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Abstract

Forward and backward stochastic Lagrangian trajectory simulation methods are

developed to calculate the footprint and cumulative footprint functions of concen-

tration and �uxes in the case when the ground surface has an abrupt change of the

roughness height. The statistical characteristics to the stochastic model are extracted

numerically from a closure model we developed for the atmospheric boundary layer.

The �ux footprint function is perturbed in comparison with the footprint function for

surface without change in properties. The perturbation depends on the observation

level as well as roughness change and distance from the observation point. It is con-

cluded that the footprint function for horizontally homogeneous surface, widely used

in estimation of su�cient fetch for measurements, can be seriously biased in many

cases of practical importance.

1 Introduction

Over a horizontally homogeneous surface the �ux measuered by micrometeorological tech-

nique equals to the surface �ux. This principle is used to determine the surface exchange

by the eddy covariance (EC) technique. The �ux footprint function (e.g. Schmid, 1994)

links the surface emissions to the observed �uxes above surface at EC measurement level.

The footprint function is therefore used to estimate a distance required to make reliable

EC meaurements, i.e. if the horizontal extent of underlying surface of interest is su�cient

to determine its exchange rate. Extended tower measurements of �uxes over forests have

been used during the last ten years to obtain detailed information on carbon and water

exchanges between forest canopies and atmosphere. (Kaiser, 1998; Running, 1998; Valen-

tini et al., 2000). Large areas of forest are not however common in Europe nor in the US.

The footprint models based on analytical di�usion theory (Schuepp et al., 1990; Horst and

Weil, 1992, 1994; Schmid, 1994) as well as Lagrangian stochastic simulation of ensemble of

�uid parcel trajectories (Leclerc and Thurtell, 1990; Flesch, 1996; Baldocchi, 1997) assume

horizontally homogeneous surface. For forest canopies the footprint models involve a num-

ber of uncertainties originating from the parametrization of the canopy turbulence features

(Rannik et al., 2003). Such models are frequently applied to estimate the contribution of an

area of certain upwind distance, or to estimate the fetch to ensure that the given area con-

tributes a certain percent to observed �ux, by vaguely assuming that the footprint function

for horizontally homogeneous surface is a good approximation for more complex situation

with changes in surface properties. In reality changes in surface roughness can be very

drastic, for example in case of forest and �eld interface. Also the thermal inhomogeneities

induced by albedo and repartioning of available energy into sensible and latent heat �uxes

can be signi�cant, this will be analised however in the second part of this paper. So we

deal here with pure mechanical turbulence caused by the surface roughness.

One additional remark here should be made. Over rough surfaces, such as tall vegetation,

vertical displacement of surface layer pro�les occurs relative to ground surface. Displace-
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ment height is usually 2/3 to 3/4 of the height of roughness elements, whereas the roughness

length is usually 1/30 to 1/10 of the vegetation height. In this study the �ow inside vege-

tation is not considered and the observation level (detector height) is equivalent to that of

relative to diplacement height in real measurement setup. Displacement height would ef-

fectvely elevate �ow streamlines and not a�ect the results qualitatively, whereas roughness

change induces transition in horizontal wind speed and via mass conservation also non-zero

vertical winds.

Lagrangian trajectory simulation can be used in the inhomogeneous �ow �eld (e.g., see

Thomson, 1987, and Kurbanmuradov, Sabelfeld, 2000). However, to make the stochastic

trajectory simulation possible, the mean �ow and some other statistical moments have to

be found. We will extract this data from a closure model, conventionally obtained from

the Reynolds-avergaing equations. The footprint function for inhomogeneous surface is

estimated by backward Lagrangian trajectory simulation and the perturbations relative to

footprint function for horizontally homogeneous case are analysed.

2 The governing equations

There exists a variety of closure models for turbulent mixing, ranging from constant eddy

coe�cient parametrization to detailed Large Eddy Simulations and Direct Numerical Sim-

ulation. As mentioned in [1], the performance of a k-model is almost identiacal to that of

k � "-model. We assume that the mean pro�les in the boundary layer of atmosphere are

described by the following system (Wager et.al., 1979):
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with � � 0:4, l0 = 100 m, Ck = 0:41. We deal in this �rst part of the paper with purely

mechanical turbulence, and our system of governing equations consists of (1), (2) and the

relation (3).

