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Abstract

We consider the stochastic heat equation in dimension one with singular drift and
driven by an inhomogeneous space-time white noise whose quadratic variation measure
is not absolutely continuous w.r.t. Lebesgue measure, neither in space nor in time.
Under various assumptions we give statements on strong and weak existence as well
as strong and weak uniqueness of continuous solutions.

1 Introduction

We consider the following stochastic partial differential equation (SPDE)

0 o(dzdt) 0?
au ~dodi (z,t) + a(t,a:,u(t,a:))&vat

u(0,z) = n(z), zeR, t>0 (1.1)

(tz) = %Au(t,m) +b(t, 7, u(t, 7)) w(z, 1)

whose precise meaning will be given in Definition 2.1 below. Here A = 3‘9—;, a and b :
[0,00) x R x R — R as well as n : R! — R are continuous functions, o(dzdt) and o(dzdt)
are positive o-finite Borel measures on R! x [0, ), Ugizd‘?) is the density - possibly only
existing as a generalized function (distribution) - of o(dzdt) and w? : R! x[0,00) xQ — R is
an inhomogeneous two-parameter Brownian motion on R! x [0, 00) based on o(dzdt). The
latter object is characterized by the relation We((z,z'] x (t,t']) = we(z',t") — wo(z,t') —
wl(z',t) + w(z,t) where W2 is a white noise "measure” based on o(dzdt), that is a real-
valued random function on the algebra A = U,>1B([—n,n] x [0,n]) C B(R! x [0,00))
satisfying

o We(A) ~ N(0,0(A)) for all A € A,

o We(A),W?2(A’) indep. and We(AU A") = W2(A) + We(A') for disjoint 4, A’ € A.

In [Wal86], p.269, W? is well-constructed as a Gaussian process on A. Note that in
a formal sense, w? is to be associated with the ”distribution function” of W¢ and
we(z,t) = %w"(m,t) with the ”density” of W¢. The latter is usually called white
noise and coincides with W¢ in distribution sense. If o(dzdt) = o(dzdt) = dzdt, then
Ugiwd‘it) (z,t) =1 and w? becomes just the homogeneous two-parameter Brownian motion

w on R! x [0,00). In this case equation (1.1) turns into

] 2
ot w0t
u(0,z) = n(z), t€eR, t>0 (1.2)

(t,z) = %Au(t, x) + b(t,z,u(t, z)) + a(t,z,u(t, z)) w(z,1)

and has been studied several times - under various assumptions - w.r.t. existence and
uniqueness of continuous solutions ([Wal86], [Iwa87], [KS88], [Rei89], [MP92], [Shi%4],
[Myt98]). Also note that, in the sense of Definition 2.1 below,

2 32

aiatwg(x,t) = \/g(x,t)mw(x,t) (1.3)
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whenever p(dzdt) has a properly regular dzdt-density o(z,t).

One motivation to study equation (1.2) is the link to population systems. For example,
if b=0 and a(t,z,u(t,z)) = /o(z,t)u(t, x), equation (1.2) describes the evolution of an
infinitesimal system (high-density/short-lifetime limit) of critically branching Brownian
particles where the branching intensity of an infinitesimal particle being at position z at
time ¢ is given by p(z,t), see [KS88], [Rei89] or [MRC88]+[MP92]. Here the medium
o(.,.) was assumed to be a regular function. But media occurring in nature often have a
more fractal shape, particularly they only can be modeled as a singular measure o(dzdt).

For our example this means that the branching intensity is given by g(d'izd'it) (z,t), which
does not have a rigorous meaning any more, and that the particle system heuristically
evolves according to equation (1.1) with b = 0 and a(¢, z,u(t,z)) = /u(t,z), formally
justified by (1.3). In case o(dzdt) = oi(dz)dt, the corresponding infinitesimal particle
system has been characterized ([DF91]) as a measure-valued process (% (dz)):>0, the so-
called catalytic super-Brownian motion. On the one hand, a continuous solution to SPDE
(1.1) with mentioned a and b, provided it exists one, is the dzdt-density of u.(dz)dt.
This can be checked using the characterization of 4;(dx) as unique solution to a certain
martingale problem (cf. Proposition 2.6 of [Zdh02]). On the other hand, it was established
in [DFLM95] that for g;(dz) = d.(dz), ¢ € R® fixed, i;(dz)dt is singular w.r.t. dzdt.
Consequently, we will not get a continuous solution to SPDE (1.1) with mentioned a and
b for all measures o(dzdt) = pi(dz)dt. However, as demonstrated in [Z&h02], there is
a broad class of singular non-atomic measures g;(dz)dt for which @;(dz)dt possesses a
continuous dzdt-density solving SPDE (1.1) with b = 0 and a(t, z,u(t,z)) = /u(t,z).
Indeed, p¢(dz) only has to satisfy the following assumption on the concentration of local
mass

da € (0,1]VT > 03cr >0:  sup sup pi(B(z,7r)) < cp r® Vr € (0,1]
t<T zeR!

where B(z,r) is the open ball with center = and radius r, that is (z — r,z + r).

In the present paper we worry about solutions to SPDE (1.1) with more general co-
efficients (than b = 0, a(t, z, u(t,z)) = \/u(t,x)) under similar conditions on o(dzdt) and
o(dzdt). For instance, assuming o(dzdt) < g1(dz)p2(dt) and o(dzdt) < o1(dx)oq(dt)
(1 < v means p(A) < v(A) for all Borel sets A) as well as

1
Jday, ag, f1, B2 € [0,1] with % +ag > 1, % + B2 > 2 such that VT' > 03dcr > 0:

sup 01(B(z,r)) < cr*, sup 02(B(t,r)) < cr r*?, Vr € (0,1] (1.4)
zeR! t<T

sup o1(B(z,r)) < c P, sup oo (B(t, 1)) < ep 72, Vr € (0,1]

z€R! t<T

we can establish strong solutions and strong uniqueness for Lipschitz-continuous a, b and
weak solutions for continuous a, b. For the exact condition see Definition 2.3 below.

We conclude this chapter with examples for measures g(dzdt) and o(dzdt) matching
(1.4). Tt is easy to see that all p(dzdt) that can be bounded by a multiple of the Lebesgue
measure dzdt, at least on compact time sets, fulfill (1.4). But o(dzdt) does not need to



possess a Lebesgue density. Indeed, let Cy(dx) be the ” Cantor measure” on, say, [0, 1] with
index A € (0, %) This measure is supported by an uncountable unification of single points
(A-Cantor set C(A), cf. [Mat95] 4.13) and possesses no atoms. In fact, Cx(.) = H7(C(A)N.)
where 17 is the y-dimensional Hausdorff measure and vy = |log 2|/|log A| the Hausdorft-
dimension of C(X) = supp(Cy). Cx(dz) has clearly no Lebesgue density. Furthermore, see
e.g. Theorem 4.14 of [Mat95], there exist 0 < ¢ < C such that for all z € supp(C,),
cr? < Cx(B(z,r)) < Cr7, Vre(0,1].

Therefore, o(dzdt) = Cy,(dz)Cy,(dt) satisfies (1.4) whenever A1, € (0,3) such that
|log2|/|21log A\1| + |log2|/|log A2| > 1. Note that for ¢ > 0, v € (0,1) and a Borel
measure £i(d€) on R, supecgypp(u) H(B(E;7)) < cr7 respectively infeegypp(u) p(B(E;7)) >
cr?, r € (0,1], implies that the Hausdorff-dimension of the support supp(u) of u(d€) is
at least respectively at most vy, see Theorem 5.7 of [Mat95]. The mentioned measures can
also be taken as examples for o(dzdt). Moreover, we observe the remarkable fact that

o(drdt) may have spatial atoms (8 = 0). For instance, o(dzdt) = do(dz)dt and even
o(dzdt) = §o(dz)Ch, (dt) with By := |log2|/|log Xo| > & fit into (1.4).

2 Preliminaries and main results

Let us give a precise meaning to SPDE (1.1). In case o(dzdt) = dzdt, for instance, w?(z,t)
is known to be continuous in (z,t) but not differentiable in ¢ and Ugiixd‘?) (x,t) does not
need to be a function in ¢. So one might tend to regard (1.1) as a bunch of integral
equations involving Ito-integrals. However, since w?(z,t) is not differentiable in z and
Usi‘fd'it) (z,t) does not need to be a function in z either, (1.1) will be understood in sense of
Schwartz distributions. To do so one has to be able to integrate against w?(dz, dt) which,
by the known unbounded variation of w?(z,t), is not a signed measure. The way out is
a generalization of the It6-integral for the space-time case, the so-called Walsh-integral.
For a rigorous development of this theory see [Wal86]. The Walsh-integral is a stochastic
integral having worthy martingale measures as integrators. We denote the quadratic
variation measure of an orthogonal martingale measure M by (M)(dzdt) and the stochastic
integral of a proper f against M by feM. We also set fg [ f(r,y) M(dydr) = (feM)(B).
Note that the white noise "measure” W¢ from Chapter 1 induces an orthogonal martingale
measure, denoted by W¢ either, with (W?)(dzdt) = o(dzdt). The probability domain of
W will be denoted by (2, F, (F)i>0, P) where (F;)¢>0 is a filtration in F satisfying the
usual conditions.

