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Abstract

Impressed by Neveu’s (1992) continuous-state branching process we
learned about from Bertoin and Le Gall (2000), a class of finite measure-
valued cidlag superprocesses X with Neveu’s branching mechanism is
constructed. To this end, we start from certain supercritical (a, d, 3)-
superprocesses X (%) with symmetric a-stable motion and (1+3)-branch-
ing and let 8 | 0. The log-Laplace equation related to X has the locally
non-Lipschitz function ulogu as non-linear term (instead of u!*# in the
case of X)) and is thus interesting in its own. X has infinite expec-
tations, is immortal in all finite times, propagates mass instantaneously
everywhere in space, and has locally countably infinite biodiversity.
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1 Introduction

1.1 Motivation, background, and purpose

Bertoin and Le Gall (2000) established in [1| connection between a special
continuous-state branching process X = (Xt)tZO and a coalescent process in-
vestigated by Bolthausen and Sznitman (1998) in [2] and also by Pitman (1999)
in [21]. This process X was actually introduced in connection with Ruelle’s
(1987) [22] probability cascades by Neveu (1992) in the preprint [19], so we
call it henceforth Neveu’s process. It is indeed a strange branching process:
Its (individual) branching mechanism is given by the function ulogu, hence
belongs to the domain of attraction of a stable law of index 1. On the other
hand, the state at time ¢ > 0 has a stable law of index e~* < 1 varying in time
and tending to 0 as ¢ T oo. Trivially, this process has no finite expectations.

Fascinated by this process, we asked the question whether this model can be
enriched by a spatial motion component. Indeed, imagine the “infinitesimally
small parts" of Neveu’s process move in R? according to independent Brownian
motions. Can this be made mathematically rigorous? In other words, does a
super-Brownian motion X = (X;):>o exist with Neveu’s branching mechanism,
and what properties does it have? Clearly, via log-Laplace functionals, such a
superprocess X would be related to the Cauchy problem

0
aut(a:) = Awy(z) — uy(z) logu,(z) on (0,00) x R? } (1)
with initial condition 4o, =@ >0

(where ¢ is an appropriate test function). Note that this diffusion-reaction
equation is interesting in itself since the reaction term does not satisfy a local
Lipschitz condition (the derivative has a singularity at 0).

1.2 Approach, sketch of the main result

As Neveu’s process X can be approximated by a family (X (ﬁ))0<[3§1 of su-
percritical continuous-state branching processes X® of index 1+ 3 by letting
B 1 0, we try to approximate the desired process X (with more general a-stable
motion component) by a family of superprocesses X #) with (14 3)-branching
mechanism. More precisely, we assume that X () is a supercritical super-stable
motion related to the log-Laplace equation

0 148
ot @) = Bau? (@) — § ()" + ju”(2) on (0,00) x R

(2)

with initial condition u((ﬁr) =@ >0.

Here a € (0,2], and A, is the fractional Laplacian —(—A)®2 on R¢. Conse-
quently, the underlying motion is a symmetric stable process of index «, hence
Brownian motion if o = 2. Of course, the relation between X® and u® from



(2) is realized via log-Laplace functionals:

—logE, [exp<X§ﬂ ) —w)] = (u, u{”) (3)

where (i, f) denotes the integral [, f(z)u(dz), and the expectation symbol

E, refers to the law P, of X(#) starting from the finite measure Xéﬂ ) = . We
note that
1,148
(v —v) — wvloguw, v >0, 4
5( ) 5 vlos > (4)

therefore such set-up seems to be reasonable if X exists non-trivially at all.

Our purpose is to verify that the family (X ('B))o<ﬂg1 of superprocesses is
tight in law as 8 | 0 on the Skorohod space of cadlag measure-valued paths, and
that each limit point X is related to the unique process solving the log-Laplace
equation (1) (with A replaced by A,). This then gives convergence to the
desired process X (see Theorem 2 below) with total mass process X = X (R?).

Note that many of the standard tools are not available for this route, since
the Lipschitz constants related to the non-linear term in the log-Laplace equa-
tion (2) blow up along (4), or -viewed in probabilistic terms- the expectations
of X®) become infinite as 8 | 0. For the well-posedness of equations as in (1),
see Theorem 1 below.

1.3 First properties of X

As Neveu’s process X has strange properties, one expects that also X has in-
teresting new properties compared with usual superprocesses. For instance, we
suspect that X has absolutely continuous states in all dimensions. Recall that
the (o, d, B)-superprocesses X #) have absolutely continuous states at almost
all times in dimensions d < a/( (see the Appendix of Fleischmann (1988) [10]
for the case of critical («,d, B)-superprocesses starting from Lebesgue mea-
sures), and we let 8 | 0. In this paper, however, we will content ourself with
more modest properties.

Because X, has a stable distribution with index e, the total mass process
t — X;(R?) = X, is immortal for all finite times. Moreover, the underlying
a-stable mass flow, that is, the semigroup with generator A, applied to mea-
sures, propagates instantaneously everywhere in space. Thus, our super-stable
process X is expected to be immortal and its mass should propagate instanta-
neously in space (see Proposition 14 below). Of course, this is in sharp contrast
to the approximating supercritical X(#) processes, which in each given region
and at each fixed positive time have no mass with positive probability.

As a further consequence of this, we obtain that X has locally countably
infinite biodiversity, a notion introduced in Fleischmann and Klenke (2000)
[12]. Roughly speaking, this means that, for fixed ¢ > 0, in the clustering
representation (family structure) of the infinitely divisible random measure X,
infinitely many clusters (families) contribute to each given region (see Corollary



16 below). Clearly, this contrasts with the (locally) finite biodiversity of the
random states of the approximating (a, d, 3)-superprocesses X ).

The further layout of the paper is as follows: In Section 2, we first introduce
some notation in Section 2.1 before, in Section 2.2, we rigorously define the
process X and its approximations X #). We also state Theorem 1 concerning
the solutions u of equations as in (1). The main results concerning existence
of and convergence to X are given in Theorems 2 and 3. The proof is worked
out in the remaining parts of Section 2 after the concept is explained in 2.3.
In Section 3 we are concerned with immortality and infinite biodiversity of the
constructed process X. The appendix gives the proof of an almost sure limit
on X; as t — oo (see Proposition 8). It follows a sketch of proof in Neveu’s
unpublished work [19], which uses ideas of Grey (1977) [13] concerning the
Galton-Watson case.

For background on superprocesses we refer to Dawson (1993) [3]|, Dynkin
(1994) [5], and Etheridge (2000) [6].