The functions vary in the layer z0 � z � h, h being the height of the boundary layer, and z0
the roughness height. The system of equations is considered with the following boundary

conditions:

u = 0; v = 0; w = 0; at z = z0;

u = G cos�; v = G sin� at z = h; x � 0;

@u

@z
=

@v

@z
= 0 at z = h; x > 0 ;

@b

@z
= 0 at z = z0; and b = 0 at z = h ;

At z = z0 we take l = �z0.

2.1 Evaluation of footprint functions

We assume that our 3D �ow is homogeneous in y-direction, and inhomogeneous in z- and x-

directions. Roughness inhomogeneity along the x-direction only is assumed in our numerical

analysis.

The �ow is considered in the boundary layer of height h, with a roughness height z0 = z01
which is a constant for x < 0, then in a small interval 0 < x < � it linearly changes

from z01 to z02, and then it is again constant: for x > � it equals to z02. The detector

is placed at a point (xd; yd; zd). We will deal with the footprint function of concentration

c(x) = c(x; xd; yd; zd) de�ned as the mean concentrtaion at the detector point from a lin-

ear source with the coordinate x, placed at roughness height, directed along the axis Y .

Analogously is de�ned the footprint function of the vertical �ux q(x) = q(x; xd; yd; zd) =

hw(xd; yd; zd) c0(x; xd; yd; zd)i, where c0 is the �uctuating part of the concentration.

The cumulative footprint functions of concentration and of vertical �ux are de�ned as

C(x) =

1Z
x

c(x0)dx0 ; Q(x) =

1Z
x

q(x0)dx0 :

The normalized footprint function of �ux is de�ned as Qn(x) = Q(x)=Q(�1). In this

section we present the cumulative footprint functions for smooth-to-rough and rough-to-

smooth changes of the roughness height.

We calculate the mean concentration ci and qix, the vertical concentrtaion �uxes at the

detector point, from a surface source uniformly distributed over strips of width �i = bi �
ai: Di = fx; z : ai � x � bi z = z0; g, i = 1; : : : ; nsr. The corresponding cumulative and

normalized cumulative footprint functions of �ux are also calculated. Calculations are

carried out for small values of �i, and the result is then normalised by the strip width.

The forward simulation technique cannot be applied for estimation of concentration and

�ux exactly at a point in space in case of horizontally inhomogeneous turbulence, and/or

exactly at moment t in case of non-stationary turbulence. Instead, one might consider

averages over space and/or time localised near x and/or t (e.g., see Kurbanmuradov et al.,
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1999). However, such a simulation might be computationally ine�cient if the extention of

the source is much larger than that of the detector. For these cases, the backward trajectory

simulation, starting from the space-time point of interest, is more e�cient (in the case of

Eulerian approach see Sabelfeld, 1991, and in the Lagrangian framework see, e.g., Flesch

and Wilson, 1995).

To be more speci�c, let us present now the backward estimators for the evaluation of

footprint functions in the case of the boundary layer with the sources uniformly distributed

over the strips Di, i = 1; : : : ; nsr. For simplicity, we have taken the x-axis coincident with

the direction of the geostrophical wind, i.e., � = 0.

The backward trajectory starts at time t, at the detector point with the velocity sampled

from the Eulerian velocity pdf pE(u; x) which is assumed to be Gaussian, see Appendix II.

We note only that below, we denote by �uEk the k-th component (k = 1; 2; 3) of the mean

Eulerian velocity vector, and the hat over the symbols x and u is to indicate that this is a

�nite-di�rence approximation to the true Lagrangian trajectory.

The backward trajectory simulation is conveniently carried out through the semi-implicit

Euler scheme, which can be written for one time step as follows:

x̂k(t��t) = x̂k(t)� (û0k(t) + �uEk(t; x̂(t))�t;

û0k(t��t) = û0k(t)� â0k(t; x̂(t��t); û(t))�t+
q
C0�"(t��t; x̂(t��t))�t �tk;

where �tk, k = 1; 2; 3 are independent standard gaussian random variables. Here for a

reason of practical convenience, we work in the �primed� velocity variables û0k = ûk � �uEk,

so that

dx̂k = (û0k + �uEk) ds ;

dû0k = â0k ds+
q
C0�"

 

d Wk(s); s < t; k = 1; 2; 3;

with the condition that the trajectory starts at the detector position with the velocity

sampled from the Gaussian pdf pE. Here according the formula given in Appendix II we

have
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All the expressions for the input functions are given in Appendices.

