolecular processes� (independent particles) and of �bimolecular processes�

with discrete states (e.g., a �nite number of velocities). Under some assumptions on

the initial state, he showed that the expectations of the relative numbers of parti-

cles in the bimolecular scheme asymptotically (as n!1) solve the corresponding

deterministic equation. In the case of the full Boltzmann equation the stochastic

process was described via (11) (even including a boundary condition of specular re-

�ection). Concerning the asymptotic behaviour of the process, Leontovich pointed

out the following. Let p
(n)

k
denote the marginal distributions corresponding to the

density p(n) : If

lim
n!1

p
(n)
2 (t; x1; v1; x2; v2) = lim

n!1
p
(n)
1 (t; x1; v1) lim

n!1
p
(n)
1 (t; x2; v2)

and

lim
n!1

q
(n)(x; v; y; w; e) = Æ(x�y)B(v;w; e) ; (12)

where Æ denotes Dirac's delta�function, then the function

f(t; x; v) = lim
n!1

p
(n)
1 (t; x; v) (13)

solves the Boltzmann equation. Leontovich noted that he was not able to prove a

limit theorem in analogy with the discrete case, though he strongly believes that

such theorem holds.

For example, (12) is satis�ed for the choice

q
(n)

(x; v; y; w; e) = h
(n)

(x; y)B(v;w; e) (14)

and

h
(n)(x; y) =

�
c
�1
n
; if kx� yk � "

(n)
;

0 ; otherwise ;

where cn is the volume of the ball of radius "(n) ! 0 : In this case, according to (9),

only those particles can collide which are closer to each other than the interaction

distance "(n) :

Independently, the problem was tackled by M. Kac (1914-1984) in the paper

[Kac56a] in 1956. Considering the spatially homogeneous Boltzmann equation

@

@t
f(t; v) =

Z
R3

Z
S2

B(v;w; e)� (15)h
f(t; v

�
(v;w; e)) f(t; w

�
(v;w; e))� f(t; v) f(t; w)

i
de dw

5



Kac introduced a process

Z
(n)(t) =

�
v1(t); : : : ; vn(t)

�
; t � 0 ; (16)

governed by the Kolmogorov equation

@

@t
p
(n)(t; z) = (17)

1

2n

X
1�i 6=j�n

Z
S2

h
p
(n)(t; J(z; i; j; e))� p

(n)(t; z)

i
B(vi; vj; e) de ;

where z = (v1; : : : ; vn) and J is appropriately adapted, compared to (7). He studied

its asymptotic behaviour and proved (in a simpli�ed situation) that limn!1 p
(n)

1

satis�es the Boltzmann equation. We cite from p.175 (using our notations): �To get

(15) one must only assume that

p
(n)

2 (t; v; w) � p
(n)

1 (t; v) p
(n)

1 (t; w)

for all v;w in the allowable range. One is immediately faced with the di�culty that

since p(n)(t; z) is uniquely determined by p
(n)(0; z) no additional assumptions on

p
(n)(t; z) can be made unless they can be deduced from some postulated properties

of p(n)(0; z) : A moment's re�ection will convince us that in order to derive (15) the

following theorem must �rst be proved.

Basic Theorem Let p(n)(t; z) be a sequence of probability density functions

... having the �Boltzmann property�

lim
n!1

p
(n)

k
(0; v1; : : : ; vk) =

kY
i=1

lim
n!1

p
(n)
1 (0; vi) : (18)

Then p(n)(t; z) [that is, solutions of (17)] also have the �Boltzmann property�:

lim
n!1

p
(n)

k
(t; v1; : : : ; vk) =

kY
i=1

lim
n!1

p
(n)

1 (t; vi) : (19)

In other words, the Boltzmann property propagates in time!� Kac calls equation

(17) master equation referring to the paper [NLU40].