2 Construction

2.1 Preliminaries

For any Polish space E let D(R, , E) and C(R,, E) denote the space of func-
tions R, := [0,00) — E, which are cadlag and continuous respectively. The
former is endowed with the Skorohod topology, the latter with the topology
of uniform convergence on compact sets. By C(E) we denote the class of
continuous real valued functions on F, and we use Cy(E) if they are further-
more bounded, and Ci.,(F) if they have compact support. The subspace
of functions whose derivatives up to order n are also in C,(F) is denoted
by Cp(E). The superscripts “+” and “++" indicate the respective subspaces
of non-negative functions and functions with positive infimum. We write
M; == M;(R?) for the finite measures on R? equipped with the weak topol-
ogy. Throughout, ¢ denotes generic positive constants, whose dependencies we
sometimes cite in parentheses. The arrow = is used to indicate convergence
in law.

Fix o € (0,2]. The semigroup associated with the fractional Laplacian
A, = —(—A)*/? is denoted by T,

Tfp (z) = /Rd 2z —ye(y)dy, t>0, zeR% (5)

where p® is the (jointly continuous) kernel on (0, 00) x R? of the symmetric a-
stable motion in RY, see for example the appendix of Fleischmann and Gértner
(1986) [11]. Clearly, for o = 2 we have the heat kernel:

2
pi(z) = (47rt)_% exp ( - %), t>0, zeR. (6)



If ¢" denotes the continuous transition density function of a stable process on
R, with index n € (0, 1) so normalized that for the Laplace transform we have

f gi(s)e—"ds = exp(—t0"), >0, 0>0, (7)
0
then in the case a < 2 the subordination formula
ﬁ@%zf ¢ ()i (z)ds, >0, zER (8)
0

is well-known. Note that 7* from (5) is a strongly continuous, positive and
conservative contraction semigroup on C; (R?), which follows via subordina-
tion (8) from the corresponding properties of T2

2.2 Main results

The construction of our process X is based on the following well-posedness of
the Cauchy problem as in (1) in the mild sense:

wm=ﬂww—lzm@@»@@, (9)

t>0, zeR pe CF(RY). Here,
g(v) := pvlogw, v >0, (10)

is a continuous function on R,, and p > 0 is an additional constant (for
eventual scaling purposes). For a plot of g in the case p = 1, see Figure 1. In
Section 2.5 we will prove the following result.

Theorem 1 (Well-posedness of log-Laplace equation).

(a) (Unique existence in the Lipschitz region). To each test function ¢
in CT(R?), there is a unique solution u = u(yp) in C([0, 00), Ci T (R?))
to equation (9). It satisfies

(yiélgdw(y) A1) Su(e)() < (lellw V1),  t20, zeRL  (11)

Furthermore, for ¢ € C§’++(Rd), u(¢p) is even a strong solution (satisfy-
ing (1) with A replaced by A,) in C*((0,00), Ci (R?)) with u, € CZ(R?)
for every t > 0.

(b) (Extension to the non-Lipschitz region). If ¢, € C/T(R?), n > 1,
such that pointwise ¢, | ¢ € C;f (R?) as n 1 oo, then pointwise u(py,) |
some u(p) € C([0,00),Cf(R?)) as n 1 oo, and the limit u = u(yp)
solves equation (9), satisfies (11), and is independent of the choice of the
sequence (¢n)n>1 converging to .



Figure 1: Branching mechanisms g(*)(v) = v2 — v and g(v) = vlogv

We remark that the theorem implies the semigroup property for 4, meaning
that us1 (@) = ui(us(p)) for s,t > 0 (see Dawson (1993) [3] p. 68). The semi-
group property is tantamount to (17) below describing a time-homogeneous
Markov process X.

The proof of this Theorem 11 will start from the well-posedness of the
Cauchy problem as in (2) in the mild sense for 8 € (0, 1] fixed:

@) =10 (@) - [ I, (g9 () (2) ds, (12)

t>0, zeRY pe Cf(RY). Here,

9P (v) = %(v”ﬁ — ), v > 0. (13)

For a plot of ¢ in the case p = 1 and 8 = 1, see Figure 1. To each ¢ in
Cif (R?), there is a unique solution

u® = 4P () € C([0,00), Cif (RY)); (14)

the function ¢ € C;'*(R?) is bounded away from 0 and oo, which implies that
also the solutions u(®)(y) are bounded away from 0 and oo, uniformly in 3
(see Lemma 9 below). Therefore, passing to the limit as 3 | 0, we end up in
a Lipschitz region of the function g of (10). This idea is behind part (a) of
Theorem 1. (We learned such trick from Watanabe (1968) [24] who worked in
the simpler case of a compact phase space.) We remark that for the extension



to (b) we partly use probabilistic arguments by arguing with the log-Laplace
transform of X;. Part (b) we need in the considerations of the properties of X.

As a starting point, for each 0 < 8 < 1 we take the (unique) time-
homogeneous cadlag strong Markov process (X (ﬂ),lP’ff(,);), p® € My) with log-
Laplace functional

—logE, s exp(Xt(ﬂ), —

)| = (u?, u), (15)
t>0, o € CF(RY), with u the unique solution to (12). The construction
of X is nowadays standard; for references see, for instance, Iscoe (1986)
[14], Fitzsimmons (1988 and 1991) [8, 9] and Chapter 4 of Dawson (1993) [3].
Note that X® is a supercritical («, d, 3)-superprocess. Properties of (o, d, 8)-
superprocesses have been widely studied in the critical case where g(® in (12)
is replaced by

gggl(v) = bo' P, v >0, (16)

with & > 0 a constant, see for example Iscoe (1986), Fleischmann (1988),
Dawson and Vinogradov (1994) and Mytnik and Perkins (2003) [14, 10, 4, 18].
These processes have finite mean but infinite variance provided that g < 1.
More precisely, E,s) [(Xt(ﬂ), ¢)f] < oo forallt >0, ¢ € Cf (R?) with ¢ # 0,
and u® € M; with u® # 0, if and only if 0 < 6 < 1+ 3 (see also Lemma
7). The case we are interested in corresponds to S = 0 in the sense that the
branching mechanism is in the domain of attraction of a stable law of index 1.
Here is now our main result:

Theorem 2 (Existence of X). For each p € My there exists a unique time-
homogeneous Markov process X € D(R,, My) with log-Laplace functional

—log B, [exp(Xe, —¢)] = (w,w), t>0, ¢ € Cf(RY), (17)
with uw the unique solution to (9) according to Theorem 1.