Recall that we use here the summation convention taking the sum over repeated indeces

i; j; l = 1; 2; 3, and
 

d Wk(s) stands for the backward Wiener di�erential (see Kurbanmu-

radov, Sabelfeld, 2000) which implies for the Euler scheme that the increments are taken

back in time.
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Let us denote by �ij the time at which the trajectory (x̂(s); û(s)), s � t reaches the ground

surface and touches the i-th strip: the �rst touchdown at �i1, the second (after a re�ection

from the boundary) at �i2. etc., and the last one at �iNi
. The random estimators have the

following form (see Appendix II), for the concentration,

ci =

*
NiX
j=1

2

�i

1

jû3(�ij)j

+
;

and for the vertical �ux:

qiz =

*
NiX
j=1

2

�i

û3(t)

jû3(�ij)j

+
; i = 1; : : : ; nsr:

Here the angle brackets stands for the averaging over the ensemble of independent backward

trajectories.

3 Results

We study in this section the impact of the roughness change on the footprint functions. The

developed code calculates the footprint and cumulative footprint functions of concentration

and �ux for the horizontally inhomogeneous case when the roughness height is constant z01
for x < 0, then in a small interval 0 < x < � it linearly changes from z01 to z02, and then it

is again constant: for x > � it equals to z02. In calculations, we have taken � = jz02� z01j.
Note that when we speak about the inhomogeneous case, two essentially di�erent cases are

considered: z01 < z02 (smooth-to-rough) and z01 > z02 (rough-to-smooth).

To be speci�c, we have taken in all calculations the geostrophical wind as G = 10m/s, and

the boundary layer height as h = 1km. So the spatial scale in the �gures is given in km. To

give a sensitivity analysis to the change of these parameters, we present simultaneously the

footprint functions of the inhomogeneous and homogeneous cases with the corresponding

roughness height. These enables us to �nd the regions of applicability of the results obtained

for the homogeneous case and moreover, to conclude where the inhomogeneous case shows

considerable di�erences compared to the homogeneous roughness. We present also some

other footprints, in particular, the cumulative footprint functions of concentration and

vertical �ux. In all calculations we run 4 105 backward trajectories, the strip width was

2 m, the time step was varying according to �t = 0:025� , where � = 2�2w=(C0�") is the

Lagrangian time scale at the trajectory instantaneous position. Since the variance of the

random estimators was large, we have made a gaussian smoothing procedure with a band

width equal to 4 strip widths.

3.1 Footprint functions of concentrtaion and �ux

Let us describe the results of numerical simulations. We have made the calculations for

two di�erent cases: (1) smooth-to-rough, and (2) rough-to-smooth change of the roughness

height. The detector was placed at the height zd = 2 m, at a distance xd.
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Smooth-to-rough case.

In these calculations, along with the inhomogeneous case, we plot simultaneously the foot-

print functions for the homogeneous case with roughness height z0 = z02.

In Figure 1, left picture, we present the footprint function of concentration for the case of

roughness change indicated above, for xd = 20 m, xd = 50 m and xd = 100 m (the same

curve is given for the homogeneous case at z0 = 5 cm) as functions of the dimensionless

upwind distance X=h, where the upwind distance X is de�ned asX = �x+xd - the distance

to the detector. The same curves are shown in the right picture for the case z01 = 1 cm,

z02 = 25 cm.

It is seen that the footprint functions of concentration for inhomogeneous cases are all

smaller compared to the homogeneous case in the near-region which is X=h < 0:04 in the

left picture, and X=h < 0:08 in the right picture. In the far-region the situation is reverse:

all the inhomogeneous curves are over the homogeneous curve after X=h > 0:15.

The inhomogeneous curves have local minima at the position of roughness change; after this

point they increase and become higher than the homogeneous curve. It is clearly seen that

the minima are more pronounced in the case of larger roughness change. Note that this

behaviour explains why the homogeneous curve in the left picture of Figure 2 (presenting

the corresponding cumulative footprint function of concentrtaion) is higher than all the

curves for the small upwind distances, and then decreases down all the curves; here we give

more detailed dependence on xd starting from xd = 20 m, with the last value xd = 200

m, where the in�uence of the roughness change is expected to be almost disappeared. The

same is true for the right picture (note that we have shown the curves only for distances

X=h < 1, therefore we cannot see the position where the homogeneous curve is down all

the inhomogeneous curves but in calculations it happened).

