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Abstract

The global algorithm of Random Walk on Spheres suggested in [8] is analyzed

and a kind of optimization strategy is suggested. The algorithm is applied here to

construct a functional version of this method which uses a multilinear interpolation.

As an example we have chosen the biharmonic equation governing the bending of a

thin elastic plate with the simply supported boundary, however generalizations to

other equations can be carried out.

1. Introduction

Let as consider the biharmonic equation governing the bending of a thin elastic plate

�2
u(x) = f(x); x 2 D � R

2
: (1.1)

Here u(x) is the normal displacement of the plate at a point x; f(x) is the intensity of

normal load. Domain D is not supposed to be bounded however it is assumed that the

domain D is bounded in one direction, i.e., it can be situated between two parallel lines

(see [8]).

We assume that the plate edge is simply supported:

u

���
�
= 0; �u

���
�
= 0; (1.2)

where � is the boundary of the domain D:

The problem is to approximate the solution of the problem (1.1)-(1.2) on some bounded

subdomain ~D � D in the whole, i.e., to �nd a numerical approximation of the solution

for an arbitrary set of points in ~D, and then construct an interpolation. To estimate the

solution in a set of points we use the global Walk on Spheres algorithm [8].

A possible way of construction of the solution as a function on the whole domain is the

following [6, 7, 10, 11, 13]. Take a Monte Carlo estimator � (biased or unbiased) for the

solution u(x) in an arbitrary �xed point x. We construct a uniform rectangular grid with

a mesh size h on the domain ~D n
x
(i)
oM
i=1

� ~D

and use the Monte Carlo algorithm to evaluate the values of the solution in the grid nodes:

u(x(i)) � ~u(x(i)) =
1

N

NX
n=1

�
(i)
n ; (1.3)

where �(i)n are independent samples of �(i) (n = 1; : : : ; N), �(i) is the random estimator for

u(x(i)): To calculate u, an interpolation procedure which uses the obtained values at the

grid nodes ~u(x(i)) can be then applied.
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We use the multilinear interpolation in the form

u(x) � L(M)~u(x) =
MX
i=1

~u(x(i))�i(x): (1.4)

Here

�i(x) = �(i1;:::;id) (x1; : : : ; xd) = �

�
x1

h
� i1

�
� � ��

�
xd

h
� id

�
;

where (i1; : : : ; id) is the multi-index corresponding to the node x(i) so that

x
(i) = (i(1)h; : : : ; i(d)h); and

�(s) =

8><
>:

1 + s; if �1 � s � 0 ;

1� s; if 0 � s � 1 ;

0 else

is a �nite piecewise-linear generating function. Implementation of this approximation is

simple, and it is possible to estimate the upper bound of the error of the algorithm under

study.

We use the following global Monte Carlo algorithm to calculate the values of the solution

u of problem (1.1)- (1.2) at the grid nodes x(i) [8]. The solution of problem (1.1)-(1.2) at

the grid nodes is represented in the form

u(x(i)) =
Z
D

uÆ(x
(i)
; y)f(y) dy; (1.5)

where uÆ is the Green function de�ned by

�2
uÆ(x; y) = Æ(x� y); uÆ

���
x2�

= 0; �uÆ
���
x2�

= 0:

Let

uÆ(x
(i)
; y) = V (x(i); y) +W (x(i); y); (1.6)

where V (x(i); y) = jx(i)�yj2

8�
ln jx(i) � yj is the fundamental solution of the biharmonic

equation. For W (x; y) we then have the following problem

�2
W (x; y) = 0; W

���
x2�

= �V
���
x2�

; �W
���
x2�

= ��V
���
x2�

: (1.7)

Note that here y 2 D is a parameter.

For the problem of type (1.7), namely

�2
v = 0; v

���
�
= '1; �v

���
�
= '2 ; (1.8)

the random estimator can be constructed through a randomized evaluation of the spherical

mean value relation [8]:

v(y) = N
R
y (v)�

R
2

4
N

R
y (�v); �v(y) = N

R
y (�v);

where NR
y is the averaging operator over sphere S(y; R) centered at the point y, whose

radius equals to R; i.e.,

N
R
y (v) =

1

2�R

Z
S(y;R)

vdS: (1.9)
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This random estimator is associated with the local Walk on Spheres process in the domain

D: In order to describe it in more details, we introduce the notation: �D is the closure

of the domain D; d(x) is the distance from the point x to the boundary �; �" is an "-

neighborhood of the boundary �; i.e.