In the sequel, ¢ will always refer to a finite positive constant that can vary from place
to place. Possible subscripts of ¢ stress the dependence of ¢ on these subscripts. If we
explicitely want to emphasize the possible difference of constants in front of different
terms, then we write ¢ or ¢ instead of c. Let C(R!) be the space of real-valued continuous
functions on R' and Cj respectively C, the subspace of bounded functions respectively
functions with compact support. Superscripts + and oo refer to the positive functions
respectively functions having derivatives of any order. Furthermore, we introduce the




subspaces of tempered functions as well as rapidly decreasing functions

Crem = {¢ € C(R"): [1h|(_y) < oo for all A > 0}
Crop = {p€C@R"): |¢\(A) < oo for all A > 0}

where |1M()\) = ||e)‘|'|1/)||oo, A € R and ||.||c is the usual supremum norm. Cie,, and
Crap can be topologized by the metrics diem(d, %) = D pei 27%(|¢ — ¥|(—1/k) A 1) and

drap(d,9) = k(g — Yl (1/k) A 1), respectively. S := CPp, will play the role of the
class of test functlons For proper functions ¢ and 1 on R! set (¢, ) = Sz o( x)dz.

Definition 2.1 (strong and weak solution to SPDE) A Ciem-valued continu-
ous process (u(t,.) : t > 0) is said to be a strong solution to SPDE (1.1) if, given the
noise (0, F, (F), P, W?), it is (F;)-adapted and

t
(ult. 1) = () + [ (ulr). GA0dr (2.5
t
/ MW,Tww@wwwﬂ+//UmemmW@W%wm
R 0 R

for allt >0 and ¢ € S, P-almost surely. We say u is a weak solution to SPDE (1.1) if
one can find any noise (Q, F,(F:), P, W?) such that u is (F;)-adapted and (2.5) holds.

Definition 2.2 (strong and weak uniqueness of solutions) A solution to SPDE

(1.1) is said to be strongly unique if for any two solutions u and u' w.r.t. a given noise
(Q,F,(F),P,W9), u(t,z) = u'(t,z) for allt > 0 and z € R*, P-almost surely. We say a
solution is weakly unique if any two solutions coincide in law.

Next we are going to pose what sort of measures o(dzdt) and o(dzdt) will be considered.
Let M(R!) be the space of positive Borel measures on R! and equip

Muni == {p € M(R) : Sélﬂg u(B(z,1)) < oo}

with the vague topology.

Definition 2.3 (classes (MD) and (MN)) A positive Borel measure p(dzdt) =
p1(t, dz)ps(dt) on R x [0,00) is said to be of class (MD) (respectively (MN)) if 1 is
a measurable kernel from [0,00) into Myni, po(dt) a positive Borel measure on [0,00) and
if there are ay, a9 € [0, 1] such that for all T > 0,

(i) sup;<p Supgerr p1(t, B(w,r)) <ecr r* Vr e (0,1],
(i§) supyep pa(B(t,7)) < er 72 Vi € (0,1],
(iii) %+ ag > 3 (respectively & + ap > 1).

Note that (MN) C (MD) and that (MN) requires a;y, a9 > 0. For the sake of simplicity
we henceforth only work rigorously with product measures pu(dzdt) = pq(dz)ps(dt), that
is p1(.,dz) = pi1(dz). However, all proofs in the sequel can trivially be extended to the
general case. Let us now turn to our main results.
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Theorem 2.4 (strong existence and uniqueness, Lipschitz case) Assume a and b
are continuous and satisfy

VT >03cr >0: |a(t,z,u)| + |b(t,z,u)| < cp(l+|u|) Vi<T,zcR,ucR (2.6)
as well as
VI'>03Lr >0: Vi<T,zeR'.uu eR:
la(t,z,u) — a(t,z,u')| + |b(t, z,u) — b(t,z,u')| < Lr|u — | (2.7)

Let o(dzdt) be of class (MN) with oy, aq, o(dzdt) of class (MD) with By, B2 and n € Ciep,-
Then SPDE (1.1) has a strong solution which is strongly unique. Moreover, the solution is
locally Hélder-y-continuous for all y € (0, $AB) where v := G +ag—1, §:= %+/82—1/2.

Theorem 2.5 (non-negativity) In the setting of Theorem 2.4 assume additionally n €
Cit.. and

a(t,z,0) =0, b(t,z,0) >0 Vt>0,z € R (2.8)
as well as
3Jk>0VT >03Lr>0: Vi<T,z,z' e R, u,u' €R:
la(t, z,u) —a(t,z’,4')| + |b(t, z,u) = b(t,2',u')| < Lr(lz — 2| + |u — u']) (2.9)

instead of (2.7). Then we have for the unique solution u(.,.) from Theorem 2.4,
u(t,r) >0 Vt>0,z € R, P-almost surely. (2.10)

Theorem 2.6 (weak existence, non-Lipschitz case) Consider the case a(t,x,u) =
a(u), b(t,z,u) = b(u) continuous and assume condition (2.6), i.e.

Jec>0:  J|a(u)| +[b(u)| <c(l +|u) VueR (2.11)

Furthermore, let o(dzdt) be of class (MN) with a1, as, o(dzdt) of class (MD) with (1, B2
and n € Ciemy. Then SPDE (1.1) has a weak solution being locally Hélder-vy-continuous
for all v € (0,5 AB) where a := G +a2 —1, B := % + B2 — 1/2. If we additionally
assume 1 € C;. . and condition (2.8), that is a(0) = 0 and b(0) > 0, then the solution is
non-negative in sense of (2.10).

Note that a and b in Theorem 2.6 could also depend on ¢ and z. In that case just make
sure that they can be uniformly approximated by functions that fit into Theorem 2.4.

In the Lipschitz case, strong uniqueness of solutions can be obtained comparatively
easily. In the non-Lipschitz case, however, the question of uniqueness becomes much more
delicate. While statements on strong uniqueness do not exist so far, weak uniqueness could
be established, e.g., for equation (1.2) with b = 0, a(t,z,u) = u” and v = 3 ([RC86]) or
v € (3,1) ([Myt98]). We now focus on equation (1.1) with b = 0, a(t,z,u) = \/u and
o(dzdt) = p1(t,dz)dt since here, as already mentioned in Chapter 1, the solution is the
space-time Lebesgue density of the catalytic super-Brownian motion with catalyst o.



Theorem 2.7 (weak uniqueness, catalytic super-Brownian motion)
Consider n € Cyt,.. and o(dvdt) = o1(t,dx)dt of class (MN). Then the (non-negative)
weak solution to SPDE (1.1) with b= 0 and a(t, z,u) = \/u is weakly unique.

The remainder of the paper is organized as follows. In the next chapter we give a series
of technical lemmas. In Chapter 4 we shall establish the equivalence of SPDE (1.1) in
sense of Definition 2.1 to a certain martingale problem and to a certain stochastic integral
equation. Chapters 5, 6, 7 and 8 are devoted to the proofs of Theorems 2.4, 2.5, 2.6 and 2.7,
respectively. Note that Theorems 2.4 and 2.6 were proved by Iwata [Iwa87] (under some
stronger assumption on the coefficients) and Shiga [Shi94] (under the same assumptions
on the coefficients) for SPDE (1.2). See also [MP92]. Shiga ([Shi94], Appendix) verified
Theorem 2.5 for SPDE (1.2). The key for the proof of Theorem 2.7 is the method of
duality.

3 Technical lemmas

Here we are going to provide basic tools for the proofs of our main results. We start with
a result from [Iwa87], Lemma 5.4; see also [Shi94], Lemma 6.3. Note that C([0,77], Ctem,)
denotes the space of Ciep-valued continuous functions on [0,7] and that a sequence of
random elements is called tight if the sequence of their laws is tight.

Lemma 3.1 (Kolmogorov-type criterion) (i) A stochastic process (u(t,z) : t €
[0,T],z € R') has a Ciem-valued continuous modification if for every X > 0 there are
constants m,e,cy > 0 such that

E [|u(t, ) —u(t!, x')|m] < e (|t 2 g — x'|2+f) e

for all t,t' € [0,T] and z,2' € R' with |z — 2’| < 1. In this case, u is locally jointly
Holder-y-continuous for all v € (0,€e/m).