In Figure 3 we present the corresponding footprint functions of �ux, for the case of small

(left picture) and larger roughness change (right picture). Note that here the di�erence

between the homogeneous and inhomogeneous curves in the near-region is in the case of

larger roughness change (right picture) much higher than that of smaller roughness change

(left picture). In all cases the homogeneous curve is positioned almost everywhere down

the inhomogeneous curves; one exception is in the neighbourhood of the roughness change

which is clearly seen in the right picture for the case xd = 20 m.

In Figure 4 the cumulative footprint function of �ux Q is presented. It is clearly seen that

the di�erence between the homogeneous and inhomogeneous curves is becoming less and

less as the value of xd increases. Note that the homogeneous curve tends to 1 as the upwind

distance increases while in the inhomogeneous case, the curves tend to asymptotic values

which are larger than 1. To �nd the footprint area, it is convenient to use the normalized

cumulative footprint function of �ux which is de�ned as the cumulative footprint function of

�ux divided by the corresponding asymptotic value. These curves are shown in Figure 5. For

illustration, here we show through a horizonatal dashed line the level of 90% contribution

to the detector made by the surface around the detector position. Calculations show that

the fetch in the homogeneous case is smaller than that of inhomogeneous case; from Fig.5

it seen that the corresponding fetch in the homogeneous case is about 200 m, while for

xd = 20 m it is about two times larger. From this picture we can conclude that the

inhomogeneous case with xd = 200 m is approximately coincident with the homogeneous

case, hence the analytical formulae known for the homogeneous case can be applied inside
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the region whose diameter is not less than 200 m. For xd < 200 m, the change of roughness

should be taken into account. This con�rms the known practical recommendation saying

that the inhomogeneity can be neglected if xd=zd > 100.

Rough-to-Smooth case.

We present here the calculations for the rough-to-smooth case showing the same footprint

functions plotted in Figures 1-5. These footprint functions when compared to the corre-

sponding footprint functions presented in Figures 1-5 have the following features: the local

minima at the roughness change in Figs.1,3 correspond to the local maxima in Figs.6,8.

Also, in Figs.6,8 the homogeneous curve is down the inhomogeneous curves, in the near-

region, while in the far-region it is over these curves. The same is true for the cumulative

footprint functions plotted in Figs.7,9. Note that in the inhomogeneous case, the asymp-

totic value of cumulative footprint functions of �ux at large distances is less than 1; it is

seen that the smaller xd, the smaller this asymptotic value. For larger roughness change it

is becoming even less.

As to the fetch, we can conclude from Fig.10 that in contrast to the smooth-to-rough case,

here the fetch of homogeneous case is larger than that of the inhomogeneous cases; for

instance, in the case of the roughness change z01 = 25 cm, z02 = 1 cm, the fetch is about

80 m for xd = 50 m, while for the homogeneous case it is about 300 m.

Some features of the qualitative behaviour of the footprint functions

Let us describe some features of the qualitative behaviour of the footprint functions for

the inhomogeneous case. In Figure 11 we plot the homogeneous curves for two cases of

the roughness height: z0 = 1 cm and z0 = 25 cm, and the inhomogeneous curves for the

case of roughness change from z01 = 1 cm to z02 = 25 cm (left picture: the footprint of

concentrtaion, and the right picture: the footprint function of �ux). The position of the

roughness change is shown by the dashed vertical line.

First consider the results plotted in the left picture. In the near-region (left to the dashed

vertical line) the inhomogeneous curve behaves qualitatively as the homogeneous curve for

z0 = 25 cm, lying however considerably below with its maximum position shifted to the

left (closer to the detector) when compared with the maximum position of the homoge-

neous curve. In the region X=h > 0:08 we observe a qualitatively similar behaviour of

the inhomogeneous curve and the homogeneous curve but for z0 = 1 cm; the curves are

converging in the far-region. The maximum position of the inhomogeneous curve is shifted

to the right. Thus the qualitative behaviour of the inhomogeneous curve is controlled by

the two homogeneous curves, - in the close-region by the case z0 = 25 cm, and in the

far-region by the case z0 = 1 cm. This leads to the bimodal shape of the inhomogeneous

curve. But from a simple superposition of the two homogeneous footprint functions we

could not expect such a deep drop between the two modes. This drop is caused by the