We call X the super-a-stable motion with Neveu’s branching mechanism
(and branching rate p).
Our proof of Theorem 2 actually yields the following limit theorem.

Theorem 3 (Convergence theorem). Suppose that Xéﬂ ) = X, in M; as
B {0, as well as supyg<; ]E[(Xéﬂ), 1)%] < oo, for some 0 < 6y < 1. Then in
law on D(R,, M),

X® =X as plo. (18)

Furthermore, we have E [sup,<,<r(X:,1)?] < oo for all 0 < 6 < foe™*7.
The proof will proceed via tightness in law and convergence of subsequences

combined with the uniqueness of the limit, which follows from the existence of
log-Laplace solutions according to Theorem 1(a).



We remark finally that the “highly supercritical" process X cannot be at-

tained as the limit of critical ones. Observe that setting § = 0 for gfl)t from
(16) implies the linear log-Laplace equation
0 (0,crit) (0,crit) (0,crit)
u = Ayu, —buy . (19)

a t

Hence, the corresponding measure-valued process is deterministic in this case.
However, X is also expected to be the high density limit of supercritical branch-
ing particle systems as the number of initial particles N tends to infinity.
Indeed, consider particles that move independently according to a—stable mo-
tions in R? leaving a random number of offspring after their exponentially
distributed lifetime with mean (p (1 + log N))~*. Let the number of offspring
be sampled according to the probability generating function

Yn(r) == (1+1logN) *(logN + 7+ (1 —r)log(l —r)), 0<r<1. (20)

Since Np(1 +log N)(¢n(1 — %) — (1 — %)) = vlogv (cf. Chapter 3 of Le
Gall (2000) [17] although there locally non-Lipschitz branching mechanisms
are excluded), one then expects that, the empirical measures % > 5&1,1-, where

a,i

;' are the positions of the particles alive at time ¢ and the sum is taken over
all these particles, converge in law to X; as N 1 oo (provided that the initial
states converge).

2.3 Concept of proof of Theorems 2 and 3

In preparation of the proofs, we consider in Section 2.4 properties of Neveu’s
continuous state branching process X and its approximations X ®). We prove
some (monotone) convergence of the related log-Laplace functions and their
non-linear terms as well as of the processes, and show uniform boundedness of
lower order moments, see Lemmas 6-7.

The log-Laplace equations given in (9) and (12) are studied in Section 2.5.
We will deal with uniform convergences, comparisons, and solutions starting
from “runaway” functions.

In order to show tightness in law of X®) in D(R, , M) we use Jakubowski’s
(1986) criterion (see Theorem 3.1 of [15]). Since {(-,¢); ¢ € C/T(R?)} is
a family of continuous functions on M; that separates points, Jakubowski’s
criterion states that the properties in the following claim are sufficient for
tightness.

Proposition 4 (Tightness of the X). Let X(gﬂ),Xo be as in Theorem 3.
Then the following statements hold:

(a) (Tightness of one-dimensional processes). For each ¢ € C; (R?),
the family ((X®), ©))o<p<1 is tight in law on D(R.,R).



(b) (Compact containment). For any T > 0 and € > 0, there ezists a
compact set K. in M such that

inf P|XP €eKpfor0<t<T|>1-c (21)
0<B<1

Part (a) is shown in Section 2.6. Compact containment (b) is verified in Section
2.7 followed by a completion of the proof of Theorems 2 and 3.

2.4 Neveu’s continuous state branching process

We begin with studying the total mass X(®) = X(®)(R?) and X = X (R?) of the
superprocesses that we are considering. Their log-Laplace functions @®) and
4, both independent of a spatial variable, can be calculated explicitly. Indeed,
define for allt € R and A > 0,

aP(N) = (APt 41— e ), (22)
L) = AT, (23)

reading the right-hand side as 0 for A = 0. Then ﬁgﬁ)()\) and @;(A) restricted
to t > 0 are the unique solutions of (9) and (12) for ¢ = A. The uniqueness
follows in the former case by the local Lipschitz continuity of ¢g®). The latter
case can equivalently be written as

%wt = —pwlogw; = —g(w;) on (0,00) with wyy =A>0. (24)
Although g is not locally Lipschitz, (24) has a unique solution. In fact, for e > 0
fixed, the function g is locally Lipschitz on [, 00), and the unique solution w
with wg, = A > € lives on [A A 1, AV 1]. Therefore, (24) is uniquely solvable
on (0,00). Assume that w is a non-zero solution to (24) with wo, = 0. Then
there is a t > 0 such that w; = 6 > 0. But from the previously mentioned
uniqueness, we necessarily obtain w, = @_u—4) (@), 0 < s < t. Thus, wy > 0,
which is a contradiction.
We thus have for ¢ > 0, and X?, X, > 0,

E [exp(—Xt(ﬁ))\)] - E [exp (- xPa® (A))] , (25)
E [exp(—X:A)] = E[exp (- Xou:(N))]. (26)

We can right away verify the following properties of g®) and g (introduced
in (10) and (13)).

Lemma 5 (Properties of the non-linear terms). For all v € R, we have
gP®v) | g(v) as 1 > B | 0. Furthermore, g¥¥) and g are negative on (0,1)
and positive on (1,00), with the only intersection points g(v) = g¥®)(v) = 0 for
v =0 and forv =1.



Proof. Let us start by showing that

148
9 (v)=p 2

9B p?

To see the non-negativity, we note that for v = 0 the derivative is zero. Oth-
erwise we observe that Blogv — 1+ v # > 0 is equivalent to 1 + logv # <
v = exp(logv~"), which is true. Thus, g/*) is monotonously non-increasing
as | 0. By Hospital’s Rule it is further easy to see that g(®) converges point-
wise to g as 3 | 0. In order to show that the only intersection points of g
and g are 0 and 1, where both functions are zero, we observe that for v # 0,
g¥ (v) = g(v) is equivalent to exp(v') = 1 + v’ where v' = v# — 1. The only
solution is therefore v’ = 0, which is equivalent to v = 1. Incidentally, these
points are the only intersection points with the v-axis. To see that both func-
tions are negative on (0, 1) and positive on (1, 00), consider the derivatives of
the two continuous functions,

0

DOw) =54 1), Sgw)=p(+loge). (2

(Blogv — 14 v ?) > 0. (27)

Thus, the derivative at v =0 is —% for ¢®¥) and —oo in the limit. Likewise, at
v = 1 the derivatives are all 1. O

>From the monotonicity of the non-linear terms we obtain the following
monotone convergence result for the solutions to the corresponding ordinary
differential equations.