�" = fx 2 �D : d(x) < "g:

fy0; y1; : : : ; yL"
g � D is the trajectory of Walk on Spheres process starting at the point

y0 = y, and yl+1 = yl + d(yl)!l; l = 0; 1; : : : ; where f!lg are mutually independent

random unit isotropic vectors, L" is a random number of steps the process spends in

D n �" before its �rst passage of �" . Thus in the Walk on Spheres process we choose the

next point yl+1 uniformly on the surface of the maximal sphere with its center at point yl
which lies entirely in the domain �D:

The "-biased estimator for the solution of the equation (1.8) at a �xed point y reads [8]:

�"(y) = '1(y
�)�Q'2(y

�); Q =
1

4

L"X
l=0

d
2(yl); (1.10)

where y� is the point on the boundary � closest to yL"
2 �":

In [8] it is shown that the variance V�"(y) is bounded uniformly, as " tends to zero, and

that under some broad smooth-assumptions

jv(y)�E�"(y)j � H "; y 2 D: (1.11)

Thus for the solution of problem (1.7) we assume to have an "-biased random estimator of

the type (1.10) and hence we can construct a biased random estimator for u(x(i)) using the

relations (1.5), (1.6), the symmetry of the Green function and the double randomization

method (see for details [8]). This leads us to the global walk on spheres algorithm, so

let us present the relevant random estimator. Let �(y) be an appropriate distribution

density of a point y in the domain D, i.e., �(y) 6= 0 for all points y for which f(y) 6= 0.

We denote by �(i)" (y); i = 1; : : : ;M the "-biased random estimators of the type (1.10) for

the solution of the problems (1.7) at the point y for all points x(i): Then for the solution

of the original problem (1.1) - (1.2) at the grid nodes we obtain the following "-biased

random estimators

�
(i)
" =

f(y)

�(y)

�
V (x(i); y) + �

(i)
" (y)

�
; i = 1; : : : ;M; (1.12)

where the random point y is sampled in D from the density �: We rewrite the estimators

(1.12) in the form

�
(i)
" =

f(y)

�(y)

�
V (x(i); y)� V (x(i); y�) +Q�V (x(i); y�)

�
; i = 1; : : : ;M: (1.13)

To calculate the estimators
n
�
(i)
"

oM
i=1

we �rst sample the point y from the density �(y);

then simulate the Walk on Spheres process starting in this point y and �nishing after its

�rst passage of the "- neighborhood of the boundary, and calculate estimators by formula

(1.13) for each node.
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By substituting �(i)" in (1.3), (1.4) we obtain the functional Monte Carlo algorithm with

three parameters: M (the number of grid nodes), N (the sample size) and ": The problem

is now: what is the best possible choice of these parameters to minimize the computational

cost of algorithm. The exact optimization problem being too complicated, can be treated

in a simpli�ed way, by estimating the upper bound of the error and trying to minimize

the cost function under some �xed error level.

We consider the error of approximation (1.4) in the metric of continuous function space

C, i.e., the quantity

Æ = sup
x2 ~D

ju(x)� L(M)~u(x)j: (1.14)

We use the convergence in probability as probability criterion for the convergence of this

error to zero, i.e., we consider the relations of the following type

PfÆ < T (M;N; ")g > 1� �; (1.15)

where T (M;N; ")! 0 as M;N !1; "! 0 and � > 0 is a small value.

The choice of optimal parameters M; N and " is based on the upper bounds of the error

(1.15). The optimization problem [6] is to minimize the cost function of the algorithm

S(M;N; ") provided that T (M;N; ") = �; (1.16)

where � > 0 is some �xed error level.

In section 2 we derive the upper bound of the error of the type (1.15) for the algorithm

presented. In section 3 we formulate and solve the optimization problem (1.16). In

section 4 we describe the Decentred Random Walk on Spheres which can in many cases

essentially improve the e�ciency of the algorithm presented. In section 5 we present

numerical optimization results for two test problems of the type (1.1)-(1.2) with known

exact solutions.

2. The upper bound of the error

According to the triangle inequality the error (1.14) is expanded into three components.