(ii) A sequence (up)p>1 0f Crem-valued continuous processes (un(t,z) : t € [0,T],z €
RY) s tight in C([0,T), Ctem) if the sequence (u(0,.))n>1 is tight in Ciem and for every
A > 0 there are constants m,e,cy > 0 such that

E[un (t, 2) = un(t,")"] < ex (|t = 27 + o — o' 2€) A

for all t,t' € [0,T], z,z' € R with |z — z'| <1 and n > 1. In this case, any limit point u
of (uy) s locally jointly Holder-y-continuous for all v € (0,¢/m).

The statements on the local Holder-continuity are not explicitly given in [Iwa87] or
[Shi94] but they can easily be verified using the classical Kolmogorov theorem, see e.g.
Corollary 1.2 of [Wal86].

Lemma 3.2 (continuity of W?) Let o(dzdt) be a positive Borel measure as in Defini-
tion 2.3 with a1,y > 0 instead of (iii) (that is for exzample of class (MN)). Then, the
orthogonal martingale measure W€ from Chapter 2 is a continuous one. Particularly,
the stochastic integral f ¢ W@ is a continuous orthogonal martingale measure for every
predictable f : [0,00) x R x Q — R with E[f(f Jg1 F2(r,y)e(dydr)] < oo Vt > 0.



Proof Consider a bounded Borel set B in R, 7" > 0, 0 < t < t/ < T and recall
WZe(A) ~ N(0,0(A)). Then, for m > 1,

B[|weB) - Wt‘;’(B)‘m] = B[|we(B x (1,1) " < epalt — e,

Hence, for m sufficiently large, Kolmogorov’s theorem gives a continuous modification of
We(B) on [0,T] for every T > 0. O

Lemma 3.3 (Burkholder-Davis-Gundy - type inequality) Let o(dzdt) be a posi-
tive Borel measure as in Lemma 3.2. Then, for every (F;)-predictable f : [0,00) xRt x Q —
R with E[fot Jg1 F2(r,y)o(dydr)] < oo Vt > 0 and for every m > 1,

B([ [ sowetaan) ™) <can[( [ [ Fevetdnin)] vizo

Proof The statement is an immediate consequence of Lemma 3.2 and the Burkholder-
Davis-Gundy inequality for continuous square-integrable martingales. O

The simple proof of the next lemma can be found, for instance, in [Mat95], p.15.

Lemma 3.4 (change of variable) Let u(dx) be a Borel measure on R and g : R — R,
Borel-measurable. Then,

/ g(z)u(dr) = /OO plx € R: g(z) > u)du.
R1 0

Lemma 3.5 Consider yui(dz) € Myp;, a1 € (0,1], € RL, v > 0 and
(1) p(B(z,r)) <cr®t vre(0,1]

(z—y)*

(ii) Jgne  + m(dy) <cr*/? vre(0,1]

)2

(i1) [g1 |z — y|7e*(x7ry p1(dy) < ¢, r/2eal2 vr e (0,1]

(z—y)*

(iv) supgegr e N foie + ey (dy) < ey r*/2 v e (0,1]

' @'~y
(v) SUPgcR1 SUPyerr e M le= Al [, e~ P ey (dy) < ey v /2 e € (0, 1].

Then, (i) < (i4) = (ii1). Moreover, when (ii) holds uniformly in x on R', (i) = (iv), (v)
for every A > 0.

Proof (ii)=-(i) Assuming (i7) we trivially get for all r € (0, 1]

- — _@-p)? a
e p1(B(z,v/r)) = /Rl e g, yr (Y (dy) < /Rl e pa(dy) < e/,



(i)=(ii) Using Lemma 3.4, one easily calculates

_@=w)? o0 _ @y’ ! Ly1/2
e pi(dy) = ; pr(y:e 7 >u)du= ; p1(B(z, (rlog —) /7)) du.

u
Substituting s = log%, applying (i7) and noting that po(dt) behaves globally as the
Lebesgue measure dt, we get for r € (0,1]

/ S iy (dy) = / " e ua(Blo, v/ar))ds
R 0

1 [ee)
S/ c(sr)a1/2ds+/ e Scy/srds < cra1/2+c\/7_" < cro/2,
0

1

(i)=(iii) For the sake of clarity assume y = 2, the proof for general v works analo-
gously. Then the integral in (i4i) equals

- (z=y)” r/e —y? (z—9)?
/ ’“(y: o —ylfem T > “)d“ :/ ul(y: kool ry| e > ﬁ)du.
0 0

r

According to the elementary inequality 22e %’ < e *, z > 0, the latter term is bounded

r/e eyl oy
/ w1 (y e VT2 —)du
0 T

r/e r r/e r
< / M1 (y :Vrlog— > |z —yl)du = / ul(B(x,\/Flog —))du.
0 U 0 U

Substituting s = /7 log T, the inequality continues for r € (0, 1]

oo 1 oo
< / p1(B(z, 8))vre */Vids < \/F/ cso‘le_s/ﬁds+\/7_“/ cse ¥ Vds
VT VT 1

oo oo
< c,r1+a1/2/ aale“da+cr3/2/ ae %a < C7‘1+a1/2.
0 0

(ii)=(iv) Setting pf(dy) = p1(z + dy) and using the assumption,

L - ~a0® \(ly|-Ja]) Alz|
€T e p1(dy) e e p1(dy)e
R

Rl
_(z—y)? _ _y?

< [ e e = [ ety

R! R!

00 (-3 (3rx)? 0 (y+1ra)2 (5rn)?
= [Tt e T ey [ g

0 —00
< oy ra/? Al



(ii)=(v) First estimate

(' —)? G _
/ - 2 Al (dy) = / e~ T =12 1 ()
R

R1
-2 Ay Nal 0% Al [+[o'—y)) Nal
< [er et mldy)et < | em e W (dy)e
R R
G N Mz—a'| Ae|
< e” e Yipi(dy)e el
R1

then proceed as in the proof of (i7) = (iv). O

Lemma 3.6 Consider ag € (0,1] and a Borel measure ua(dt) on [0,00) with us([0,T]) <
oo for all T > 0. Then,

(0) suprepiry 2 (B(t.7) < r 1 ¥r € (0,1]
implies the following inequalities for all 0 <t < T
(i) f(f r Tpg(dr) <ept®™ Vye€l0,az)
i tr_7,uz dr) <cru®?™ Yo<u<t Vv€ (ag,)
u
iii) [ e pa(dr) < cp 192 (09 4 (1 — 6)2=7) VO € (0,1],7 € [0,a2),6 > 0
0 (t—r)7
(iv) fOT e Mua(dr) <ery~* Vv >0.

Proof (i) Using Lemma 3.4,

/Ot r Tus(dr) = /000 o (r 1 g(r)r 7 > u) du < /0?57 p2([0,t])du +

/ o (0,41 N [0,u71))du < 7ep 122 + / > (10,4717 du.
o =

A substitution v = u~1/7 yields the bound
i t
cr t47 4+ / 142 ([O, v])'yv*"rfldv =crt® T +ep fy/ v My < o t2277.
0 0

(ii) can be proved analogously to ().
(iii) Setting pb(dr) = us(t — dr) one easily estimates

t 7,.5 ot 7"5 : 7-5
/0 muz(dr) S/O muz(dr)Jr/at mm(dr)
% /0 (@2 /9 =y ren)

o [ Lutamae [ L
o [, st 0 [ k)

VAN

IN
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Part (i) gives the bound (6t)%cpt®> ™7 4+ tdep((1 — 0)t)*2 ™Y < crt®2=7(00 + (1 — 9)*277).
(iv) With help of Lemma 3.4 one gets

T 00 1 1 1
e " uo(dr :/ r:1 e " > dug/ 0,7 A —log —] )du.
/0 p2(dr) ; u2< 0,77() ) e ([ - o u])
Substituting v = log %, this can be bounded by

/000 W2 ([O,T A %v])e_”dv = /0

Ty 1 as
< / CT(—’U) e Vdv+cr T / e Vdv < ery T +op T®e 1Y < CTyar ¥~ 2
0 Y Ty

Ty

7 ([O,T A %U])e_”dv + /T:O ug([O,T A %U])e_”dv

where for the last inequality the estimate e 77 < CTap Y ¥ Vy > 0 was used. O

Before turning to the next lemma let us introduce the heat semigroup (P;)s>o correspond-
ing to 2A. It is induced by Pytp(z) = Jzi pe(z,y)p(y)dy, t > 0, z € R' and 9 € Gy, where

. . . (@—9)>
p is the heat kernel given via p;(z,y) = (2nt)~1/2e~ % ,t>0and z € Rl. We set

p; =0, t <0, and recall a known inequality. For every € >0, 0 <t < t' and z,y € R,

t! 1
i(o.0) ~ Pl )l << [ Lpian(e )i (3.12)
t

Lemma 3.7 Let o(dzdt) be a Borel measure on R x [0,00) of class (MN) with a1, s and
o(dzdt) a Borel measure on R' x [0,00) of class (MD) with (1, B2. Set a:=a1/2+as—1,
B =1+ P—1/2 and p, := 0, u < 0. Then for all (t,z),(t',z') € [0,T] x R with
t—t|<1, |z —42'| <1, wlo.yg t<t,

t 2
|| (o) = por(@' ) “eldir) < cr (e =17+ o —a'P7), (313)
0 R

I

Proof We only prove (3.13). (3.14) can be obtained analogously. The Lh.s. of (3.13) is
bounded by

Pior(@,) = o1 (@', 9)|o(dydr) < er(jt =21 + 1o —a'[).  (3.14)

/ ' / (ptur(w’,y) —ptur(w,y))Qg(dydr) (3.15)
0 R1 I
+ /0 /Rl (pt’—r(x,y) —pt—r(fﬂ,y)>29(dyd7") +/t /Rl Py (z,y)o(dydr).