Lemma 6 (Monotone convergence of solutions). For all 0 < A <1 and

t > 0 we have aﬁﬂ)(,\) 1 @:(A) as B 4 0.

Proof. For 0 < A <1 and ¢t > 0, we obtain 0 < ﬂgﬂ)()\) <1, and so

%a&f”m = log(M)A 8 e " (@” (A)) 1 + B2 1og(@” (A))a” (A) < 0.

Thus, @.”)()) is non-decreasing as 3 | 0. We rewrite

@0 = [(1+ 85000 - 1) - (29)

and since 5(A™” — 1) — —log(}), it converges to e® " loe() = g, (). O
As an immediate consequence, for each ¢ > 0 fixed, X't(ﬂ ) converges in law

to X, as B | 0, provided that X'éﬂ) — X, in law. So armed we can prove the
following uniform moment bound.



Lemma 7 (Uniformly bounded lower order moments). Assume that
SUDg<p<1 E[(X{P)%] < oo for some 0 < 0y < 1. Then, for all T > 0 and
0< 0 < fye*T,

sup E {sup()_(t(m)e] < oo. (30)

0<p<1 t<T

Proof. We use the following identity (see (2.1.11) of Zolotorev (1986) [26]),

2?07'T(1 - 0) = / h A1 — e M)dA. (31)
0
which holds for any z > 0 and 0 < # < 1. Therefore, for 0 < § < §pe*T,
E [ sup (Xt(ﬂ))o] (32)
0<t<T
= 11(16— 0) /ooo VE [oggT(l - e_Xt(B)A)] A

oo 1 -
< () (/ A d) +/ AR [ sup (1 — e_Xt(ﬂ)’\)} d)\)
1 0 0<t<T

1
< ¢(6) (0—11—"+ / A0t
0

i
X IE[ sup (1—M§ﬂ’(,\) - / exp(—Xs(ﬂ))\)Xs(ﬂ)g(ﬂ)()\))ds] dA),
0

0<t<T

where ¢t — MP()) := exp(—XP\) — IN exp(—XPA) XP g®) (\)ds is a mar-
tingale. We can therefore estimate by the martingale inequality that

E [ sup (1—M§ﬂ>(A)+ / texp(—)‘(s(ﬁ))\))‘(s(ﬂ)g(ﬂ)(A)ds)} (33)

0<t<T 0
<E[[1- PO+ [ exp(- SN0 as]
0
<E[[1 - exp(~XPN)]] +2 / T IPO)E [exp(- XPNT] ds. (31)
0
Here, the first expectation is by the log-Laplace relation (25) equal to
E[1-ep(- X (V)] <E[1-ep(-XPar ()] (39)

by Lemma 6. This implies that we have to estimate
1
/ AR [1 . exp(—Xéﬂ))\(e_pT))} dA (36)
0
1
— T / AT [1 . exp(—ng’),\)] dX
0

<07'r(1 - TOE (X)),



where we have applied the transformation of variable A = M) and then
used relation (31). Since e’Tf < 6, this quantity is bounded uniformly over
0 < B <1 by assumption. We now turn to the second term of (34). The
expectation in this term can be transformed with the help of the log-Laplace
relation (25):

E [exp(—X )0 XP)] E[ 7P (V)] (37)
g ()\)1+ﬁ)\ B—1g=ps

—F [(X ﬂ))oo exp(— ‘éﬂ)ﬂ(ﬂ) 2))( ‘éﬂ)agﬂ)()\))(l—ﬁo)] aP)(N)fotP \P-lg=ps,

Since z ++ exp(—z)z(!7%) is a bounded function on R,, the expectation is
bounded uniformly over 0 < # < 1 by assumption. Going back to (32) it
therefore remains to bound

/ / AL gB N [P (NP A Le P dsd . (38)

Here we use that there exists a constant ¢ = ¢(7T') so that for all0 < s < T
and for all 0 < B, A <1,

9P NP NPAP < o(T)|log A. (39)
To see this, we note that the inequality is equivalent to
(A Pe P +1—e ) H AP —1) < c(T)log A7, (40)

which is true for all s < T if it is fulfilled for s = T'. For further simplification
we note that A™ = 1 + a for some a € R, and hence

< ¢(T). (41)

a
(1+e*Ta)log(l+a)

Here the left hand side is a continuous function in a € R, , which tends to 1
for a — 0 and to 0 for a — oo, and is thus bounded. Using (39) and Lemma
6 we can now bound (38) by

1 T
T)// ATII\0CT)  Jog Ale P2 dsd
0 0
1
<e(T) [ A% log A)a (42)
0

which is finite as required since 8 < fye=*T by assumption. O

Asymptotic properties as t 1 oo of the total mass process X have been
explored in the Galton-Watson setting, amongst others by Grey (1977) [13].
This lead Neveu (1992) [19] to sketch the following proposition, whose proof
is given in our appendix:



Proposition 8 (Almost sure limit of total mass process). For all (deter-
ministic) initial states m > 0, there exists an exponentially distributed random
variable V with mean 1/m, so that as t 1 oo,

- 1

e "log(X;) — log(v)

An interesting open problem is the long-term behaviour of the spatial pro-
cess X constructed here.

a.s. (43)

2.5 Log-Laplace equations

In this section we construct solutions to (9) as the limit of solutions to (12),
and investigate properties needed in the proof of Theorems 2 and 3, as well as
in Section 3.

Lemma 9 (Approximating solutions). For each ¢ € C;'(R?) there is a
unique solution u®) € C([0,00),C{ (R?)) to the integral equation (12). If
additionally ¢ € Cf”L(Rd) (contained in the domain of A,), it belongs to
C'((0,00), Ci (RY)) with u? € C2(R?) for every t > 0, and it solves the
Cauchy problem (2). All solutions u'®) satisfy

(inf o) A1) <u?(@)@) < (lelle V1), 20, zeRL (44)

Also, monotonicity in the initial conditions holds, meaning that for 1, s in
Cy (RY),

v1 <y 1implies U@(‘Pl) < U@(‘Pz), t>0. (45)
Furthermore,
lim sup |luf” () - ¢l = 0. (46)
10 0<p<1

Proof. Let us first observe that g(®) interpreted as a function C; (R?) —
C;f(R), is Lipschitz continuous, indeed it is continuously differentiable. Since
T> is strongly continuous on C;f(R?), Theorem 6.1.4 of Pazy (1983) [20]
then implies that for any ¢ € C} (R?) there exist unique mild solutions
u® € C([0,t), Ci (R?)) to (12) up to a possible “explosion time” ¢y < co. Be-
cause ¢P) is continuously differentiable we may further apply Theorem 6.1.5
of Pazy (1983) [20] in order to conclude that if ¢ € C>(R?) additionally,
u® e C1((0, ), Ci (RY)), and that all u!”) belong to C%+(R?), and that u(®)
solves (2) up to the explosion time t,.