They are: (1) the interpolation component, (2) the bias, and (3) the stochastic component:

Æ � sup
x2 ~D

���u(x)� L(M)u(x)
���+ sup

x2 ~D

���L(M)u(x)� L(M)û(x)
���+

+sup
x2 ~D

���L(M)û(x)� L(M)~u(x)
��� = Æ1 + Æ2 + Æ3: (2.1)

Here

L(M)u(x) =
MX
i=1

u(x(i))�i(x); L(M)û(x) =
MX
i=1

E�
(i)
" �i(x):

The �rst two components of the error in (2.1) are deterministic while the third component

is random. The �rst summand Æ1 is the error of the multilinear interpolation. If u 2
C

(2)(
�~D) then there exists a positive constant H1 such that [5]

Æ1 � H1M
�1
: (2.2)
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The second term in (2.1) corresponds to the bias. For multilinear interpolation the error

concentrates at the grid nodes, i.e. the following equality holds [10]

Æ2 � max
i=1;:::;M

ju(x(i))� E�(i)" j: (2.3)

Here ju(x(i))�E�(i)" j is the value of the bias at the i-th node. From (1.11) it can be easily

found that there exists a positive constant H2 such that

ju(x(i))� E�(i)" j � H2 ": (2.4)

The third summand in (2.1) is the stochastic component of the error. As for the bias,

this error concentrates at the grid nodes, i.e.,

Æ3 � max
i=1;:::;M

jE�(i)" � ~u(x(i))j:

Writing the expression for ~u(x(i)) in more details, we obtain

Æ3 � max
i=1;:::;M

�����E�(i)" � 1

N

NX
n=1

�
(i)
";n

����� : (2.5)

Note that the random estimators �(i)" for the problem (1.1)-(1.2) at the grid nodes look

very similar to the so-called Dependent Sampling Method [2, 14] because it uses the same

trajectories for estimating the solution at all grid nodes. But before using the theory of

Dependent Sampling Method, we have to verify that this method satis�es the convergence

conditions.

Let us consider a random �eld �(x) de�ned on the domain ~D such that �(x(i)) = �
(i)
" : We

denote by g(x) = E�(x), and introduce the estimator for g(x) :

gN(x) =
1

N

NX
n=1

�n(x);

where �n(x) are independent samples of random �eld �(x):

We introduce also the sequence of random �elds

�N(x) =
1p
N

NX
n=1

~�n(x) =
p
N (gN(x)� g(x)) ;

where ~�(x) = �(x)�E�(x):

Lemma 1 [14]

Let us assume that the following conditions are satis�ed:

a) there exists a positive constant HV such that

V~�(x) < HV ; x 2 ~D;
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b) samples of the random �eld ~�(x) are continuously di�erentiable on ~D and

E

�����@
~�(x)

@xi

�����
p

< C; i = 1; : : : ; d; p � max(2; d+ �); � > 0 (2.6)

for any x 2 ~D (here d is the dimension of the �eld).

Then the sequence of random �elds f�Ng weakly converges to a continuous in probability

Gaussian random �eld �0 with zero mean and covariations

E�0(x)�0(y) = E~�(x)~�(y); x; y 2 ~D:

Moreover, the deviation of the estimator gN(x) from g(x) has the order of magnitude

N
�1=2 in probability, i.e.,

P

(
sup
x2 ~D

jgN(x)� g(x)j � C0N
�1=2

)
! P

(
sup
x2 ~D

j�0(x)j � C0

)
as N !1: (2.7)

Convergence (2.7) implies that for any � > 0 there exists a positive constant H3(�) and

an integer number N̂(�) such that the following inequality holds

P

(
sup
x2 ~D

�����E�(x)� 1

N

NX
n=1

�n(x)

����� � H3(�)N
�1=2

)
> 1� � (2.8)

for any N > N̂(�):

Now we have to verify that the conditions a) and b) of this Lemma are satis�ed for the

corresponding random �eld �(x). From (1.13) we derive that

�(x) =
f(y)

�(y)
(V (x; y)� V (x; y�) +Q�V (x; y�)) ; (2.9)

where V (x; y) is the fundamental solution of biharmonic equation

V (x; y) =
jx� yj2

8 �
ln jx� yj; �V (x; y) =

ln jx� yj+ 1

2 �
:

It is easy to show that the variance boundedness of randomized estimators �(i)" follows

from the variance boundedness of the estimators of the type (1.10), and from �niteness of

the integral
R
D

f2(y)

�(y)
dy: But the variance boundedness of randomized estimators �(i)" implies

that the condition a) of the Lemma 1 is satis�ed.