The last term in (3.15) can be estimated, with help of Lemma 3.5 (47), by

o *(if_y)z p < t y a1/2, (g
o[ ot [ T alet) <c [ e -0

10



which, by Lemma. 3.6 (i), is dominated by cp|t — t'|*1/2Fe2 =1 = ¢cp|t — /|,
The middle term in (3.15) equals

t—[t—t'| 9
pr—r(2,y) — pt—r(z,y) ) o(dydr) (3.16)
[ L )

/tttt,| /]R1 (pt’—r(-’E,y) —pt—r(w,y))2g(dydr).

The second summand in (3.16) can be estimated by

t 2
1 / _(z—y)
c ( et p1(dy)
/t—|t—t’| t—7 Jr

1 @-y)?® 1 _@=p?
+ t,_T/Rle 7= p1(dy) + t_T/Rle “‘“‘”Ql(dy))m(d?“)

and so, again using Lemma 3.5 (i7) and Lemma 3.6 (i), by cp|t — t/|*. Let € > 0, then
inequality (3.12) bounds the first summand in (3.16) by

/t |t— tl/}Rl /i—r 1 1+6)u( ,y)dU)2g(dydr)_

Once more exploiting Lemma 3.5 (i7) as well as Lemma 3.6 (77), this can be estimated by

Gt e
. / / ( / e M T)du) 01(dy)o2(dr)
0 Rt Ny w2
t—[t—t'| t'—r 1 2 __@ow)?®
< C/ (/ S—du) / ¢ e
o vp u3/2 R1

T

g C/Ot—t—t’l ((t B 7“)_1/2 . (t' _ T)_1/2)20T(tl _ r)a1/292(d1")

< e [ A
- (t—r)(t' —r)

t—|t—t'| 1
< er |t—t|/ e al/QQQ(dr) < eplt -t~

Therefore, (3.16) is dominated by cp|t — ¢/|*.
The first term in (3.15) is smaller than

t I_, N2 2
1 _ (@ —y) _(=z—y)
c/ ; / (e T e T )Q(dydr) (3.17)
tli‘$7$l‘2 th—r R

t—|z—a'|? 1 (@ —y)? C@=p)2\ 2
+ c/ i r/1 (e 2(# -1 —e 2“’—’")) o(dydr).
0 —rJr

Using Lemma 3.5 (i4) and Lemma 3.6 (7), the first summand in (3.17) can immediately
be bounded by cr|z — z'|?*. According to the mean value theorem for differentials, the

11



second summand in (3.17) has the bound

t—|z—z'|? 1 |£E— (@—y)2\ 2
! y‘ =)
[ A [ (e B

for some Z between z and z’. But by Lemma 3.5 (i44) and Lemma 3.6 (4¢) this is dominated

t—|z—a'|? 1
erle — $I|2/ (7(75' — 7)1 /2 gy (dr)
0

t—r)3
Yl A 2o
SCT|:C—$|W/O mgg(d?‘) < erlr — '
Altogether we have the desired bound for (3.15), i.e. for the Lh.s. of (3.13). 0

Lemma 3.8 (Gronwall-type lemma) Consider Borel measures ub(dt) on [0,00) satis-
fying p5([0,T]) < oo and (o) of Lemma 8.6 with o € (0,1] for all T >0, 1 <i <k and
some k > 1. Moreover, let g and g, : [0,00) — [0,00) be measurable functions Vn > 1
with g, g1 bounded and consider v* € [0,a%) (1 <i<k), co >0 such that

k

S 1 .
1) < e ga(r)Hid VE<T,n > 1,
g1 () < er (e + ;s;g;/o o=y In ) <Tn>

k
g(t) <cr (CO + ; sup /OS ﬁg(ﬂué(dﬂ) Vt <T.
Then for every T > 0 there is a constant q € (0,1) such that

(i) sup;<r gn(t) <érco + er ¢" Vn2>1,

(i) supy<p g(t) < ér co.

Note that the followmg proof also works (with the obvious changes) if one replaces

SUPs<; fo . r)v’ --- by fo t )7@ --- in the assumptions of the lemma.
Proof Set § = min{ad —+*:1 <4<k} > 0. By assumption g, 11(¢) is bounded by
k t1 1 zk: to 1
cr (Co + sup / VYT cr (co + sup / —_—
112::1 tegJo  (t1 —s1)7" P taeo,s1] /0 (t2 — 82)7"7
k th—1 1
Z cr (Co +  sup / P (3.18)
in_1=1 tn—1€[0,5n—2] /O (tn1 — 8n—1)"
k t 1 . .
D er (CO +  sup / i 91(sn)uy (dsn)) "')MZQI (ds1).
in=1 tn€[0,5n-1] JO (tn - Sn)7

12



Since g1 is bounded, Lemma 3.6 (i) bounds supy,cpo,s,,_;] fot” ﬁm(sn)ug’l (dsn) by

) . (tn—5n)
c szz_nl_wn < érs®_,. Hence, (3.18) can be estimated by
k t1 1 k ts 1
cr cr (co + sup / —_— cr (co + sup / —_—
; nepgJo  (t—s1) ; el Jo (2 —52)7”
k tn72 1 k
> oer (00 +  sup / — 3 e (3.19)
in_o=1 tn—2€[0,5n-3] 40 (tan - 3n72)7 in_1=1
fn= 1 4 in—1 i1
(co + sup —ker(co + sp_1)py (dsn_1)> . ')Mz (ds1)

tn—1€[0,5n—2]J0 (tn—l — 3n—1)7

The expression in the most inner brackets is dominated by [co + (ker)cosd o +
(cker)s? ,(6° + (1 — 6)%)] for every 6 € (0,1). For the second summand we again used
Lemma 3.6 (i), for the last summand we applied Lemma 3.6 (i74). The same steps bound
the expression in the next brackets in (3.19), i.e. the expression in the brackets containing
the [ *-integral, by [co+ (cker)cosd_g+ (cker)?cos2 (6% +(1—0)) + (cker)?s3 4 (6% +
(1—8)°)(0° + (1 — 6)°)]. Going ahead recursively one estimates the term in (3.19) by

&rco [(cch) + (cker)2t® + (cker )3t (95 +(1- 9)5) + (cker)t3 (025 +(1- 9)5)

X (06 r(1- 9)5) + ..+ (chep)m =1 (901*1)5 +(1- 9)5) s (95 +(1- 9)6)]

+er(ckep)™ (9"5 +(1- 9)5) (em—l” +(1- 0)5) (95 +(1- 0)5). (3.20)

Now choose 6 € (0,1) sufficiently close to 1 and note that 679 is sufficiently close to 0
for all j greater than some sufficiently large jo. Thus, for some ¢ € (0,1), (3.20) can be
estimated by

00
CT,5o CO [1 +q+ q2 + q3 + ...+ qnil] + CT’joqn < CT,50C0 Z qi + q" < ércoy + 5an
1=0

for all ¢ < T, which proves part (7). Assertion (i) is an immediate consequence of (3).
Indeed, set g, = g for all n > 1. O

4 SPDE (1.1) reformulated

In this chapter we establish the equivalence of SPDE (1.1) to a certain martingale problem
(MP) and a certain stochastic integral equation (SIE).

13



Definition 4.1 (martingale problem) The law on some (2,F,(F:)) of an (F)-
adapted, Ciem-valued continuous process (u(t,.) : t > 0) is said to be solution to the
(a,b,n)-martingale problem if under this law

t 1 t
M) = (ult ) = 0.8) = [t g0 = [ [ sutrn)i)o(ayar),

t > 0, is a square-integrable continuous (F;)-martingale having

M= [ [ ot ety

t > 0, as its quadratic variation process for all v € S. The solution is said to be unique if
any two solutions coincide (in law).