By a probabilistic argument, we show next the bound on the solutions u(#)
as in (44) implying that ¢, = co. Here, we use the monotonicity in the initial
condition stated in (45), which follows from the log-Laplace representation
(12). Thus, we may estimate u®) with the @(®) given in (22), related to the
total mass process. We obtain for all z € R? and ¢ > 0,

2 (inf, o(v)) < w”(¢)(@) <7 (¢]lx0)- (47)



Since ﬂgﬂ)(||<p||oo) 1 1 for ||¢|lc > 1 and aﬁﬁ)(infyeRd o(y)) T 1 for 0 <
inf,cra p(y) < 1 as t 1 oo, the bounds on u® follow.
For the uniform convergence in ¢, we consider

J
6P (©) = ¢lloo < |ITE0 — @l]oo + || / 72,99 WP ())ds||oe  (48)
0
< ||T5'¢ — ¢l|oo + C(¥)$,

where the second term has been estimated by noting that g(¥)(v) is bounded
uniformly over all 0 < f# < 1 and v € [0,1V ||¢||oc].- The result now follows
since ||T§¢ — ¢||oc — 0 as 6 | 0, by the strong continuity of the semigroup
Te. ]

Lemma 10 (Convergence to a limiting solution). Take ¢ € C/ 1 (R?).
Then there ezists a unique solution u(p) € C([0,00), Cif T (R?)) to (9), which
satisfies for any T > 0,

lim sup |[u® () — w()]]e = O. (49)
BlO o<t<T

For allt > 0, the solution u fulfills

0< inf p(y) A1 <u(p)(z) <llplloVl,  t>0, zeR, (50)
yeR

and is monotone in the initial condition (see (45)). Furthermore, for ¢ in
CEH(R?) they even solve (1) and u € C((0,00), Ci (RY)) with u, € CZ(R?)
for every t > 0.

Proof. Solutions to (12) with initial condition ¢ € C{*(R?) are bounded below
and above according to (50) of Lemma 9. We can therefore estimate for 0 <
B < B2 <1,

t
|u£ﬂ1) - u£ﬂ2)| _ ‘ / Te, (g(ﬁz)(ugﬂz)) _ g(ﬁl)(ugﬂl))(x)) dS‘
0

t
< /T
0
t
+/ Te,
0

t
< C(B1,0) / [l — 4| ds + 8(B1, Ba, @), (51)
0

Here, we have set

dg®

C(B,p) = sup 3 (v) < o0, (52)
inf, cpa p(Y)AL<VL[pl|0V1 OV

5(Br, Ba, ) = sup 9% (v) — g (v)| < 0. (53)

inf | pa@(¥)A1<v<|p[eo V1



We now note that a%(f) converges to ag, uniformly on compact intervals in
(0,00) as B | 0, and hence sup;4<; C(B,9) < oo. Likewise, g¥) converges
to g, uniformly on compacta in (0,00) and thus supg, ,<. (ﬂl,ﬂg, ©) — 0 as
€ | 0. But by Gronwall’s Inequality,

sup [l — ul||o, < 6(By, Ba, ©)T exp(C(Br, ©)T), (54)

and so (u(")),5; with G, | 0 form a Cauchy sequence on C([0, T], Ci " (R?)).
Of course, the limit, which we call u, also fulfills (50) as well as monotonicity
in the initial condition (see (45)). We can therefore repeat essentially the same
arguments as in (51) to show that

lim sup H/ T . |g
B0 i<

Hence, u satisfies (9). Because of the boundedness away from 0 we are securely
in the Lipschitz region of g. Thus, the same arguments concerning further
regularity for initial conditions ¢ € C>**(R?) as detailed in the proof of
Lemma 9 apply. This concludes the existence part of the lemma.

It remains to show uniqueness of solutions. We first note that for any
solution u(¢p) to (9) with ¢ € C;*(R?) there exists a ty > 0 so that u(¢)(z) >
sinfycga p(y) > 0 for all ¢ < ¢y and z € R?. Indeed, u is bounded above,
u(2) < |[@]]oo+18UP,epo,14)/0) 9(v) < C(T) for t < T, where we choose C(T') >
1. Thus, on [0,T], we can bound u from below, u;(z) > inf, p(y) — g(C(T))t
so that we can choose a positive ty < (g(C(T'))) (5 inf, ©(y)) A T.

The nonlinearity g is Lipschitz continuous on compact intervals of (0, 00)
so that uniqueness on [0, %] follows by Gronwall’s Inequality. Thus, the so-
lution on [0,%;] must be the one that we constructed above, which is in fact
bounded below by inf,cgas ¢(y). Hence, we can reiterate the same argument

to see that uniqueness must hold on any arbitrary time interval, and that
u € C([0, 00), i (RY)). O

(u,) (f’>(ugﬂ>)|dsH —0. (55)

Lemma 11 (Comparison of solutions). Fiz 0 < 8; < 32 < 1, and ¢ in
CH(RY) so that p(z) = 1 for all |z| > ¢, where ¢ > 0 is some constant. We

obtain that ugﬂz)(cp)(m) < ugﬂl)(cp)(m), z € R? and t > 0. In particular, for all
v € G (RY), we have supocey i’ (9)(z) < w(@)(z), = € R,

Proof. The proof is an adaptation of standard arguments, see for example
Theorem 10.1 of Smoller (1983) [23]. Let us first assume that ¢ € C>(R%).

We define (the possibly signed function) v,(z) := v/ (z) — v’ (z), which
then satisfies according to Lemma 9,

~u(z) = Agu(z) — P (W (2)) + g0 (u(2)),
vw(z) = 0.