Further note that when verifying the conditions b), we can restrict ourselves to the domain
~D n �" because we can suppose that all the grid nodes lie in ~D n �": Since y

� 2 �,

the second and third summands in (2.9) have no singularities on the domain ~D n �"

(jx � y
�j � "). Thus we have to investigate only the �rst summand but the function

V (x; y) is continuously di�erentiable with respect to x: Therefore, samples of the random

�eld ~�(x) are continuously di�erentiable on ~D n �": The condition (2.6) follows from this

fact and the boundedness of domain ~D: Consequently, the condition b) of the Lemma 1

is satis�ed, too. Thus we have by Lemma 1 that for the random �eld �(x) the inequality

6



(2.8) holds. To obtain the upper bound for the stochastic component of the error Æ3 of

the type (1.15) we can use the following inequality

P

(
max

i=1;:::;M

�����E�(i)" � 1

N

NX
n=1

�
(i)
";n

����� � H3N
�1=2

)
� P

(
sup
x2 ~D

�����E�(x)� 1

N

NX
n=1

�n(x)

����� � H3N
�1=2

)
:

(2.10)

Now combining (2.1)-(2.5), (2.10), (2.8) we obtain the following theorem about the upper

error bound of the algorithm.

Theorem 1 Assume that the following conditions are satis�ed

a) there exists a constant C1 such that
R
D

f2(y)

�(y)
dy < C1;

b) all grid nodes x(i) lie in ~D n �":

Then for any � > 0 there exist some positive constants H1; H2; H3(�) and an integer

number N̂(�) such that the following inequality holds

P

n
Æ � H1M

�1 +H2 "+H3N
�1=2

o
> 1� �; (2.11)

for any N > N̂(�)

3. Optimization problem

Thus we have obtained the upper bound of the error for the functional algorithm, and we

can formulate the optimization problems of the type

min
M;N;"

S(M;N; ") provided that T (M;N; ") = �;

where S(M;N; ") is the cost function and T (M;N; ") is the upper bound of the error from

(2.11).

The cost function of the algorithm has the form

S(M;N; ") = N (t1EL(") + t2M) = S1 + S2; (3.1)

where EL(") is the average number of spheres per one trajectory and its order of magni-

tude is j ln "j (e.g., see [1, 8]), t1 is the average computer time per one step in the Walk

on Spheres process, t2 is the computer time of calculation of functions per one grid node

(see (1.13)).

On the other hand let us �x the upper bound of the error by some error level � :

H1

M
+H2"+

H3p
N

= �: (3.2)

Treating the optimization in the sense of order of magnitude, we obtain from (3.2) that

" = O(�); M = O

�
1

�

�
; as �! 0:
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Therefore, j ln "j = O(j ln�j) and the �rst component S1 of the cost function is more lesser

than the second component S2 as �! 0:

t1EL(") << t2M; as �! 0:

So it is reasonable to neglect the �rst component S1 of the cost function and to obtain

the following optimization problem which is simpler:

min
M;N;"

S2(M;N; ") provided that

H1

M
+H2"+

H3p
N

= �; (3.3)

where

S2(M;N; ") = t2N M: (3.4)

First we �x " and �nd optimal values Mopt(") and Nopt("): Find N from (3.3) and substi-

tute it in (3.4):

S2 =
t2H

2
3M

(��H2"�H1=M)
2 :

Taking the derivative of this expression with respect toM and set it equal to zero we �nd

Mopt(") =
3H1

��H2"
; Nopt(") =

9H2
3

4(��H2")2
: (3.5)

Further we have to minimize the cost function (3.1) on ": We substitute (3.5) to (3.1):

Sopt(") =
C1j ln "j

(��H2")2
+

C2

(��H2")3
= S1(") + S2("): (3.6)

Here we have to consider only the �rst component S1(") because the second component

S2(") decreases monotone as "! 0: Taking the derivative of S1(") with respect to " and

setting it equal to zero we �nd the following equation

��H2" = 2H2"j ln "j: (3.7)