Recall that (P;) was the heat semigroup defined before Lemma 3.7.

Definition 4.2 (stochastic integral equation) Given the noise (Q,F,(F:),P,W?),
an (Fy)-adapted Ciem-valued continuous process (u(t,.) : t > 0) satisfying P-almost surely

t
utis) = Pnfe)+ [ [ preslon)blr g, utrn)otdyar) (4.21)

t
+ [ perle vl ulr )W dydr) ¥t 202 € X
0 JRr!
is called solution to SIE (4.21). The solution is said to be unique if for any two solutions u

and u' w.r.t. a given noise (Q, F,(F;),P,W?), u(t,z) = u'(t,x) for allt >0 and z € R,
P-almost surely.

Proposition 4.3 (equivalence SPDE, MP) Every weak solution to SPDE (1.1) in
sense of Definition 2.1 is a solution to the (a,b,n)-martingale problem and vice versa.

Proof Let (Q,F,(F),P,W? u) be a weak solution to SPDE (1.1). Then, for all ¢ € S,
t
M) = [ [ atriputr )Wy

t t
= () ) = ) = [ ) gAvdr = [ [ seputra)p)otaydn)

provides a continuous square-integrable martingale with quadratic variation process

t t
)= [ [ @t )W) dvar) = [ [ et @etdydn).

Conversely, let (2, F, (F;), P, u) be a solution of the (a, b, n)-martingale problem. The
family (My(1)) of continuous martingales induces a continuous orthogonal martingale
measure, say M. Then, for all y € S and ¢t > 0,

t
Mi() = /0 [ )M dyir) P-us (4.22)

14



Consequently, by the form of the quadratic variation process of (M;(1))¢>o0,

(vou)(B x(0,4) = /0 t [ @0t etdyin) Pas. (@29

for all v € S and t > 0. Note that the stochastic integral is well defined since
(M()): € L*(P) Vt > 0 which follows from the continuity and the square-integrability
of M (1) as well as the Doob-Meyer decomposition theorem. Now pick an orthogonal
martingale measure W¢ being independent of M and having quadratic variation measure
(W) (dzdt) = p(dxdt), if necessary on an enlargement of u’s domain (Q, F, (F;),P). Set
forall¢p € Sand t >0

t
th(w) :/0 - ¢(?J)1a(r,y,u(ﬁy))¢0 al

oy ulr,y) L)

t
+/ '(/)(y)la(r,y,u(r,y))ZOWg(dyd'r)'
0 JR!

Then, using (4.23), it is easy to verify that W¢ provides an orthogonal martingale measure
with (W) (dzdt) = o(dzdt) and satisfying

My() = /0 [ bWty ur )W (dydr) Poas.

for all p € S and ¢ > 0. Since u is a solution of the (a, b, n)-martingale problem, it follows
that u is a weak solution to SPDE (1.1). O

Proposition 4.4 (equivalence SPDE, SIE) Assume (2.6) and for all T >0 and p €
{o,0}, supicpsupyerr p(B(z,1) x B(t,1)) < co. Then, every strong solution to SPDE
(1.1) in sense of Definition 2.1 is a solution to SIE (4.21) and vice versa.

The proof goes along the lines of the proof of Theorem 2.1 of [Shi94] with the obvious
changes.

5 Proof of Theorem 2.4

We shall prove that SIE (4.21) has a unique solution and so, by Proposition 4.4, the same
is true for SPDE (1.1). Given the noise (2, F, (F;),P,W?), let L, be the space of
predictable functions u : [0,00) x R! x © — R with [lul[x1m < oo for all \,T > 0 and
m > 1, where

1
Hu“/\,T,m = ( sup sup e_)‘|$|E ['U(t, $)|2m]) 2m )
tE[O,T] mERl

For the sake of a Picard-Lindelof iteration we introduce the functional

t
B)(t.a) = Pna)+ [ [ presle )bty

+/Ot/Rlpt_r(w,y)a(r,y,u(r,y))We(dydT)
= Pin(a) + ®5(u)(t,x) + By(u)(t,a),
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and set ug := Pn(.) and up4+1 := ®(uy) for n > 0.
Step 1. First we prove that ®(u) is a Ciep-valued continuous process whenever
u € Lie. According to Lemma 3.1 of [Iwa87], Pn(.) is Ciem-valued continuous. Using
Holder’s inequality (221 + ;L = 1), Lemma 3.5 (ii), (2.6), Lemma 3.6 (i), Lemma 3.5
(v) and Lemma 3.7, we get for all (¢,z), (#,z') € [0,T] x R! with |t —#| <1, |z —2'| <1,
w.log t<t,
2m]

= EH /Ot’ /RI (pt_r(x,y) —ptur(ﬂl",y))b(r,ya“(ra y))a(dydr)‘m]
< ([ [ o) - st |otaan))™
L

EH<I>2(u)(t,:1:) — By (u)(t', 2

Pir(,) = pe—r (&', 9) [ XMV (1 4+ u(r, )" o1 (dy)oa(dr)

< (/Otl /]Rl Pi—r(T,7y) —ptf_r(:c',y)‘a(dydr))Qmil
x c/t’ (/Rl A9 (g1 (,9) + po—r(a',9) )1 (dy) ) (14 w30 ) o2(dr)
< / /]RI per(,y) — Py (2, )‘a(alydr))Qm_1

’ 1 Az—a'| )\|ac|
8 CT/() me (]‘ + ||u||Arm>02(dT)
2m—1
< cT(|t — P+ |z — x/|2ﬂ) e
Thus, for m sufficiently large, Lemma 3.1 (i) provides a Cyep,-valued continuous modifica-

tion of ®5(u). Using Lemma 3.3, Holder’s inequality (=1 + 1 = 1) and the same lemmas
as above, we obtain analogously

B[|@s(u)(t,2) - Ba(w)(t,")|
‘/Ot / per(2,y) —py (2, y))a(r Y, u(r, y))W"(dydr)‘ m]

= cE

cE

IN

R!
‘ Ot /IRI ptfr(-'E,y)_pt’—'r(x"y)) a2(r,y,u(’f‘,y))g(dydr)‘ ]

c (/Ot /R (et - Pt’—r(:v’,y))29(alydr))m_1

X /Ot'/R pt r(z,y) — ptf_r(xl’y))QeMyleﬂly\E[(l +“(T,y))2m]g1(dy)g2(dr)

c (/Ot /Rl pi—r(z,y) — pt,_r(x/’y))2g(dydr))m71
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< o L& (v + 900 ) s ) (1 -+ Tl ) et

/ / pt—r(T,y) —py—r(z ay))QQ(dydT))m_l

I S (P
X A (tl _ ,r)lfal/Q (1 + ||’U,||)\ 'r,m) QQ(d'f’)
m—1
< CT<|t _ tl|a + |.’L‘ o xl|2a) 6)\|$|

and so a Ciem-valued continuous modification of ®3(u). Altogether, ®(u) has a Ciep,-valued
continuous modification. Due to the obtained estimates, ®(u) also is locally Holder-y-
continuous for all v € (0, § A B). Note that the stochastic integral is well defined since by
assumption ||u||x,r,m < oo and o(dzdt) was of class (MN).

Step 2. Next we establish that u, is in L, for every n > 1 whenever n € Ciey, and,
moreover, for all \,7 > 0 and m > 1 even

sup |[un |, 1,m < exym < 0. (5.24)
n>1
Since ||ug||x7,m < cx1,m, for (5.24) it is enough to show, by Lemma 3.8 (%), that for all
n >0
2 t 1 9
||Un+1||>:'%,m < CA,T,m{l + SUPtefo,1 /0 mllunllﬂ,m@z(dﬂ

t
1
+5Upte[0,T]/0 Ww”“ﬂhrm (dr)}- (5.25)

Using Holder’s inequality (221 + ;L = 1), Lemma 3.5 (ii), (2.6), Lemma 3.6 (i) and
Lemma 3.5 (iv), we estimate

2m
12 B < sup sup B[] [ [ st 0,0 )iy

t€[0,T] zeR!
2 1
< sup supe A" // Pi—r(z,y)0 dyd?")) "
t€[0,T] zeR!
<[ [ ) B[+ e, o (o)
0 JR
t
< crm{l+ sup sup [ (e [ A (@,)01(d)) fun {7 moa(air)}
t€[0,T] zeR? Jo R!
t
1 2m
< Crym 1+tes[1(1)PT]/0 m”“ﬂh,r,m@(dﬂ}- (5.26)

Lemma 3.3 and again Holder’s inequality (22 + L = 1), Lemma 3.5 (i), (2.6), Lemma
3.6 (i) and Lemma 3.5 (iv) give the following bound

t 2m
||<I>3(un)||/\Tm < sup supe —Alz ‘E ‘/ / pt_r(x,y)a(r,y,un(r,y))W"(dydr)‘ ]
t€[0,T] zeR! 0 JR!
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t m

< eswp swpe B[] [ 5 (@)e i uno)etayn)|]

te[0,T] z€RL

m—1

< c sup supe A"”' // 7 (z,7)0 dydT))

te[0,T] z€RL

<[ [ @95t e B[+ untr.)"] s d)en(ar)
t
< onm{1+ sup sup [ (e [ A @) () a3 men(ar) }
te[0,7] zeR! Jo R!
t
1 2m

< CTﬂm{”tS[‘é,pT]/o TralulRimen(an (5.27)

Thus, we reached (5.25). Furthermore, by Step 1, uy, is jointly continuous and so pre-
dictable for all n > 1. The well-definiteness of the stochastic integrals can be obtained
successively using ug € Ly, and the belonging of p(dzdt) to class (MN).