(56)



Let f € C([0,T],Ci (RY)) be defined by f, = —g®) (ul?) + g2 (u{*?)) (recall
that the g are non-decreasing in 3). Then, for some &(¢, ) between ugﬂl)(m)
and ugﬂz)(:v),

—g? (™ (@) + ¥ () (2)) = —(¢®) (€(t, 2))uilz) + fu(w)  (57)

(with (g®))" denoting the derivative of g®)). Note that the following double
supremum sup,cg, SuPgegs(9P)) (€(t, z)) is finite because g is locally Lip-
schitz and £ is bounded uniformly over all ¢ and z. The latter follows from
the boundedness of the solutions from above and below as stated in Lemma 9,
which also implies the uniform boundedness of v. Thus, we can find some con-
stant R € R, so that —(g®))(¢(¢,z))vi(z) + R > 0 for all t and z. Therefore,

¥y 1= ey, satisfies

%Ut(w) = Aati(z) + (—(g¥V) (E(t, 2))0u(2) + R) + fe(x)e™,

(58)

Let T > 0 and suppose that #;(z) < 0 for some (t,z) € [0,T] x R¢. Then, ¥
must attain a negative minimum on [0, 7] x R? in some point (tmin, Tmin)- This
follows from the fact that for any ¢ € [0, T, 9;(z) — 0 for |z| T co. To see this
note that for the initial conditions ¢, considered here, u’ )(m) — 1 for |z| T o0
(¢ = 1,2) since, using the mild form of the solutions and the monotonicity in

the initial condition,

T Al)(2) < ) (pal)(e) < ul(p)(z) (59)
< WP (pv 1)) < TPV 1)(z),

where we have used Lemma 5. The lower and upper bounds converge appro-
priately to 1.

At the minimum (¢min, Tmin) We would have that %vtmin(wmin) < 0 as well
as AnVi_. (Tmin) > 0 by the positive maximum principle (see Theorem 2.2
Chapter 4 of Ethier and Kurtz (1986) [7]). Recalling the choice of R and f
we obtain a contradiction to the equality in (58), and therefore may conclude
that v is indeed non-negative on [0,7] x R? and so also on R, x R?. Finally,
to obtain the same statement for ¢ € C;f(R?) we use the fact that there
exists a sequences @, € Cot(R?) such that ||¢ — @n|le — 0 as n 1 oco.
Arguments analogous to those in (51) to (54) then show immediately that
[[u®) () — u®)(p,)||lc — 0, and so we are done. The convergence in (49)
stated in Lemma 10 now finishes the proof. O

In order to show that mass does not escape to infinity, we need to consider
the behaviour of u started from runeway test functions ry, k > 1. We first



define an auxiliary function r,(:) for some 0 < € < % by

) (2) (60)
5 for || <k+e

= (EED|e| + (A lk Yy for kte<z|<k+1-¢
1 for |z|>k+1-—¢

In short, r,(:) is radially symmetric and linearly non-decreasing in |z| between

its two constant values % and 1. Note also that r,(:) is monotonously non-

increasing in k. Now let ® € C**(R?) with support in B(0, ¢), the open ball
around 0 with e radius, and so that [, ®(z)dz = 1. We then define

(@)= [ 2@, (o)

as the mollification of r,(:). As an immediate consequence of the properties

of 7",(:), we obtain that r, belongs to C°*+(R?), is also radially symmetric,
monotonously non-increasing in k, and that it is constantly ¢ (respectively 1)

for |z| < k (respectively |z| > k + 1).

Lemma 12 (Runaway solutions). We have ui(r)(z) | 0 as k 1 oo, for
any 0 < t < p ! and x € R%. The same statement holds for i, replaced by
|Agrk| Vi and |g(re)| V 7.

Proof. Let t > 0. We note that u;(rt)(z) is monotonously non-increasing in
k for every z, and bounded below by zero, so that a pointwise limit exists,
which we call ui(ry)(z). From the radial symmetry in the definition of ry
as well as in the equation (9) we can immediately observe that, for all k,
() (0) = mingega ue(ri) ().

Now consider a positive test function ¢ € C2" " (R?) with ¥(z) = exp(—|z|)
for |z| > 1. We will first show that there exists a constant k = k(a) > 0, such
that

Aatp(z) < Kip(z), (62)

for all z € R?. Indeed, for a = 2 this follows from the fact that Ay(z) =
(1 — =L)y(z) < (z) for all [z] > 1. For 0 < a < 2, we use the well-known

|

representation (see, for example, (5) of Section IX.11 in Yosida (1980) [25]),

Atb(z) = m / " sl () — TOp(z)] ds (63)

where I' is Euler’s Gamma function. Thus, we obtain

Autb() < /O s (z) — TO%(z)]ds + v (c) /1 T imelzgs (6a)



Here, the integral of the second term is finite. The first term can be estimated
by Taylor’s Formula,

/0 57172 y(z) — Tp(z)]ds (65)

1

< sup T® Ay(z) / s 1% ds < ey(z),
0<s<1 0

where, in the second inequality, we have used (62) for a = 2 together with the

well known fact that

sup T3y < cap. (66)
0<s<1

It is well known that the mild solution u is also a solution in the weak form

for an appropriate class of test functions including our ¥. Thus, we obtain for
any t > 0,

(we(re), ¥) = (Tk,¢>+/0 (us(r), Aatp — (plogus(re))¥)ds (67)

< (1) + (n+ plog) [ (), w)ds.

Note that + = u(rx)(0) < wu(rx)(z) < 1 implies that — loguy(r)(z) < logk.
Using (62) we can therefore apply Gronwall’s Inequality in order to obtain for
all ¢t > 0,

W) < ([ mle)piepds) errinsr (63)
< ( / . Ly(z)dz + |z|>k¢(x)d:c>e"tk”t

< (k4 c(d)k””d_le_k) e,

provided that k > 1. The expression converges to zero as k 1 oo for all t < p~*.
This implies that for ¢t < p~1,

/R uree) (@)b(2)dz = 0. (69)

Taken together with the monotonicity of the limit in |z| we obtain u:(r)(z) =
0forallt<p!andz e R

The statement of the lemma for |A,rg| V 7, and |g(rg)| V 7y in CTH(RY)
follows by repeating the same line of arguments. The estimates of (67) hold
true unchanged since both initial conditions are still bounded below by % which
is hence also true for the solutions u. The only changes in the calculations given
in (68) occur thus in the estimates of the initial condition. Since sup, |A,7x| V
T, < ¢ < 00, We now estimate

[8anivro@pten) < [ ti@dore [ v ()

|| <k |z| >k



with the additional constant ¢ being inconsequential in the following. Because
sup,, |9(r&(z))| V me = supg<,<1 9(a) < ¢ < 0o, we estimate in this case,

[Ltsealv @@ < [ joskpee e [ v @

The constant in the second integral on the right hand side is once again unim-
portant. The first term now leads to k”~*logk (instead of k”*~!), which still
converges to zero for t < p~. O