The two books [Kac56b] and [Kac59] contain morematerial related to the stochas-

tic approach to the Boltzmann equation. In [Kac56b] the factorization property (19)

is called �chaos property� (indicating asymptotic independence), and the statement

of the basic theorem is called propagation of chaos. The following remark is made

in [Kac59, p.131]: �The primary disadvantage of the master equation approach ...

lies in the di�culty (if not impossibility!) of extending it to the nonspatially uniform

case.� Research in the �eld of stochastic particle systems related to the Boltzmann

equation was restricted to the spatially homogeneous case during a long period

after the paper [Kac56a]. We refer to [McK66], [McK75], [Grü71], [Pic72], [Tan73],

6



[Tan78], [Tan83], [Mur77], [Szn82], [Szn84], [Szn91], [Smi89], [HK90]. It turns out

(cf., e.g., [Tan83], [Szn84], [Uch87]) that the chaos property (18) (i.e., the asymp-

totic factorization) is equivalent to the convergence in distribution of the empirical

measures (cf. (16))

�
(n)(t; dv) =

1

n

nX
i=1

Ævi(t)(dv) (20)

to a deterministic limit. The objects (20) are considered as random variables with

values in the space of measures on the state space of a single particle. Thus, the

basic theorem can be reformulated as the propagation of convergence of empirical

measures. In this setup, it is natural to study convergence not only for �xed t ; but

also in the space of measure�valued functions of t (functional law of large numbers).

The spatially inhomogeneous case was treated by C. Cercignani in the paper

[Cer83] in 1983. He considered a system of �soft spheres�, where �molecules collide

at distances randomly given by a probability distribution�, and proved propagation

of chaos (modulo a uniqueness theorem). The limiting equation is the so-called

molli�ed Boltzmann equation (cf. [Cer88, SectionVIII.3])

@

@t
f(t; x; v) + (v;rx) f(t; x; v) = (21)Z

D

Z
R3

Z
S2

h(x; y)B(v;w; e)�h
f(t; x; v�(v;w; e)) f(t; y; w�(v;w; e))� f(t; x; v) f(t; y; w)

i
de dw dy :

This equation was introduced in [Mor55] and reduces formally to the Boltzmann

equation (3) if the �molli�er� h is a delta-function.

A more general approach was developed by A.V. Skorokhod in the book [Sko83]

published in 1983. In Chapter 2 he considered a Markov process

Z
(n)(t) =

�
Z1(t); : : : ; Zn(t)

�
; t � 0 ;

(describing it via stochastic di�erential equations with respect to Poisson measures)

with the generator

A(n)(�)(z) =

nX
i=1

(b(zi);rzi
)(�)(z) +

1

2n

X
1�i6=j�n

Z
�

h
�(J(z; i; j; #))� �(z)

i
�(d#) ;

where � is an appropriate test function, z = (z1; : : : ; zn) 2 Zn
; and

[J(z; i; j; e)]k =

8<
:

zk ; if k 6= i; j ;

zi + a(zi; zj; #) ; if k = i ;

zj + a(zj; zi; #) ; if k = j :

7



The symbol Z denotes the state space of a single particle, � is a measure on a

parameter set � ; and a is a function on Z � Z � � : This model is more general

than the Leontovich model (6), (7), as far as the gradient terms and the jump

transformation J are concerned. However, the distribution � of the jump parameter

# does not depend on the state z : It was proved that the corresponding empirical

measures (cf. (20)) converge (for any t) to a deterministic limit F (t) which satis�es

the equation

d

dt

Z
Z

'(z)F (t; dz) =

Z
Z

(b(z);rz)(')(z)F (t; dz)+Z
Z

Z
Z

�Z
�

h
'(z1 + a(z1; z2; #))� '(z1)

i
�(d#)

�
F (t; dz1)F (t; dz2) ;

for appropriate test functions '.