Step 3. Here we show ||up+1 — Up||x7m — 0 as n — oo for all \,7 > 0 and m > 1.
By Lemma 3.8 (i) it suffices to verify,

t
1
[un+1 — un < C/\,T,m{suptE[O,T]/O m”’“n - Un—1||§\7,TrL,mQ2(d7")

t
1
toumon) | st =t Emoa(dr) ) (528)

for all n > 1. But similar to getting the bounds (5.26) and (5.27) we obtain

t
1
_ 2m _ 2m
12 (un) ‘I’Z(UTZ—l)H)\,T,mSCT,mt:B%]/O (t_r)l/Q,ﬁl/Qllun un—1[[3;r,mo2(dr),

t 1 )
195(0m) — @5(a02) K < erm 300 [ G i w7 )
proving (5.28). Here we used the Lipschitz condition (2.7) instead of (2.6).

Step 4. According to Step 2 and Step 3, (u,,) is a Cauchy sequence in Ly.,. Hence,
there exists Uoo € Liem With [|use — Up|x1r,m — 0 as n — oo and, particularly, us, =
D(uo) wort. ||.||arm for all \,T > 0 and m > 1. Thus, ux(t,z) = P(uc)(t,z) for
dzdt-almost all (z,t), P-almost surely. By Step 1, tqo i8 Ciem-valued continuous and so
Uoo(t, ) = P(uco)(t, ) even holds for all (z,t), P-almost surely. Consequently, us is a
solution of SIE (4.21). Step 1 also gives the desired local Holder-continuity.

Step 5. It remains to show strong uniqueness of solutions. Let u,u’ be two solutions
to SPDE (1.1) and so to u = ®(u). Fix some A > 0 and define 7x := inf{t > 0 :
[u(t, )(—rs2) = K or |[u'(t,.)[(_r/2) > K} as well as uk(t,.) := Licreu(t,.) and ui(t,.) :=
1icr ' (t,.) for each K > 0. Arguments as in Step 3 yield

lux —uiclizy = [1®(ur) — @(ui)l3 11
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IATK 1 o
< CA,T,l{Supte[o,T]/o m”ul( - uK“/\,r,lQ?(d'r)

IANTK 1 ) o
+3Upte[0,T]/0 WHUK —UK||>\,T,1U2(d7")}

for all T > 0. Note that |ug (¢, z) — ul (t,z)|> < 4K%eN® for all (¢,z). Thus, Lemma 3.8
(it) gives uk(t,z) = u(t,z) for drdt-almost all (z,t), P-almost surely. Hence, since u
and u' are Cyep,-valued continuous, and particularly 7x — oo as K — oo, u(t,z) = u/(t, z)
holds for all (z,t), P-almost surely. We are done.

6 Proof of Theorem 2.5

We follow an approach that was also used by Shiga ([Shi94], Appendix) in the homogeneous
case. Define time measures of(dt) := [p1 pe(, y)o(dydt) and time white noises WS(dt) :=
Jz1 Pe(z,y)WE(dydt) (formally) for all € > 0. Note that o5(t) := g ot(dr) provides an
increasing process and WE(t) = fg WE(dr) == fg Jz1 Pe(z, y)WE(dydt) a square-integrable
martingale with quadratic variation process (Wf)(t) = f(f Jg1 P2(z,y)o(dydr) for all € > 0.
Furthermore, introduce approximate Laplacians A, and corresponding semigroups (FPf)
via

A, = ¢ YP.—-1)

- (t/e)"
Pf = B = etegt/eke = e_t/ez o Pre = e 1+ Q

n=0

Qif = [ dt ey

qg(xay) = e_t/fz (t{;!)npne(may)

n=1

for all € > 0. Finally, let us equip with the following two technical lemmas yet.

Lemma 6.1 For all A\ >0, z € RY, t > 0 and € € (0,1],

1
€ 2 Alz]| Alz|
L, [ dite s ndene deontan) < eqmge. (6.29)
6 (z, 2)pe(z, y)eM dzoy (dy) < c#e)‘m| (6.30)
gL JRt t €\~ > t1/2_ﬂ1/2 . .
Proof First of all note that e # 2% 220 < ¢ for all h > 0 and v € [0,1]. We only
prove (6.29), (6.30) can be checked analogously. The Lh.s. of (6.29) can be estimated by

/]Rl /]Rl e_Qt/e(i (tij)npne(waz))Qpe(y,Z)e)"z'dzgl(dy) (6.31)
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_i/e oo (t/G)n Alz| —t/e = (t/f)n C
< /R1 /Rle ;::1 n! Pe(2, 2)pe(z,y)e” " dzo1 (dy) e ;:31 n!  (ne)l/?
—t/€ - t ¢ " z 1
< VS UL e pdea)e deotay) e
n=1

Using Lemma 3.5 and the inequality

/ (@, 2)py (2,9)eNNdz < pyye(z, ) vl
]Rl

it is not hard to verify that the r.h.s. of (6.31) is bounded by

2 (t/e)™ 1 €+ ne
—t/e
‘ Z n! ((n—l—1)6)1/2_0‘1/26Ip[6+n6+e)\|x|]e$p[

€ )\| |] 1
S Y P R
e+nete t1/2

n=1

o %, ()" (/)12 /2 1

Nz| —t/e
< f-a2® € 221 ol pl/2—ai/2 < f—a1/2
n=

giving the desired bound for the Lh.s. of (6.29). O

Mel

o

Lemma 6.2 Fiz § > 0. Then for all z,y € R*, t >0 and € € (0, 1],

1
|| a2y s o] < s sz € (6.32)

The purely technical proof is omitted. Then the strategy is as follows. First (Step 1) we
shall prove that, for fixed € > 0, the family, with index z € R', of ordinary stochastic
differential equations

ue(t,z) =n(z) (6.33)

+/0 %Acue(T,x)dT+A b(’l",l?,ue(’l“,l'))a';(d’r)—f‘\/o a(r,:{;,ue(T,x))W;(dT)

has a unique Clenmn-valued continuous solution u.. Secondly, it will be established that this
solution is non-negative (Step 2). In Step 3 we will approximate the unique solution u
to SPDE (1.1) by u. as € — 0, whereby the desired non-negativity of v will follow. The
approximation of u by u, is not surprising since the equation family (6.33) is easily seen
to be equivalent to the mollified version of SPDE (1.1)

¢ 1
(et 1) = (09) + [ (), gAw)ar (6:34)
/ / b(r, 2, e(r, 2))(2)pe (1, 2) dzo (dydr)
R R
/RI/R a(r, z,ue(r, 2))0(2)pe(y, 2)dzW°(dydr) Vit > 0,9 € S;
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note (P, ) = (¢, Pep), i.e. particularly (A, ) = (¢, Actp), for all ¢ € Ciem, € S.
Step 1. We establish a unique solution to (6.33). The crucial point is that (6.34), and
o0 (6.33), is equivalent to the following mollified version of SIE (4.21)

wiba) = Fa@)+ [ [ e U)o 639

+/0 /]Rl /]Rl qi_, (@, 2)b(r, 2, ue (7, 2))pe (v, 2)dzo (dydr)
t
+/0 /Rl e—(t—r)/fa(r,y,ue(r, Y))pe(z, y) WO (dydr)

+/0t /R1 /Rl &z, 2)a(r, 2, ue(r, 2))pe(y, 2)dzW 2 (dydr).