2.6 Tightness of the one-dimensional processes

In order to show part (a) of Proposition 4, we use Kurtz’ criterion for tightness,
see Ethier and Kurtz (1986) [7] Theorem 3.8.6. The compact containment
condition for a given time ¢ is already implied by Lemma 7. It thus suffices to
verify that for 1 >0 | 0,

®) ®) 2
sup sup® | (|(X 20 - (X, 0 A1) 0 (72)
0<B<1 t<T

For each m, 3,t we define the event A™#+* := {(Xt(ﬂ), @) > m}. We then bound
the quantity in (72) by

2 sup sup P[A™F7] (73)
0<B<1 t<T+1

2
+ ¢(m) sup supE “ exp(X\1, —p) - eXp<Xt(ﬂ),—<P>‘ } :
0<B<L1 t<T

Note that the first term converges to zero as m 1 oo because of Lemma 7. Now
let 0 < 0 < Bpe=*T. Then there exists a constant c(f) so that, for all z,y > 0,
we have

| exp(—z) — exp(—y)| < ¢(8) |z — y|°. (74)
With this in mind we bound the expectation in the second line of (73) by

& [exp (2, ~20) — expl(X2 i) + (687, )|
+ ‘]E [exp(Xt(ﬂ), ~2¢) — exp((X%), —¢) + (X7, —w))] ‘

< ‘E |exp(X7, —uf 29)) — exp(X”, —u (o) ~ )] \
+ ‘]E [exp(Xt(ﬁ), —2¢) — eXP(Xt(ﬂ), —“z(sﬂ)(w) - <P)>]

< (O)F [(xP, [ (20) — i (¢) — 0)))?| + E[(XP, 4l () - ])’]

< c(0) (11w (20) - 265 +2/1uf () - 0]1% ) E [ (X2, 1)7]. (75)




Here, we have used conditioning and the Markov property of the processes as
well as the log-Laplace relation (15). Since (75) converges to zero uniformly
over 0 < f#<1landt<T by Lemma 7 and Lemma 9 we obtain (72).

2.7 Compact containment and convergence

In this section, we show part (b) of Proposition 4, thus establishing tightness in
law. Convergence then follows by identifying the unique limit of any convergent
subsequence.

According to the characterisation of compact sets in M; (see Kallenberg
(1976) [16] A 7.5), claim (b) is implied by the following two statements:

(i) For all € > 0 there exists an N, > 1 so that

sup P [ sup X > NE} <e (76)

0<B<1 lo<t<T

(ii) For all € > 0 there exists a k. such that for the Borel set Ay := {z €
R? : |z| > k.},
sup P [ sup Xt(ﬂ)(Ake) > e} < e. (77)

0<B<1 |O<t<T

We remark that (i) is satisfied according to Lemma 7. For condition (ii)
consider the test function r, € C°*F(R?) defined in (61), which has been
chosen so that 7, > 14,. Thus, it suffices to show (77) with A replaced by
Tke'

We will first show the statement in (77) for T = < p~! since we want to
use Lemma 12. For each K > 1, we define a stopping time 7 = 7x(k, 8) :=
inf {t >0: <Xt(ﬂ), |Apri| + |g(rk)|> > K}. For each sample w, either 74 < T
or Tx¢ > T, hence we can make the following estimate involving the process
stopped at 7k :

P | sup (Xt(ﬁ),'rk) >e| <Plrg <T]+P [ sup <X§,@K,rk> > e]. (78)

0<t<T 0<t<T

Since there is a constant ¢ independent of & so that |A,rx|+]|g(r%)| < ¢, Lemma
7 implies that as K 1 oo,

sup supP[rx(k,B) <T] < sup P [ sup X > 5] — 0. (79)

0<f<1 k>1 0<f<1 |o<t<T ¢

In order to deal with the second probability in (78), we define the martingale
MP (rg) == exp(Xt(ﬂ), —Tg) (80)

i
— / exp(X P, —rk)<X5(ﬁ), —Aqre + g(ﬂ)(rk)>d3.
0



Thus, the stopped process, defined by
M) (i) = exp(X (i, =) (81)

t/\TK
[ explx®, —n) (X, ~Bar+ g )ds,
0

is also a martingale. For some €' > 0, the second term in (78) is equal to

P [ sup (1 — exp(Xt(,@K, —rk)) > e'] (82)

0<t<T

= ]P’[ sup (1 — Mt(ﬂ’TK)(Tk)
0<t<T

INTK
— / exp(XP), ) (XP), —A,ry + g(ﬂ)('rk)>ds) > 6’:|
0

1
<-E
=g

[ sup (1 — Mt(ﬂ’TK)(rk))

0<t<T

t/\TK
+ sup / exp(Xs(ﬂ), —Tk><Xs(ﬂ), | — Ayri + g¥P (rk)‘>ds]
0

0<t<T

6I

< 1 (]E [|1 - M:(rﬁ’TK)(Tk)‘]

TATK
TE [ [ ewx®, —ny(x,
0

— A+ g(ﬂ)(rk)|>ds] )

IN

1 T,
¥ (]E [1 — exp(Xq(P’ K), —rk)]

TNATK
L oE [ [ epx®, -r) (X0, 12 + |g<rk)|>ds] ) -
0

Consider the first expectation of the last expression. It is bounded by
Plrx <T]+E |1 - exp(X{", ) (r))]. (83)

By (79), the probability term becomes small uniformly in 5 and k as K 1 oc.
The rest of the expression can be bounded by E[1 — exp(Xéﬂ), —ur(rg))] by
Lemma 11. As up(rg) < 1, the expectation converges to zero as k T oo
for each B by Lemma 12 and Lebesgue’s Dominated Convergence Theorem.
Furthermore Xéﬂ ) = Xy and the convergence of ur(ry) | 0 is monotone in k
yielding convergence of the expectation uniformly over all 0 < 3 < 1.



Using the fact that supc,<x a(1 — exp(—a))™" =: ¢(K) < oo the expecta-
tion in the last line of the array (82) is bounded by

o(K) fo TE[1— exp(X®, —|Aur| — lg(ra)l)] ds (84)
< ¢(K) /:]E [1 — exp <X(§ﬂ), —ugﬂ)((|Aark| Vi) + (lg(r)| v ’f‘k))>:| ds
< ¢(K) fOTE [1 ~ exp <X(§ﬂ), u, ((|Aark| V) + (lg(re)| v rk)) >] ds.