Further references concerning the spatially inhomogeneous case are [Fun86],

[Ars88], [NT89], [Luk89], [LP90], [BFGR94], [Wag94a], [Wag96], [GM97]. Devel-

oping the stochastic approach to the Boltzmann equation, systems with a general

binary interaction between particles and a general (Markovian) single particle evolu-

tion (including spatial motion) were considered. Results concerning the approxima-

tion of the solution to the corresponding nonlinear kinetic equation by the particle

system were obtained in the case of bounded intensities, thus being restricted to

the molli�ed Boltzmann equation (21). Partial results concerning the non-molli�ed

case are contained in [CP95] (one-dimensional model), [Rez96a], [Rez96b], [RT97]

(discrete velocities), [Mel98] (small initial data).

Finally we mention a result from [CPW98] concerning convergence in the

stationary case. In many applications studying the equilibrium behaviour of gas

�ows is of primary interest. To this end, time averaging over trajectories of the

corresponding particle system is used,

1

k

kX
j=1

"
1

n

nX
i=1

'(xi(tj); vi(tj))

#
; tj = �t+ j�t ;

where ' is some test function and �t is the starting time for averaging. To justify

this procedure (for k !1), one has to study the connection between the stationary

density of the process and the stationary Boltzmann equation. From the results men-

tioned above one can obtain information about the limit limt!1 limn!1 p
(n)
1 (t; x; v)

while here one is interested in the limit limn!1 limt!1 p
(n)
1 (t; x; v) : The identity of

both quantities is not at all obvious.

Before formulating the convergence theorem, we recall some facts concerning

boundary conditions for the Boltzmann equation. A rather general form is

f(t; x; v0) (v0; n(x)) =

Z
f(v;n(x))<0g

R(x; v; v0) f(t; x; v) j(v; n(x))j dv ;

for all x 2 @D and v
0 : (v0; n(x)) > 0 ; where n(x) denotes the unit inner normal

at the point x of the boundary @D : The re�ection density R ; which determines the

8



behaviour of particles hitting the boundary, is assumed to satisfyZ
f(v0;n(x))>0g

R(x; v; v0) dv0 = 1 ; v : (v; n(x)) < 0 :

The so-called �Maxwell boundary condition� is obtained for the choice

R(x; v; v0) = (1� �) Æ(v � v
0 + 2n(x) (n(x); v0)) +

�
1

2� [Tb(x)]
2
exp

�
�
kv0k2

2Tb(x)

�
(v0; n(x)) ;

where � 2 [0; 1] and Tb(x) is the temperature of the wall. The special case � = 0

corresponds to specular re�ection,

f(t; x; v0) = f(t; x; v0� 2n(x) (n(x); v0)) :

The special case � = 1 corresponds to di�use re�ection (or complete accommoda-

tion),

f(t; x; v0) =

1

2� [Tb(x)]
2
exp

�
�
kv0k2

2Tb(x)

�Z
f(v;n(x))<0g

f(t; x; v) j(v; n(x))j dv :

Consider the (molli�ed) stationary Boltzmann equation

(v;rx) �f(x; v) = "

Z
D

Z
R3

Z
S2

h(x; y)B(v;w; e)� (22)

h
�f(x; v�(v;w; e)) �f(y;w�(v;w; e))� �f (x; v) �f(y;w)

i
de dw dy ;

with the boundary condition of �di�use re�ection�, and introduce the notation

�fk(x1; v1; : : : ; xk; vk) =

kY
i=1

�f(xi; vi) :

Consider the stationary density �p(n) of the corresponding n-particle process and the

marginals

�p
(n)

k
(x1; v1; : : : ; xk; vk) :

Then the following result holds.

Theorem [CPW98, Theorem2.5] There exists "0 > 0 such that

k�p
(n)

k
� �fkkL1 �

c
k

n
; 8 n > k ;

for any 0 < " � "0 and k = 1; 2; ::: ; where c does not depend on "; k; n :

Note that, beside the asymptotic factorization itself, one obtains even an order of

convergence. The main restriction, the smallness of the right-hand side of the Boltz-

mann equation (22), is due to the fact that in the proof a perturbation technique

is applied to the collision-less situation. Further assumptions concern the domain

D (smooth, convex, bounded), the collision kernel B (bounded) and some cut-o� of

small velocities.