The proof of the equivalence works analogously to the proof of Proposition 4.4; recall that
A, was the generator of Pf. Mimicking the proof of Theorem 2.4 we obtain a unique
Ctem-valued continuous solution to SIE (6.35). This time one has to choose ®¢(u) :=
Pen(.) + @51 (u) + @5 o(u) + @5 1 (u) + @5 5(u) := r.hs. of (6.35). Note that the essential
technical tools are Lemma 3.5 and Lemma 3.6 as before, as well as Lemma 6.1. Particularly
one obtains supee (g1 | %elln,m < oo for all A,7 > 0 and m > 1. Having Lemma 6.1, one
also gets an analogue to Lemma, 3.7.

Step 2. Let us turn to the non-negativity of (6.33). Consider a sequence z,, 1 0 with
o = —1 and f;n"_l z72dx = n VYn > 1. Furthermore, pick functions g, € Cg° such that

supp(gn) C (Tp—1,Zn), 0 < gp(z) < 2‘” ® and fm" gn(z)dz =1 for all n > 1. Set

folo) {ffgn z)dzdy , <0

0, z>0
Hence,
! _ f gn 3 X < O " _ gn(x) 5 X < 0
fa() { 0 , >0 "($)_{ 0 , >0
Note that fn, f, and f; approximate f(z) = —min{0,z}, " f'(z)” = —1(_s0)(z) and

" f"(z)” = do(z), respectively. Applying It6’s formula to f, and the semimartingale
ue(t,z) = n(@) + VEE) + ME(t) = n(z) + (VoL () + Vi () + ME(t) := r.hs. of (6.33)
yields

fn(ue(t,z)) = fu(n(z))
/fuerx)de /fuerdee /fuerx (ME)(r).

Taking expectation as well as using f) = gn, b(r,y,u) > —L1 |u| V(r,y,u), f}(u) = 0 Vu >
0, —f}(u) € ]0,1] Vu, —u < f(u) Yu and a(r,y,0) = 0, b(r,y,0) > 0 V(r,y) (in what follows
we should work with u (¢, z)e”|*! instead of uc(t,); but in order to avoid unnecessarily
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complicated expressions we assume boundedness of u. on time compacts; the general case
causes no difficulties),

B[ (ue(t:2)] = B[ [ fawctroavie)] + 58] [ g opaan) o)
= E[/Ot f,'L(ue(r,x))Aeue(r,x)dr]
+E[ [ [ szt et e it

35/ / (e, ))a*(r, 2, e (r, )97 () dydr)

IN

B[l /0 atuctr) [ vyt avir] < B[ [ gttt adar]
+E /t /R1 — fl(ue(r, ) LT|u€(r,w)|)p€($,y)a(dydr)]

1 2u€7‘a: -2

wyB[ [ [ I o )|
R1

1

s: [ (—fé(ue(ﬁ o) [ pelov)(—ulr. )y

€

+ce,TE[/0t <_ fh (ue(r, a:))) ( — ue(r,x))ag(dr)] + %QT /Ot /Rl p2(z,y)o(dydr)
t t c
< ce/o sup E[f(ue(r, y))] dr + CE,T/C; sup E[ﬂl(ue(r,x))ue(r, m)] o9(dr) + ;’LT

yER! zER!?

INA

for all t € [0, 7] and T > 0. Letting n — oo, we get by dominated convergence

t
HE[ ue(t <c€/ HE (ue(r ]Hoodr+c€,T/0 HE[f(ue(r,))] Hooag(dr)

for all t € [0,7] and T > 0. An application of the Gronwall-type Lemma 3.8 (i7) leads to

sup;<r ||E[f (uc(t,.))]||,c = 0 for all T > 0. Thus, since f > 0, f(uc(t,z)) = 0, P-almost

surely for all (¢,z). Hence, f(uc(t,z)) = 0 for almost all (t,z), P-almost surely, and

consequently, by the joint continuity of u., u(t,z) > 0 for all (¢,z), P-almost surely.
Step 3. We approximate u by the u.. First note that

e B[luclt ) —u(t, )] < e |Pin(e) - Pa(a)?
t

('b

+B| /0 /R by, ue(r 9))pe(, y)o (dydr)m

1), /.

i
B[ [ [ i) (blr 2 2)) = o)) 2o ayar)| |

<~

q; (b(r, z,ue(r, 2)) — b(r, z,u(r, z)))pe(y, z)dzo(dydr) ‘ 2]

-~
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+E[

+E

+E[

+E[

+E[

t/Rl (/Rl i (%, 2)pe(y, 2)dz —pt—r(I,y))b(T,y,u(T, y))o‘(dydr)‘z]
i 2
/ e_(t—’”)/éa(r,y,ue(ra’y))pg(x,y)WQ(dydr)‘]
2
)
]

/
/
: /Ot /IRI /R1 G—r (7, 2) (G(Tazaue(r, z)) — a(r, z, u(r, Z)))pe(y’z)deQ(dyd,r)
/

[ i) (00200, 2) — a0 ) e,
Rl JRI

@i (2, 2)pe(y, 2)dz — pr—r(3,y) )a(r,y, u(r,y)) We(dydr) i
1 R!

= el {If(t,:c) ot Ig(t,x)}.

Then, using Lemmas 3.5, 3.6, 6.1, 3.3 and Holder’s inequality, we obtain for ¢t < T

I3(t, )

I§(t, x

)
< oB[ [ [ ey ur)pie o)

IN

t
e [ [ e o + lul ) e

IN

1 Gy _
cr —61_01/2/0 e 2% 92(dr) e/\\w\ = ¢p 6041/2—|—042 le/\\x\’ (6.36)

< CE[/Ot /]Rl (/Rl g (z,2) (a(r,z,ue(T, z)) — a(r, z,u(r, z)))pe(y,z)dz)2g(dydr)]

IA
(@)
=
S~
5

IN

< cr

/R a5, (z,2)?eMNp(y, z)dz x

/ pe(y,z)e*)“z”ue(r, 2) —u(r, 2)|?dz g(dydr)]
Rl

t
c /0 s /R &, (z,2)2eMp(y, 2)dz oy (dy) lue — 3,1 02(dr)

t
1
/0 = pyaallte = ull3 1 02(dr) X (6.37)

< ¢ / / / 45 (2, 2)2NIpe(y, 2)dz x
0 Rl JR!
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[ o) (12 =y + B [lutr,2) = ) 2] ) ez ofdyar)

t
< ¢ / / / 45 (2, 2)2Ipe(y, 2)dz x
0 R! JR!

/ pely2) (|2 — 9 + erllz — g + |z — y)eMs VM) e Heldz o(dydr)
RI
t
< o / / / 6 (2,22 pe(y, 2)dz / pey, 2))z — y 2N A=l g, o dydr)
0 R! JRR! R

t
< o / / / 65 (2, 2)%NIp(y, 2)dzer (dy)oa(dr) & < ep Mol & (6.38)
0 R! JRR!

| (@AB)NK) GAlz=Yl 4, < ced
which can be shown with help of Holder’s inequality ( L4 % =1 (aAB)ANE > %)
and (iii), (iv) of Lemma 3.5, as well as E[|u(r,z) — u(r,y)[?] < er(|lz — y|?@M) + |z —
yeMevleMel | 2y e R', which is implicitly included in Step 1 of the proof of Theorem
2.4. Using Lemma 6.2, we also obtain

for some sufficiently small § > 0. Here we used [p, pe(y, z |

I5(t,7)
< em[[ [ ([ a2 )z~ piorto)) 0ot ) el
< o[ [ ([t — prte) e 0B [(04 ur)?] eldyar)
< o[ [ ([ airte v,z = perto)) e ol )
<o L] ] ooty )iz st »

( / Gi_r (2 2)pely, 2)dz + po 1 (w,) ) M 01 (dy)oa(dr)
< ¢ /0 /R ICWJXCTWN@Q(MS op Ml ¢ (6.39)

where 6 € (0, 1/2+4 ag —1). Proceeding analogously we get estimates for I§(¢, z), I§(t, z),
If(t,z) and If(t,z) similar to (6.36), (6.37), (6.38) and (6.39). Altogether,

s
1
2 4 2
||ue - u”,\,t,l < C)\,T{ € + SUPsc(0,t] /(; (8 — 7-)1—041/2 Hue - u||)\,r,192(dr)

S
1
+8upse[o,t]/0 mllue - U||?\,r,102(d7")}

for all t < T, some A > 0 and some sufficiently small § > 0. With help of the Gronwall-
type Lemma 3.8 (i) we deduce for every T > 0, |lue —ulxr.1 < éx7 € L 0 as € | 0. Since
ue and u are jointly continuous and u, is non-negative for every € > 0, u is non-negative,
too. We are done.
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7 Proof of Theorem 2.6