We denote by "opt the solution of equation (3.7). It gives the minimum to the function

S1("): Substituting (3.7) to (3.6), we obtain the following function

S
�
opt("opt) =

C1

4H2
2"

2
optj ln "optj

+
C2

8H3
2"

3
optj ln "optj3

: (3.8)

We cannot solve the equation (3.7) analytically but we can �nd the asymptotically optimal

value ": It is obvious from the equation (3.7) that the following inequality is satis�ed for

its solution

"optj ln "optj <
�

2H2

:

Therefore

j ln "optj > j ln�j

8



asymptotically as �! 0: Then

"opt <
�

2H2j ln�j
= "0 as �! 0: (3.9)

It is easy to verify that the function S�opt from (3.8) decreases on the interval 0 < " < e
�1
:

Hence if we replace "opt by the larger value "0, the value S
�
opt("opt) decreases:

S
�
opt("opt) >

C1j ln�j
�2

+
C2

�3
= S3(�):

On the other hand if we substitute a nonoptimal value "0 in the cost function Sopt(") from

(3.6) then its value becomes larger than that for optimal "opt :

Sopt("opt) = S
�
opt("opt) < Sopt("0) =

C1j ln�j
�2

 
1� 1

2j ln�j

!2

+
C2

�3

 
1� 1

2j ln�j

!3

= S4(�):

S3(�) is asymptotically close to S4(�) as �! 0: Consequently the value "0 is asymptoti-

cally optimal and

Mopt("0) =
3H1

�

�
1� 1

2j ln�j

� ; Nopt("0) =
9H2

3

4�2
�
1� 1

2j ln�j

� : (3.10)

Thus asymptotically optimal value of the cost function has the following order on � :

Sopt = O(��3):

4. Decentred Random Walk on Spheres

There is a di�erent version of the Walk on Spheres method which can in many cases

essentially improve the e�ciency. In [9] we have applied the Decentred Random Walk on

Spheres (DRWS) method for solving the biharmonic equation of the type (1.8) which is

based on the spherical mean value relation written not for the center of the circle S(x0; R)

like (1.9) but for an arbitrary point in the disk: x 2 K(x0; R) ([9]):

u(x) =
R

2 � r
2

2�R

Z
S(x0;R)

u(y)dSy

jx� yj2

+
R

2 � r
2

4�R

Z
S(x0;R)

"
R sin�

jx� x0j
arctg

(
jx� x0j sin�

R � jx� x0j cos�

)
(4.1)

� 1

2
� R cos�

2jx� x0j
ln
jx� yj2
R2

#
�u(y)dSy ;

�u(x) =
R

2 � r
2

2�R

Z
S(x0;R)

�u(y)dSy

jx� yj2 :

9



Here r = jx � x0j is the distance from x to the circle's center x0, and � is the angle

between the vectors x� x0 and y � x0.

Note that the �rst integral in (4.1) is exactly the Poisson formula for the Laplace equation.

It is not di�cult to �nd out that the function

p(y; x) =
R

2 � jx� x0j2
2�R

� 1

jx� yj2

is a probability density function of the variable y 2 S(x0; R), for all x 2 K(x0; R). This

follows from the representation of the solution u = 1 to the Dirichlet problem for the

Laplace equation �u(x) = 0; u(x)jx2S(x0;R) = 1 through the Poisson integral.

To sample the point y on the circle S(x0; R) according to the density p(y; x), the following

method can be used [9]:

1. Sample a random direction in the �upper semisphere� ! = (!1; !2) = (cos( ); sin( )),

where  is uniformly distributed between 0 and �.

2. Find y = y1 on the circle S(x0; R) as the intersection point of S(x0; R) and the ray

x + ! jx � yj, and �nd also y = y2 as the intersection point of S(x0; R) with the ray

x� ! jx� yj.
3. Let a1 = jx� y1j, and a2 = jx� y2j. Then with probability a1=(a1 + a2) take y = y2,

and with probability a2=(a1 + a2) take y = y1.

The algorithm has two remarkable properties: (1) the simulation algorithm is the same in

arbitrary dimensions, and (2) the closer the point x to the boundary S(x0; R), the larger

is the probability that the random point y is sampled on a part of S(x0; R) closest to x.