9



3. Numerical algorithms

This section is devoted to algorithmic and numerical aspects. Since the dimen-

sionality of the Boltzmann equation is high (time, space, velocity), its numerical

treatment is a typical application �eld of Monte Carlo algorithms. We discuss the

�direct simulation Monte Carlo� (or DSMC) algorithm and its recently developed

generalization called stochastic weighted particle method (SWPM). The new method

contains several degrees of freedom which are used for the purpose of variance reduc-

tion. A convergence theorem for SWPM is presented, and some results of numerical

experiments are given.

DSMC is presently the most widely used numerical algorithm in kinetic theory.

The method goes back to the papers [Bir63] (homogeneous gas relaxation problem)

and [Bir65] (shock structure problem) by G.A.Bird. We refer to [Bir76] and [Bir94]

(e.g., Sections 9.4, 11.1) concerning remarks on the historical development. The

history of the subject is also well re�ected in the proceedings of the bi-annual con-

ferences on �Rare�ed Gas Dynamics� ranging from 1960 [RGD60] to the present

[RGD01]. The method is based on the process (5) but includes several numerically

motivated modi�cations.

Independent motion (free �ow) of the particles and their pairwise interactions

(collisions) are separated using a splitting procedure with a time increment �t :

During the free �ow step, particles move according to their velocities,

xi(t+�t) = xi(t) +

Z
t+�t

t

vi(s) ds ; i = 1; : : : ; n ;

and do not collide. At this step boundary conditions are taken into account.

During the collision step, particles do not change their positions. At this step

some partition

D = [lc
l=1Dl

of the spatial domain into a �nite number lc of disjoint cells is introduced. Using a

mollifying function of the form

h(x; y) =
1

jDlj

lcX
l=1

�Dl
(x)�Dl

(y) ;

where j:j denotes the volume and � is the indicator function, leads to a decoupling of

collision processes in di�erent cells. The cell process is determined by the generator

(cf. (6), (14))

A(n)

l
(�)(z) = (23)

1

2n jDlj

X
i6=j :xi;xj2Dl

Z
S2

h
�(J(z; i; j; e))��(z)

i
B(vi; vj; e) de :

10



The parameter of the waiting time between jumps takes the form (cf. (8))

�
(n)

l
(z) =

1

2n jDlj

X
i6=j :xi;xj2Dl

Z
S2

B(vi; vj; e) de :

The jump consists in choosing two indices i; j (of particles with positions in the cell

Dl) and a direction vector e (from the unit sphere S2) according to the probability

density (cf. (9))

B(vi; vj; e)

2n jDlj�
(n)

l
(z)

and replacing the velocities vi; vj by v
�(vi; vj; e); w

�(vi; vj; e) according to (4).

A third numerically motivated modi�cation (beside splitting and cell structure)

is the introduction of �ctitious collisions. Note that the generator (23) can be

written in the form

A(n)

l
(�)(z) =

1

2n jDlj

X
i 6=j :xi;xj2Dl

�Z
S2

h
�(J(z; i; j; e))� �(z)

i
B(vi; vj; e) de+

h
�(z)� �(z)

i �
B̂ �

Z
S2

B(vi; vj; e) de

��
;

where Z
S2

B(vi; vj; e) de � B̂ ; for some B̂ > 0 :

This suggests an alternative way of generating trajectories of the process. The

waiting time parameter is

�̂
(n)

l
(z) =

1

2n jDlj

X
i6=j :xi;xj2Dl

B̂ =
B̂ nl (nl � 1)

2n jDlj
;

where nl denotes the number of particles in the cell Dl : Indices i; j are chosen

uniformly among particles belonging to the cell. With probability

1�

R
S2
B(vi; vj; e) de

B̂

the process does not change, i.e. performs a �ctitious jump. With the remaining

probability, a random vector e is chosen according to the density

B(vi; vj; e)R
S2
B(vi; vj; e) de

and the two collision partners change their velocities according to (4).
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The idea of �ctitious collisions is applicable in general situations (cf. [EK86,