�ow structure around the change of roughness: in contrast to the homogeneous case here

we have positive vertical component of the mean velocity. This implies that an additional

part of the emitted particles miss the

Generally, the same arguments are true for the footprint function of �ux shown in the right

picture of Fig.11, with not so deep drop between the two modes. This can be explained by

the fact that the maximum position of the homogeneous curve with z0 = 1 cm is closer to

the roughness jump.
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Note that from this picture we can clearly seen that the cumulative footprint function of

�ux Q for the inhomogeneous case is larger than 1 in contrast to the homogeneous case

where it is always less than 1. Indeed notice that the area under the homogeneous curve

z0 = 25 cm equals 1, so if we take the area under the homogeneous curve z0 = 25 cm in

the region X < xd and add the area under the homogeneous curve z0 = 1 cm in the region

X > xd we get a value which is larger than 1 which follows from a simple comparison of

the curves behaviour.

Let us turn to the rough-to-smooth case. In Figure 12 we plot the same curves as in Figure

11, but for the roughness change from z01 = 25 cm to z01 = 1 cm. At the roughness change

position we observe a small jump in the inhomogeneous curve presenting the footprint

function of concentrtaion (left picture). Again, the general form of this curve can be

deduced from the superposition of the two homogeneous curves, while the jump can be

explained here by the negative values of the vertical component of the mean �ow around

the roughness change.

An analysis of the footprint function of �ux (right picture) analogous to that made for the

smooth-to-rough case above shows that the cumulative footprint function of �ux can here

be less than 1.

A larger change of the roughness height

Further we have made calculations for the larger change of the roughness height, namely,

for z01 = 1 cm, z02 = 100 cm in the smooth-to-rough case, and z01 = 100 cm, z02 = 1 cm

in the rough-to-smooth case. The detector height was taken at zd = 20 m. The relevant

footprint functions of concentration are shown in Figure 13, the footprint functions of �ux q

- in Figure 14, and the cumulative footprint functions of �ux Q - in Figure 15, for di�erent

values of xd. The results are in a good agreement with the conclusions made for the smaller

change of the roughness height, showing even more clear the qualitative behaviour of the

curves discussed above. It should be noted that in this case we cannot expect a good

quantitative prediction because for the high roughness height we need to make a correction

of the mean �ow model which takes into account that the inhomogeneity a�ects the mean

�ow in a more complicated manner.

Dependence on the detector height zd.

Let us now consider the dependence of the footprint functions on the detector height zd. In

Figure 16 we present the footprint functions of concentration (left picture, in log-log scale)

and �ux (right picture, in log-line scale) for the smooth-to-rough case (z01 = 1 cm, z01 = 25

cm; the x -coordinate of the detector is �xed at xd = 100 m, and its height is varying from

zd = 2 m to zd = 16 m. In the left picture it is seen that the local minima can be observed

in all curves, but the higher the detector, the smaller the drop whose width is becoming

larger with the height. The in�uence of the roughness change on the footprint function of

�ux is observable (right picture) till the height of about zd = 16 m.

The corresponding cumulative footprint functions of concetration C (left picture) and �ux

Q (right picture) are shown in Figure 17. Note that the function C is uniformly decreased

(in the considered region) with the height zd. For the function Q this is not the case:

the curve for zd = 4 m is �rst rapidly increasing being larger than all the other curves,

and then is slowing down and �nally tends to its asymptotic value at distances (about

X=h � 1) where the other curves are still increasing. Note that there is no monotonic

8



beahviour of the asymptotics Q(X=h) at large values of X=h: �rst it increases with height

- zd for zd = 4 m it is smaller than that for zd = 8 while for zd = 32 m the value is the

smallest compared to all other values. This can be explained as follows. When the height

zd is small, the detector is well inside the inner boundary layer generated by the roughness

change, and the situation is close to the homogeneous case (with the roughness height

z0 = z02) where the asymptotic value is 1. For large heights zd (larger than the height

of the inner boundary layer) we are again in the situation close to the homogeneous case

with the roughness height z0 = z01, therefore the corresponding asymptotics is again close

to 1. In between, for intermediate heights, the asymptotic value is larger than 1 (e.g., for

zd = 4; 8; 16 m). The additional contribution is coming from the trajectories with positive

vertical velocities in the neighbourood of the position of the roughness change (the source is

in a sense e�ectively lifted). The same arguments are true for the rough-to-smooth case with

the feature that in the intermediate heights the asymptotic values are less than 1 because

in this case the trajectories get negative vertical velocities at the position of the roughness

change. It should be noted that if we de�ne the cumulative footprint function di�erently by

omitting the convective part < w >< c >, i.e., as Qt =< w0 c0 >, then the above mentioned

asymptotics is almost always true for Qt. This holds for the smooth-to-rough case while for

the rough-to-smooth case it is true only for large values of xd (xd > 20zd), see Figure 18.