We go to exploit Theorem 2.4. There are sequences (an(.)) and (b,(.)) of Lipschitz-
continuous functions approximating a respectively b uniformly on R' as n — oo and
satisfying (2.11) with a,b replaced by ay,b, for all n > 1. Then, according to Theorem
2.4, for every n > 1 there is a unique strong solution u,, to equation (1.1) with a, b replaced
by ay,b,. Similarly to Step 1 of the proof of Theorem 2.4 one checks for every 7' > 0 and
m > 1 that

E[|un(t, iL‘) o Un(t,,l',)|2m] < C)\(|t o tl|a(m—1)/\,6(2m—1) + |$ o xl|2(a(m—l)/\ﬂ(2m—1)))e)\\z\

for all t,#' € [0,T], z,7' € R' with |z — 2’| < 1 and n > 1. Hence, Lemma 3.1 (i)
gives tightness of (uy) in C([0,7], Ctem) and so, according to Prohorov’s theorem, (uy,)
is relative compact w.r.t. weak convergence. In order to complete the proof - note that
by Lemma 3.1 any limit point is locally Holder-y-continuous for all v € (0,§ A ) -
only have to check that any limit point is a (weak) solution to equation (1.1). At this
point we can take advantage of the equivalence of SPDE (1.1) and the martingale problem
from Definition 4.1, recall Proposition 4.3. Let u denote any weak limit point of some
subsequence (ug) C (up). Weak convergence of uy towards u means

B[/ (us (. / F(B(, )P, (d) / F($(, )Puldd) = Blf(u(,.))]  (7.40)

as k — oo for all f € Cp(C([0,T], Ciem), R).
Note that M (1) from the (a,b,n)-martingale problem is an (F}*)-martingale (F}* :=
o(u(r,.) : 7 <t)) if and only if

t+s
0 = E[((ult+s,),9) - (ult,),p) - / (ulr, ), 5 A)dr (7.41)

t+s
[ [ bt )o(dydr))i[[lhi(u(ti,.))]

foral0 <t1 < -~ <t <t s>0,1>1and hy,...,h € Cp(Ctem,R), and that the
mappings

2l <¢(ta -)a ¢> Hé:l hi(¢(tia ))a o f()t<(/’('ra ')a ! §A¢>d7" Hé:l hi(¢(tia ))a

& [3 fa1 b(d(r, ) (y)o (dydr) [TE_, hi(e(ti, )

are in Cy(C([0,T],Ctem),R) when 9p € S, t € [0,T], n > 1 and the h;,t; are as above.
Since uy solves the (ag,bg,n)-martingale problem, (7.41) holds with u,a,b replaced by
Uk, G, g Also, according to (7.40), the r.h.s. of (7.41) with u,a,b replaced by ug, ag, b
converges to the r.h.s. of (7.41) as K — oo. Consequently, the equation in (7.41) holds
and My() = {ult, ), ) — (0,9 — JL(ulr, ), 27 Ap)dr — [} fyn blusr, ) (y)o(dydr) is
thus an (F})-martingale. By the uniqueness of the Doob-Meyer decomposition, M; (1)
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has quadratic variation process (M (¢)), = f(f Jg1 @*(r,y, u(r,y))¥?(y)o(dydr) if and only
if

o = w[(mz vt~ [ [ ()W )etdyr)) [T htutn )] (742
i=1

foral0 <t <--- <t <t,s>0,1>1and hy,...,h € Cp(C;, ., R). Now, the analogue
of (7.42) for ug, ay, by holds. The r.h.s. of this analogue converges to the r.h.s. of (7.42) as
k — oo which can be proved again using (7.40). Hence, (7.42) holds and so u is a solution
to the (a,b,n)-martingale problem. Proposition 4.3 then gives the first claim. The claim
on the non-negativity can easily be concluded with help of Theorem 2.5.

8 Proof of Theorem 2.7

Note that Theorem 2.7 is already included - in a slightly different setting - in Corollary
3.3 of [Z&h02]. However, the proof was omitted since it is more or less standard in the
context of superprocesses. For the sake of completeness we here work rigorously. We
go to apply the method of duality whose main idea is the following. Let E and E’ be
metric spaces. Then, two E-valued continuous processes U; and Us have the same one-
dimensional distributions, and so the same law, if both are dual to the same E’-valued
process V w.r.t. a sufficiently large class F' of measurable functions f : E x E' — R, that
is

E°[f(U(t),')] = E* [f(z,V(t))] VfeFazecE,z cE,t>0 (8.43)

for U = Uy, Us. This statement holds since relation (8.43) trivially leads to

/f(y,a:')PwUl(t)(dy) = /f(y,a:')PwUQ(t)(dy) VfeFz € E,x' € E',t >0. (8.44)

Particularly, F is "sufficiently large” if the set {f(.,2') : f € F,2’ € E'} is separating
w.r.t. probability measures on E. For details see [EK86]. In our setting the réle of E is
played by C;\ =~ and Uy, Us are to be associated with two weak solutions to SPDE (1.1)
with a(u) = y/u and b = 0. As already mentioned, solutions to the considered SPDE
should describe the space-time density of the catalytic super-Brownian motion #;(dx)
with catalyst g1(¢,dz) - note that p1(¢,dz) is an admissible catalyst in sense of [DF91].
Recalling the Laplace functional representation of u:(dz) from Theorem 2.5.1 of [DF91],
we conjecture that every solution u to the considered SPDE satisfies

E[ea:p( — (u(t, ),¢))] = ea:p( — (n,vo(t, ))) Vip € S,n e Cyf (8.45)

where (vs(t,z) : 0 < s < t,z € R!) is the unique non-negative solution to the integral
equation

t
wlte) = Pstle) =5 [ [ peslmapdtnedar (5.46)
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that is heuristically to the formal backward cumulant equation

0

9 _170i(s,dz)”
0s

1
'Us(tax) = EAvs(ta CL') 2 dz

("E)Uz(tax)a Ut(ta') = 1.
Hence, for any solution u and every ¢ > 0, relation (8.45) would give duality of (u(r,.) :
r < t) to the deterministic process (vi—(t,.) : ¥ < t) w.r.t.

F={f:Clu—R; f()=eap(— (), €5}

which is known to be separating w.r.t. probability measures on Cttm- We hence had weak
uniqueness of solutions, justified by the above considerations. And these arguments really
apply. We only have to prove (8.45) yet.

First of all note that equation (8.46) indeed has a unique non-negative measurable
solution v, see Proposition 1(a) of [DF97]. Using techniques as in the proof of Theorem
3.4 (i1) of [Zah02], one can even show that v is in C([0,00),C, ) (since o was of class

rap
(MN)). Furthermore, for all n > 1, the backward cumulant equation
0 1 1. )
—%vs(t,x) = EAvs(t, x) — G (t,x)vi(t,z), wve(t,.) =1 (8.47)

for the smoothed catalyst o} (t,dz) = o} (t,x)dx := [g1 p1/n(z,y)o} (t, dy)dz possesses a
unique solution »™ in the space C%([0,00),C/f,,) of C([0,00), Cjf,)-elements that are
continuously differentiable once in time and twice in space. In fact, first one defines v™
as the (unique) solution to equation (8.46) with g1(r,dz) replaced by 7(r,dz), then,
using standard arguments, one concludes that v™ is differentiable as desired and that it
solves equation (8.47). Recalling the belonging of o(dzdt) = 1 (¢, dz)dt to class (MN) and

exploiting the lemmas from Chapter 3, it is not hard to show that
dyap(v,0™) = 0 as n — oo (8.48)

where

dyop(v,0") == i 2k [1 Asup dygp (v(t, ), (¢, ))]

k=1 t<k

is a metric on C([0, 00), C}f,,).

Let u be any weak solution to the considered SPDE. As in the proof of Theorem 2.1
of [Shi%4] (cf. (6.12) there) we get

waf) = (b + [ sttt gadar+ [ b fwWe ) (8.49)

for all t > 0 and f € C([O,oo),C’,?ap) with %ft(.) € C([0,00),Crqp). Setting fr(z) =

n

vl (t,x), for all r € [0,¢], applying It6’s formula to the semimartingale ((u(r,.),v7(¢,.)) :
r € [0,t]) and the function e™?, as well as taking expectation yields

Bleap( - (ult,.), )] - ean( - (n 05 (1,.)))
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B [ [ eon(~ tutrs .08 0.0) s .t v)esr ]

_E[/Ot ea:p( — (u(r,.), " (t, .))) <u(r, D) %Avﬁ(t, )+ %U:f(t, .)>dr]

1 n n 2 1 n 9 n
(5ebrmer (ty)? = 5807 () — 5o (t,) ) dydr]

Noting that v™ was the solution to equation (8.47) and that it is dominated by a constant
uniformly in 7, recalling (8.48) and letting n — oo, we reach (8.45).
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