Section 4.2]). In the context of the Boltzmann equation it has been introduced un-

der di�erent names in [Kou86] (null-collision technique), [IR88] (majorant frequency

scheme), [Bir89] (no time counter scheme). The interest in studying the connection

between stochastic simulation procedures in rare�ed gas dynamics and the Boltz-

mann equation was stimulated by K. Nanbu's paper [Nan80] (cf. the survey papers

[Nan83], [Nan86], [IN87]). Starting from the Boltzmann equation, the author de-

rived a method that, however, su�ered from certain de�ciencies (quadratic e�ort in

the number of particles, conservation of momentum and energy only on average).

Later Nanbu's original method was considerably improved (cf. [Bab86], [Plo87],

[Bab89]) so that it did successfully work in applications like the reentry problem

(cf. [NGS91], [NS95], [NKS96], [Bab98]). Convergence for the Nanbu scheme and

its modi�cations was studied in [Bab89] (spatially homogeneous case) and [BI89]

(spatially inhomogeneous case). Convergence for Bird's scheme (with the original

time counter) was proved in [Wag92]. Among the numerous russian sources on

stochastic algorithms for the Boltzmann equation we mention papers related to the

Leontovich-Kac-process ([BY75a], [BY75b], [Kon86], [Khi86], [IR89], [IR90]), papers

using branching processes ([ENS84], [EM87]) and papers following the Skorokhod

approach through stochastic di�erential equations with respect to Poisson measures

([Ars87], [LS89]). Modi�cations of DSMC related to dense gases were introduced in

[AGA95], [AGA97]. The corresponding limiting equation was found in [GW00].

A basic problem in many applications of DSMC (e.g., �ows with high density

gradients, or low Mach number �ows) are large statistical �uctuations so that vari-

ance reduction is a challenging task. To this end, a modi�cation of DSMC called

stochastic weighted particle method (SWPM) was proposed in [RW96]. In

SWPM a system of weighted particles is used, which allows one to resolve low den-

sity regions with a moderate number of simulation particles (cf. [RW01]). SWPM is

based on a partial random weight transfer during collisions, leading to an increase in

the number of particles. Therefore appropriate reduction procedures are needed to

control that quantity. Various deterministic procedures with di�erent conservation

properties were proposed in [RSW98], and some error estimates were found. Further

references related to weighted particles are [Sch93] and [Boy96].

Partial convergence results (not including reduction) were obtained in [Wag94b],

[RW98]. A convergence proof for SWPM with reduction has recently been proposed

in [MW02]. The basic idea was the introduction of new stochastic reduction pro-

cedures that, on the one hand, do not possess all conservation properties of the

deterministic procedures, but, on the other hand, have the correct expectation for a

much larger class of functionals. This idea is quite natural in the context of stochas-

tic particle methods. Here we formulate an improved version of the convergence

theorem, which includes the case of deterministic reduction. The proof, which is

rather extensive, will be presented elsewhere.

The main modi�cation in SWPM (compared to DSMC) concerns the collision

simulation. During this step, the particle system approximates the solution of the

spatially homogeneous Boltzmann equation (15). So we restrict our considerations

12



to that case. We introduce a family of Markov processes

Z
(n)(t) =

�
(v

(n)

i
(t); g

(n)

i
(t)) ; i = 1; : : : ;m(n)(t)

�
; t � 0 ; (24)

and study its asymptotic behaviour as n ! 1 : The process (24) has the state

space

Z(n) =

�
z 2 Z :

mX
i=1

gi � C� ; max
i=1;:::;m

gi � gmax(n)

�
; (25)

where

Z =

��
m; (g1; v1); : : : ; (gm; vm)

�
:

m = 0; 1; 2; : : : ; gi > 0 ; vi 2 R
3
; i = 1; : : : ;m

�
:

Here C� > 0 is some bound for the mass in the system, and gmax(n) > 0 is some

bound for the individual particle weights.