4 Discussion and conclusions

A closure model is used to evaluate the mean �ow and the Reynolds stress tensor required

in the stochastic Lagrangian model we applied to calculate the footprint functions of con-

centration and its horizontal and vertical �uxes. This model provides the mean velocities

and other characteristics of the �ow over the roughness height.

A sensitivity analysis is made for the footprint functions under perturbation of the roughness

height; two cases are considered: (1) smooth-to-rough, and (2) rough-to-smooth change of

the roughness height. The calculations show that the footprint function of concentration is

more sensitive than that of the vertical �ux.

It is concluded that the footprint and cumulative footprint functions of concentration for

horizontally homogeneous surface, widely used in estimation of su�cient fetch for measure-

ments, can be seriously biased in many cases of practical importance. The calculations

show that the footprint area based on the cumulative concentrations if estimated through

the homogeneous case can be essentially under- or overestimated, compared to the true

inhomogeneous case. For instance, in the case when the detector is placed at xd = 100

m from the roughness jump (from z01 = 1 cm to z02 = 25 cm), at the height zd = 2 m,

the fetch calculated from the homogeneous curve is about 100 m, while the inhomogeneous

curve predicts the fetch of 400 m (see the right picture of Fig.5). In the smooth-to-rough

case, the cumulative footprint function of �ux for the inhomogeneous case is larger than 1

in contrast to the homogeneous case where it is always less than 1. In the rough-to-smooth

case the situation is di�erent: the cumulative footprint function of �ux can here be consid-

erably less than 1. However the 1-normalization is true if only the turbulent contribution

to this �ux is evaluated, i.e., omitting the �advecting part� < w >< c >. This holds for

the smoot-to-rough case while for the rough-to-smooth case it is true only for large values

of xd (xd > 20zd).
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Figure 2: The cumulative footprint functions of concentrtaion C, versus the dimensionless upwind

distance X=h, for di�erent values of xd. The roughness change is the same as in Figure 1.

10



10
−2

10
−1

0

5

10

15

20 homogeneous
    z

0
 = 5 cm 

x
d
 = 20 m

x
d
 = 50 m

x
d
 = 100 m

q

X / h 
10

−2
10

−1

0

5

10

15

20

25

30

35

q 

X / h 

homogeneous
    z

0
 = 25 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

Figure 3: The footprint function of �ux q (z01 = 1 cm, z02 = 5 cm, left picture, and z01 = 1 cm,

z02 = 25 cm, right picture), versus the dimensionless upwind distance X=h, for di�erent values of

xd.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

homogeneous
    z

0
 = 5 cm 

x
d
 = 20 m

x
d
 = 50 m

x
d
 = 100 m

Q

X / h 

x
d
 = 200 m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Q 

X / h 

x
d
 = 20 m 

homogeneous
    z

0
 = 25 cm 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

Figure 4: The cumulative footprint functions of �ux Q, versus the dimensionless upwind distance

X=h, for di�erent values of xd. The roughness change is the same as in Figure 3.

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

homogeneous
    z

0
 = 5 cm 

x
d
 = 20 m

x
d
 = 50 m

x
d
 = 100 m

Q
n

X / h 

x
d
 = 200 m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Q
n
 

X / h 

homogeneous
    z

0
 = 25 cm 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

x
d
 = 20 m 

Figure 5: The normalized cumulative footprint functions of �ux Q, versus the dimensionless

upwind distance X=h, for di�erent values of xd. The roughness change is the same as in Figure 3.

10
−3

10
−2

10
−1

100

200

300

400

500

600

700
c 

X / h 

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

10
−3

10
−2

10
−1

100

200

300

400

500

600

700

800

900

1000

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

c 

X / h 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

Figure 6: The footprint function of concentration c (z01 = 5 cm, z02 = 1 cm, left picture, and

z01 = 25 cm, z02 = 1 cm, right picture), versus the dimensionless upwind distance X=h, for

di�erent values of xd.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

120

140

160

C 

X / h 

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

120

140

160

C 

X / h 

homogeneous
    z

0
 = 1 cm 

x
d
 = 200 m 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

Figure 7: The cumulative footprint functions of concentrtaion C, versus the dimensionless upwind

distance X=h, for di�erent values of xd. The roughness change is the same as in Figure 6.