Now we can give the de�nition of the DRWS process fY1 = x; Y2; : : : ; Ymg starting from

an arbitrary point Y1 = x 2 K(x01; R1): let Y2 be a random point sampled on S(x01; R1)

as described in the above algorithm. As the second disc, choose one of the discs satisfying

the condition K(x02; R2) � G and Y2 2 K(x02; R2). Then on S(x02; R2) we sample the

point Y3 as described above for Y2, etc, till the last point Ym hits the "-boundary. Thus

starting from the point x = Y1, we then have a sequence of random points fY2; : : : ; Ymg
which are sampled on the corresponding circles S(x02; R2); : : : ; S(x0m; Rm).

The random estimator has a form similar to (1.10):

�1(x) = g0(Ym)� g1(Ym)
mX
k=2

Q(Yk�1; Yk) :

Here

Q(Yk�1; Yk) =
jYk�1 � Ykj2

2

"
Rk�1 sin(�k)

jYk�1 � x0k�1j
arctg

(
jYk�1 � x0k�1j sin(�k)

Rk�1 � jYk�1 � x0k�1j cos(�k)

)

�1

2
� Rk�1 cos(�k)

2jYk�1 � x0k�1j
ln
jYk�1 � Ykj2

R2
k�1

#
;

�k is the angle between the vectors Yk�1 � x0k�1 and Yk � x0k�1.
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The DRWS process is much faster than the standard walk on spheres process: the mean

number of steps to reach the "-boundary behaves like ln j ln(")j instead of j ln(")j, see
[3, 4].

However the faster convergence to the boundary does not change essentially the conclusion

about the choice of optimal parameters, and hence in practice this method can be applied

after choosing the optimal parameters as described in the previous section.

5. Numerical experiments

5.1. Test problem for the thin elastic rectangular plate

Numerical experiments were carried out for the problem with known exact solution for

the thin elastic rectangular plate [12]

�2
u(x) = f(x); u

���
�
= 0; �u

���
�
= 0;

where x 2 D = [0; a]� [0; b];

f(x) = C0 sin

�
�x1

a

�
sin

�
�x2

b

�
:

The exact solution of this problem is

u(x) = C0

a
4
b
4

�4(a2 + b2)2
sin

�
�x1

a

�
sin

�
�x2

b

�
:

Here it is supposed that ~D = D:

The calculations were made for C0 = 1; a = 1; b = 1: The random point y where the

trajectories start was sampled uniformly in D.

The calculation results for di�erent error levels � with optimal values of the parameters

are given in Table 1. Optimal values of the parameters Nopt; Mopt; "opt are determined

by the formulas (3.9), (3.10). Here necessary constants H1; H2 were calculated by the

following formulas

H1 =
mes ~D

8

 
sup
x2 ~D

�����@
2
u

@x
2
1

�����+ sup
x2 ~D

�����@
2
u

@x
2
2

�����+ 2 sup
x2 ~D

����� @
2
u

@x1@x2

�����
!
;

H2 = max

 
sup
x2 ~D

����� @u@x1
����� ; sup

x2 ~D

����� @u@x2
�����
!
;

and the constant H3 was estimated from some precomputations.

The value � was estimated as maxi=1;:::;M

q
V�(i)

N
; where V�(i) is the sample variance.

Through Æs; Æi; Æ we denote the stochastic, interpolation and total errors, respectively.

The stochastic error Æs was estimated as maximum of the absolute value of the di�erence

between the exact and approximate solutions over the nodes and so it includes the bias

11



too. The error of interpolation Æi was estimated by using the di�erence between the exact

solution and solution interpolated over exact value in grid nodes at 106 random points

from D: Here the total error Æ is the sum of the error of interpolation Æi and the stochastic

error Æs: t is the computer time used to calculate the approximate solution in grid nodes.

The results presented in Table 1 show that the total error does not exceed the permissible

level �:

Table 1: Testing of the optimal parameters.