The time evolution of the process is determined by the generator

A(n)(�)(z) =

Z
Z(n)

[�(~z)� �(z)]Q(n)(z; d~z) ; z 2 Z(n)
;

where � is an appropriate test function and

Q
(n)(z; d~z) =

�
Qcoll(z; d~z) ; if m � mmax(n) ;

Q
(n)

red(z; d~z) ; otherwise.
(26)

Here mmax(n) > 0 is some particle number bound indicating reduction. The transi-

tion measure, corresponding to collision jumps, is

Qcoll(z; d~z) =
1

2

X
1�i 6=j�m

Z
S2

ÆJcoll(z;i;j;e)(d~z) pcoll(z; i; j; e) de ; (27)

with the jump transformation (cf. (4))

[Jcoll(z; i; j; e)]k =8>>>><
>>>>:

(vk; gk) ; if k � m; k 6= i; j ;

(v�(vi; vj; e); coll(z; i; j; e)) ; if k = i ;

(w�(vi; vj; e); coll(z; i; j; e)) ; if k = j ;

(vi; gi � coll(z; i; j; e)) ; if k = m+ 1 ;

(vj; gj � coll(z; i; j; e)) ; if k = m+ 2 :

The weight transfer function has the form

coll(z; i; j; e) =
1

1 + �(z; i; j; e)
min(gi; gj) ; (28)

13



where the weight transfer parameter satis�es

0 � �(z; i; j; e) � C� ; for some C� > 0 : (29)

Particles with zero weights are removed from the system. The intensity function has

the form

pcoll(z; i; j; e) = (1 + �(z; i; j; e)) max(gi; gj)B(vi; vj; e) :

Note that

Jcoll(z; i; j; e) 2 Z
(n)
; 8 z 2 Z(n)

; 1 � i 6= j � m; e 2 S2
; (30)

since collision jumps are mass-preserving and do not increase the maximum particle

weight. The transition measure, corresponding to reduction jumps, has the form

Q
(n)

red(z; d~z) = �red(n)P
(n)

red (z; d~z) ;

where �red(n) > 0 is some waiting time parameter. The reduction measure is as-

sumed to satisfy

P
(n)

red (z;Z
(n)) = 1 ; 8 z 2 Z(n) : m > mmax(n) ; (31)

i.e. for all possible starting point of a reduction jump (cf. (26)). It follows from (30),

(31) that the process stays in Z(n)
; once the initial state belongs to Z(n)

: Using (29)

and the assumption concerning the collision kernelZ
S2

B(v;w; e) de � CB ; (32)

we obtain (cf. (27), (25))

�
(n)

coll(z) = Q
(n)

coll(z;Z
(n))

=
1

2

X
1�i6=j�m

Z
S2

[1 + �(z; i; j; e)] max(gi; gj)B(vi; vj; e) de

� (1 + C�)CBm

mX
i=1

gi � (1 + C�)CB C�mmax(n) :

Thus, the generator A(n) is bounded, for any �xed n :

We consider the bounded Lipschitz metric as a distance between two measures

�1 and �2 de�ned as

%(�1; �2) = sup
k'kL�1

����
Z
R3

'(v) �1(dv)�

Z
R3

'(v) �2(dv)

���� ;
where

k'kL = max

(
k'k1 ; sup

v 6=w2R3

j'(v)� '(w)j

kv � wk

)

14



and

k'k1 = sup
v2R3

j'(v)j :

For any r > 0, we introduce the function

'r(v) = '(v)�r(v) ; v 2 R3
;

where

�r(v) =

8<
:

1 ; if kvk � r ;

r + 1� kvk ; if kvk 2 [r; r + 1] ;

0 ; if kvk � r + 1 ;

and the set

Dr := f'r : k'kL � 1g : (33)

Let

�
(n)(t; dv) =

m
(n)(t)X
i=1

g
(n)

i
(t) Æ

v
(n)
i (t)

(dv) (34)

denote the empirical measure of the process (24).