10
−2

10
−1

0

2

4

6

8

10

12

14

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

q 

X / h 
10

−2
10

−1

0

2

4

6

8

10

12

14

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

q 

X / h 

Figure 8: The footprint function of �ux q (z01 = 5 cm, z02 = 1 cm, left picture, and z01 = 25 cm,

z02 = 1 cm, right picture), versus the dimensionless upwind distance X=h, for di�erent values of

xd.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

Q 

X / h 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m x

d
 = 200 m 

Q 

X / h 

Figure 9: The cumulative footprint functions of �ux Q, versus the dimensionless upwind distance

X=h, for di�erent values of xd. The roughness change is the same as in Figure 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Q
n
 

X / h 

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

homogeneous
    z

0
 = 1 cm 

x
d
 = 20 m 

x
d
 = 50 m 

x
d
 = 100 m 

x
d
 = 200 m 

Q
n
 

X / h 

Figure 10: The normalized cumulative footprint functions of �ux Q, versus the dimensionless

upwind distance X=h, for di�erent values of xd. The roughness change is the same as in Figure 8.

14



10
−2

10
−1

200

400

600

800

1000

1200

c 

X / h 

homogeneous
z

0
 = 1 cm 

homogeneous
 z

0
 = 25 cm 

inhomogeneous 

10
−2

10
−1

0

5

10

15

20

25

30

35

q 

X / h 

homogeneous
z

0
 = 1 cm 

homogeneous
 z

0
 = 25 cm 

inhomogeneous 

Figure 11: The footprint functions of concentration c (left picture) and �ux q (right picture). For

comparison, three curves are shown: the homogeneous curves for z0 = 1 cm and z0 = 25 cm, and

the inhomogeneous curve for the roughness change from z0 = 1 cm to z0 = 25 cm, for xd = 50 m.

10
−2

10
−1

200

400

600

800

1000

1200
homogeneous
 z

0
 = 25 cm 

homogeneous
z

0
 = 1 cm inhomogeneous 

c 

X / h 
10

−2
10

−1

0

5

10

15

20

homogeneous
 z

0
 = 25 cm 

homogeneous
z

0
 = 1 cm inhomogeneous 

q 

X / h 

Figure 12: The same as in Figure 11, but for the rough-to-smooth case: the roughness change

from z0 = 25 cm to z0 = 1 cm,

15



10
−2

10
−1

10
0

10

20

30

40

50

60

70

80

90

c 

X / h 

homogenous
   z

0
=1 m 

x
d
 = 100 m 

x
d
 = 500 m 

x
d
 = 1000 m 

10
−2

10
−1

200

400

600

800

1000

1200

1400

1600

1800

c 

X / h 

homogenous
   z

0
=1 cm 

x
d
 = 20 m 

x
d
 = 100 m 

x
d
 = 500 m 

Figure 13: The footprint function of concentration for the smooth-to-rough case, the roughness

height changes from z01 = 1 cm to z02 = 100 cm (left picture), and rough-to-smooth case with

z01 = 1 cm, z02 = 100 cm (right picture). In all curves, zd = 20 m.

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

q 

X / h 

homogenous
   z

0
=1 m 

x
d
 = 100 m 

x
d
 = 500 m 

x
d
 = 1000 m 

10
−2

10
−1

0

2

4

6

8

10

12

14

16

q 

X / h 

homogenous
   z

0
=1 cm 

x
d
 = 20 m 

x
d
 = 100 m 

x
d
 = 500 m 

Figure 14: The same as in Figure 13, but for the footprint function of �ux q.