� 105 Nopt

q
Mopt "opt10

7
� 105 Æs 10

5
Æi 10

5
Æ 105 t

5 159720 27 2:52 1:30 2:64 0:80 3:44 138

2:5 634461 38 1:18 0:68 1:56 0:42 1:98 1096

1:25 2837793 55 0:55 0:33 0:75 0:20 0:95 9782

In Table 2 we present results of numerical experiments for the same problem but with

various nonoptimal relations between parameters M and N: Since the component S2 =

t2N M from (3.1) makes higher contribution to the computational cost in comparison

with S1 we varied M and N provided that M N = const: In this case the computational

cost practically has not changing. These results show that the optimization procedure

presented may lead indeed to a higher e�ciency since the optimal choice of parameters

results in a smaller total error Æ than in the case of nonoptimal choice under comparable

computational cost t.

Table 2: Nonoptimal parameters.

� 105 N M " � 105 Æs 10
5
Æi 10

5
Æ 105 t

5 Nopt=8 Mopt � 8 "opt 4:10 5:69 0:10 5:79 144

5 Nopt=4 Mopt � 4 "opt 2:80 5:11 0:20 5:31 143

5 Nopt=2 Mopt � 2 "opt 1:93 3:36 0:39 3:75 142

5 Nopt Mopt "opt 1:30 2:64 0:80 3:44 138

5 Nopt � 2 Mopt=2 "opt 0:89 2:01 1:57 3:58 142

5 Nopt � 4 Mopt=4 "opt 0:59 1:18 3:17 4:35 144

5 Nopt � 8 Mopt=8 "opt 0:38 0:61 6:13 6:74 156

5.2. Test problem for the thin elastic strip

Let as consider the problem with known solutions in the form of a double series [12]

�2
u(x) = f(x); u

���
�
= 0; �u

���
�
= 0; (5.1)

where x 2 D = [0; a]� [0; b];

f(x) =
1X
i=1

1X
j=1

aij sin

�
i�x1

a

�
sin

�
j�x2

b

�
;
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aij =
4

ab

aZ
0

bZ
0

f(x1; x2) sin

�
i�x1

a

�
sin

�
j�x2

b

�
dx1 dx2:

The exact solution of this problem is

u(x) =
1

�4

1X
i=1

1X
j=1

aij�
i2

a2
+ j2

b2

�2 sin
�
i�x1

a

�
sin

�
j�x2

b

�
:

It is supposed that a = 100b; i.e. D is a thin elastic strip. The intensity of normal load

f is assumed to be concentrated in a point x0 :

f(x1; x2) = Æ(x1 � x
0
1)Æ(x2 � x

0
2): (5.2)

The numerical solution of the problem (5.1), (5.2) is constructed on some bounded domain
~D � D:

The calculations were made for a = 100; b = 1; x01 = 50; x02 = 0:5: ~D = [49; 49:2]�[0:5; 0:7]:

The trajectories start from the point x0 with probability 1.

The calculation results for di�erent error levels � with optimal values of the parameters

are given in Table 3. Here the error of interpolation Æi (and the total error Æ) was estimated

by using the di�erence between the exact solution and solution interpolated over exact

value in grid nodes (or over approximate value, respectively) at 103 random points from
~D: Other notation in this table are coincident with those of Table 1. The results presented

in Table 3 show that the total error does not exceed the permissible level �:

This numerical experiments give evidence that the optimal relation between parameters

can be used e�ciently for approximating the solution even on a small subdomain of an

unbounded domain.

Table 3: Testing of the optimal parameters.

� 105 Nopt

q
Mopt "opt10

4
� 105 Æs 10

5
Æi 10

5
Æ 105 t

5 1996507 4 3:15 2:38 1:42 2:21 2:18 21:5

2:5 7930765 5 1:47 1:20 1:15 1:28 2:45 108

1 49178864 8 0:54 0:48 0:02 0:42 0:43 1170

0:5 195705024 11 0:26 0:24 0:26 0:20 0:44 7458

6. Conclusions

We consider the functional algorithm of Monte Carlo method for solution of biharmonic

equation in the whole on some domain ~D which uses the fundamental solution and the

Walk on Spheres process. We construct a uniform rectangular grid on the domain ~D; use

the global algorithm of Random Walk on Spheres to evaluate the values of the solution

in the grid nodes and then construct an interpolation.
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We construct the upper error bound depending on a parameters M (the number of the

grid nodes), N (the sample size) and " in the metric of continuous function space C.

We formulate and solve optimization problem which consists in minimization of the cost

function provided that the upper error bound equals to a some permissible error level �:

It is shown that the asymptotically optimal cost value is of the order Sopt = O(��3):
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