We assume that the initial state of the process belongs to Z(n) and satis�es

lim sup
n!1

E

Z
R3

kvk2 �(n)(0; dv) <1

and

lim
n!1

E%(�(n)(0); F0) = 0 ;

for some �nite measure F0 such thatZ
R3

kvk2F0(dv) <1 ;

where the symbol E denotes mathematical expectation. The collision kernel is

assumed to satisfy (32) andZ
S2

jB(v;w; e)�B(v1; w1; e)j de � CL

h
kv � v1k+ kw � w1k

i
:

The �rst assumption concerning the reduction procedure is

P
(n)

red

�
z;

n
z 2 Z(n) : m � (1� Æ)mmax(n)

o�
= 1 ; (35)
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for some Æ 2 (0; 1) and all z 2 Z(n) such that m > mmax(n) : This assumption

assures that the reduction e�ect is su�ciently strong. The second assumption is

that reduction should be su�ciently precise, namely (cf. (33))

lim
n!1

sup
 2Dr

sup
z2Z(n) :m>mmax(n)

Z
Z(n)

[�(~z)� �(z)]
2
P

(n)

red (z; d~z) = 0 ; (36)

for any r > 0 ; where

�(z) =

mX
i=1

gi  (vi) ; z 2 Z : (37)

Furthermore, we need some bound on the possible energy increase,Z
Z(n)

�(~z)P
(n)

red (z; d~z) � c�(z) ; 8 z 2 Z(n)
: m > mmax(n) ; (38)

for some c > 0 ; where � denotes the function (37) with  (v) = kvk2 : Finally, we
assume that the particle weight bound satis�es

lim
n!1

gmax(n) = 0 ; (39)

that the particle number bound indicating reduction satis�es

lim
n!1

mmax(n) = 1

and that the parameter of the waiting time before reduction satis�es

lim
n!1

�red(n) = 1 :

Theorem 3.1 Let the above assumptions be ful�lled. Then (cf. (34))

lim
n!1

E sup
t2[0;S]

%(�(n)(t); F (t)) = 0 ; 8S > 0 ;

where F is a solution of the equationZ
R3

'(v)F (t; dv) =

Z
R3

'(v)F0(dv)+ (40)

1

2

Z
t

0

Z
R3

Z
R3

Z
S2

h
'(v�(v;w; e)) + '(w�(v;w; e))� '(v)� '(w)

i
�

B(v;w; e) deF (s; dv)F (s; dw) ds ;

for continuous bounded test functions ' :

Note that equation (40) is a weak form of the Boltzmann equation (15).
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The notion of the reduction procedure P
(n)

red is very general. Here we give one

speci�c example and check the conditions of the convergence theorem. The �rst step

of the reduction procedure consists in arranging the particle system z into groups

G
(n)

i
(z) =

�
(gi;j; vi;j) ; j = 1; : : : ;mi

�
; i = 1; : : : ; (n)(z) : (41)

At a second step, each group is replaced by one particle

(~gi; ~vi) =

 
miX
j=1

gi;j ; vi;k

!
; (42)

where the index k is chosen at random according to the probabilities

gi;kP
mi

j=1 gi;j
; k = 1; : : : ;mi : (43)

Thus, the state after reduction is

~z =

�
~g1; ~v1; : : : ; ~g(n)(z); ~v(n)(z)

�
:

The group reduction procedures are assumed to be independent of each other.