16



0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Q 

X / h 

homogenous
   z

0
=1 m 

x
d
 = 1000 m 

x
d
 = 500 m 

x
d
 = 100 m 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 homogenous
   z

0
=1 cm 

x
d
 = 100 m 

x
d
 = 500 m 

x
d
 = 20 m 

Q 

X / h 

Figure 15: The same as in Figure 13, but for the cumulative footprint function of �ux Q.
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xd = 100 m, and di�erent values of the detector heights zd.
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Appendix I. Dimensionless mean-�ow equations

It is convenient to work in dimensionless variables by introducing:

� = z=h; � = x=h; ug = u=G; vg = v=G; wg = w=G;

bg = b=G2; kg = k=Gh; lg = l=h; m = fh=G:

In the dimensionaless form, the systems of equations read

ug
@ug

@�
+ wg

@ug

@�
=

@

@�
kg
@ug

@�
+mvg ;

ug
@vg

@�
+ wg

@vg

@�
=

@

@�
kg
@vg

@�
�m(ug � 1) ;

@ug

@�
+

@wg

@�
= 0 ;

and

ug
@bg

@�
+ wg

@bg

@�
= �b

@

@�
kg
@bg

@�
+ kg

"�@ug
@�

�
2

+
�@vg
@�

�
2

#
�

cb2g

kg
;

lg =

 
1

��
+

h

l0

!
�1

; kg = Ck lg
q
bg :

with the boundary conditions:

ug = 0; vg = 0; wg = 0; at � = z0=h ;

ug = 1; vg = 0; at � = 1; x � 0;

@ug

@�
=

@vg

@�
= 0 at � = 1; x > 0 ;

@bg

@�
= 0 at � = z0=h ; and bg = 0 at� = 1 ;

and lg = �� at � = z0=h.

In the stochastic Lagrangian models, the following statistical characteristics of the �ow are

used: the tensor hu0�u0�i, and the energy dissipation rate �". We extract these functions from

the following closure assumptions: �" = cb2=k, and

�11 = h(u0
1
)
2i = b=Cu;

�12 = hu0
1
u0
2
i = �k

@�uE2

@x1
; �22 = h(u0

2
)
2i = b=Cv;

�13 = hu0
1
u0
3
i = �k

�@�uE1
@x3

+
@�uE3

@x1

�
;

�23 = hu0
2
u0
3
i = �k

@�uE2

@x3
;

�33 = h(u0
3
)
2i = b=Cw :
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where

Cu =
b2u + b2v + b2w

2 b2u
; Cv =

b2u + b2v + b2w
2 b2v

; Cw =
b2u + b2v + b2w

2 b2w
;

where bu; bv; bw are the universal constants in the relations hu02i = b2u u
2

�

, hv02i = b2v u
2

�

,

hw02i = b2w u
2

�

which are true in the surface layer with a constavt shear hu0w0i = �u2
�

. In our

calculations we have taken bu = 2:5; bv = 2:; bw = 1:25 (e.g., see Kaimal&Finnigan, 1994).

All the parameters Ck; c; Cu; Cv; Cw; etc: were chosen to �t the theory of the surface layer

with neutral strati�cation.

Appendix II. Lagrangian stochastic trajectory model

The main input function of the Lagrangian stochastic models is the Eulerian pdf which is

in our case assumed to be Gaussian:

pE(u; x) = (2�)�3=2(det �)�1=2 exp
n
�

1

2
(ui � �uEi)�ij(uj � �uEj)

o
:

Here �ij are the elements of a matrix � which is the inverse to the matrix � de�ned by the

entries

�ij = h(uEi � �uEi)(uEj � �uEj)i ;

i.e., �ik�kj = Æij, or in matrix form, �� = I, I being the identity matrix. The expressions

for the entries of the matrix � are given in Appendix I.

Forward Lagrangian trajectories.

In the forward trajectory model, the governing equations are:

dxi = ui dt ;

dui = ai(x; u; t) dt+
q
C0�" dWi(t);

where

ai = �
�
C0�"

2

�
�ik(uk � �uEk) + �uEj

@�uEi

@xj
+

1

2

@�ij

@xj

+

"
@�uEi

@xj
+

�im

2
�uEk

@�jm

@xk

#
(uj � �uEj) +

�im

2

@�km

@xj
(uj � �uEj)(uk � �uEk);

Backward Lagrangian trajectories.

The backward trajectories are de�ned by

dx̂ = û ds:

dûi = âi ds+
q
C0�"

 

d Wi(s); s < t;
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where

âi = ai � C0�"
@

@ui
ln pE = ai + C0�"�ij(uj � �uEj)

=

�
C0�"

2

�
�ik(uk � �uEk) + �uEj

@�uEi

@xj
+

1

2

@�ij

@xj

+

"
@�uEi

@xj
+

�im

2
�uEk

@�jm

@xk

#
(uj � �uEj) +

�im

2

@�km

@xj
(uj � �uEj)(uk � �uEk):
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