Since the reduction procedure is mass-preserving, assumption (31) reduces to

max
i=1;:::;(n)(z)

miX
j=1

gi;j � gmax(n) ; 8 z 2 Z(n)
: m > mmax(n) : (44)

Assumption (35) takes the form


(n)(z) � (1� Æ)mmax(n) ; 8 z 2 Z(n) : m > mmax(n) : (45)

According to (42), (43) one obtains

E ~gi  (~vi) =

miX
k=1

gi;k  (vi;k) ; 8 i = 1; : : : ; (n)(z) ; (46)

and Z
Z(n)

�(~z)P
(n)

red (z; d~z) =

(n)(z)X
i=1

Z
Z(n)

~gi  (~vi)P
(n)

red (z; d~z) =


(n)(z)X
i=1

miX
k=1

gi;k  (vi;k) = �(z) ;

where the function � is de�ned in (37). Thus, assumption (38) is ful�lled. Using

(46), (44) and independence, one obtainsZ
Z(n)

[�(~z)� �(z)]2P
(n)

red (z; d~z) �


(n)(z)X
i=1

Z
Z(n)

[~gi  (~vi)]
2
P

(n)

red (z; d~z) � gmax(n) k k
2
1
C� :
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Consequently, assumption (36) follows from assumption (39). Thus, the remaining

restrictions on the reduction procedure concern the group formation (41). Namely,

the group weights should satisfy (44) and the number of groups should satisfy (45).

Note that a necessary condition for the consistency of these restrictions is (cf. (25))

C� � (1� Æ) inf
n

mmax(n) gmax(n) :

Finally, we present results of numerical experiments from [MW02]. They illus-

trate both convergence and considerable variance reduction, for the speci�c problem

of calculating tails of the velocity distribution. Another example (�ow with large

density gradient) can be found in [RW01]. We consider the relaxation of a mixture

of two Maxwellians

f0(v) = �M1(v) + (1� �)M2(v) ;

where

Mi(v) =
1

(2� Ti)3=2
exp

�
�
kv � Vik

2Ti

�

and

� = 0:1 ; V1 = (94:82; 0; 0) ; V2 = (�10:54; 0; 0) ; T1 = T2 = 1 ;

to a MaxwellianM1(v) with

V1 = (0; 0; 0) ; T1 = 334 :

We calculate the tail functionalZ
fkvk>105g

f(t; v) dv ; t 2 [0; 50] ; (47)

i.e. the mass outside some ball with large radius. The relevant parameters are

n = 105 ; mmax(n) = 2n ; gmax(n) =
2

n
; � = 1 :

Con�dence bands for the functional (47), calculated with DSMC and SWPM, are

displayed in Figure 1. The left graph shows that both algorithms model the same

time evolution. The right graph shows how the algorithms approximate the very

small value at equilibrium,Z
fkvk>105g

M1(v) dv = 3:2 � 10�7 :

Beside convergence, these results illustrate the e�ect of variance reduction, which

was the motivation for introducing SWPM. The number of repetitions is chosen

in such a way that DSMC and SWPM need almost the same CPU time. In this

particular example, SWPM is about 16 times more time consuming (per trajectory),
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Figure 1: Tail functional (47) and zoom (right).
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Figure 2: Number of particles in the system (left) and in the tail (right).

so that the gain factor in e�ciency of about 50 results from a tremendous variance

reduction.

An interesting feature of SWPM is the variable number of simulation particles

displayed in Figure 2. First we note that SWPM produces a correct result de-

spite the strong �uctuation in the overall number of particles (left graph) and the

correspondingly large number of reduction steps. The variance reduction e�ect is

explained best by looking at the curves for the number of simulation particles in the

tail (right graph). At the beginning, both algorithms do not have particles inside

the tail. Then SWPM produces such particles rather quickly and keeps them. At

the end, in SWPM 10% of the particles are in the tail, while in DSMC the rela-

tive amount corresponds to the value of the functional. However, the number of

particles is just an illustrative quantity, the important point is that they have ap-

propriate weights. This is achieved by dividing the velocity space into a relatively

large number of shells and keeping the number of simulation particles in all shells

almost equal. Thereby a su�cient �communication� between di�erent parts of the

velocity space is guaranteed. Here we use the freedom provided by the reduction

procedure.
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