Here, we have exploited the log-Laplace representation (15) and the mono-
tonicity of »¥) in the initial condition in the first inequality, as well as Lemma
11 in the second inequality. Again, by Lemma 12 together with the conver-
gence of Xéﬂ ) to X, and the uniform boundedness of the solutions in k, we
obtain B-uniform convergence of the integrand to zero as k 1 oo for each s < 7.
Since the integrand is bounded by 1 a further application of Lebesgue’s Domi-
nated Convergence Theorem leads to the appropriate convergence of the entire
expression.

Thus, we can finally conclude that there exists a k. such that the left hand
side of (78) is smaller than € for all 3. First, choose K large enough keeping
in mind (79) and then k. large enough. This concludes the proof of (77) and
hence of claim (ii) for T = ¢ < p~!. Taken together with (a) of Proposition
4 we obtain tightness in law in D([0,%], M;). We show subsequently that any
subsequence convergent in law on the space D([0,T], M), denoted by X (),
where (3, | 0 as n 1 oo, converges to a unique limit X that satisfies (17). It
suffices to identify the finite dimensional distributions of X. As {(-,¢): ¢ €
CyT(RY)} is separating in My, any X; € My can be characterised by (X;, ¢)
for p € CFT(RY).

FormeNlet0 <t <---<t,<T aswellasp; € Cf "(R?) (1 < i < m)
and define recursively

utl, ot (‘Pl) ceey ‘Pm) = utl,...,tm_l(wla oy Pm—1 + utm—tm_l((pm))- (85)

Analogously, we define ut1 i (®1,- .., ¢m) and note that by the Markov prop-
erty and (15),

E | []exp(X{, —¢:)

i=1

=FE [exp(X(gﬂ), —uﬁf’ e (01, -, @m))} ; (86)

.....

We can further show that as n — oo,

H t1, i (P15 Om) — Uty (01, -, 0m) || — O (87)

This follows by induction using (44) and (50) upon noting that for any sequence
(@n)n>1 With 0 < ¢1 < ¢, < 2 < 00 continuous and with |[¢, — ¢||ec — 0 we



have ||u£ﬂ")(<pn) — u(¢)||o — 0 for any ¢ > 0. To see this, consider that the
expression is bounded by

16t (9n) = we(@n)lloo + ||ue(n) — we(9)|loos

where the first term converges to zero as in (51) to (54) in the proof of Lemma
10. The convergence to zero of the second term uses ||T ¢n — T ¢|lc — 0
along with similar arguments. We may now conclude that

‘E[ Hexp(Xti, —;) — exp <X0, — Uiyt (P15 - -5 @m)>} ‘ (88)
i=1
= 71117{?0 ‘E[ H exp <Xt(iﬁ"), —go,-> — exp <X0, ~Uty,ot (P15 - - - Qom)>] ‘

i=1

= lim ‘IE [exp <X(gﬁn), _UE?,"..).,tm (Z T (pm)> — exp <X0, —ut(<p)>} ‘

4
S 1m C(HO)E[<X(§ﬁn)a ‘ui(ilﬂ,n),tm (Cpla tery (pm) - utl,...,tm ((pla seey (-pm) ‘> i|

+ ‘E[ exp <Xéﬂ"), — Uyt (P15 - <Pm)>

— exp (Xo, —Us,,...t. (P15 - - - wm))] D ;

where we have used (86) in the second equality and (74) in the third inequality.
Both terms in the last expression converges to 0 as n — oo, the first by
(87) since sup, E[(X5",1)%] < oo by assumption. But u;, ;. (¢1,---,¢m) is
unique and so any limit point of the (X (ﬂ))o<ﬁ§1 equals the unique process X
satisfying (17) on D([0,T], Ms) for ¢ € C T (RY).

We can now reiterate these arguments in order to lift the restriction of the
assumption T =t < p~!. From the above, we know that thﬁ) = Xj, and from

Lemma, 7 we obtain supy_z<, ]E[(Xi(ﬂ), 1)?] < oo for any 0 < 6 < fpe?’. Thus, we
can apply the same arguments to the process started at £ which converges again
on D([0,%], M¢). This implies convergence of the processes started at time 0
on D([0,2t], M;). Further reiteration yields convergence on any arbitrary time
interval [0, 7], and therefore on R, .

It finally remains to note that X also satisfies (17) with ¢ € C;f (R?) and
u(y) the unique solution as given in Theorem 1(b). This can be seen by
considering ¢, | ¢ with ¢,, € C/ T (R?). In this case, both sides of (17) converge
appropriately due to Lebesgue’s Dominated Convergence Theorem, and so we
are done.

2.8 Log-Laplace equations (continued)

Here we complete part (b) of Theorem 1. The uniqueness of the extension to
non-negative initial conditions relies on the existence of the process X con-



structed before. We restate our objective:

Lemma 13 (Solutions for non-negative ¢). If ¢, € C{*(R?), n > 1,
such that boundedly pointwise ¢, | ¢ € Cf(R?) as n 1 oo, then pointwise
u(n) 4 u(p) € C([0,00),Ci (RY)) as n t oo, and the limit u = u(yp) solves
equation (9), satisfies (11), and is independent of the choice of the sequence
(¢n)n>1 converging to .

Proof. By Lemma, 10, u(yp,), exists for all n > 1 and is bounded below by
inf,cga @(z) A 1. >From the log-Laplace representation (17) we see that the
sequence is monotonously non-increasing as n 1 oo and that, for each (¢,z) €
R, X R%, there exists a limit u;(¢)(z) := limpoo ue(n)(z). Clearly, the limit
is independent of the choice of the sequence (¢, )n>1 since the left hand side
of (17) converges to a unique limit by the Dominated Convergence Theorem.
This implies that g(u:(¢n)(z)) converges boundedly pointwise to g(u:()(z)).
Thus by Lebesgue’s Dominated Convergence Theorem,

/Ot /Rd P (z — y)g(us(on)(y))dyds — /Ot /Rd P (z — y)9(us(p)(z))dyds.

Hence, u(yp) fulfills the mild form of (9) pointwise.

Like the approximating sequence, (t,z) — u;()(z) is a uniformly bounded
positive function on R, x R?. It only remains to show joint continuity in ¢ and
x. The right continuity at ¢ = 0 follows immediately from the strong continuity
of TY* as well as the boundedness of the solutions. Otherwise, we consider for
some0<e<T, e<t<t <Tandzz R

|up(2') — w(z)] < /dlpﬁ(w'—y) Pz — )| e(y)
R

tl
+ / / pi_ (2" — y) |g(us(y)| dyds
/ / |p5 — 1y (z — y)| |9(us(y)| dyds

< e fd\p;f(m'— —pa-yldy + -1 (89)
R

i
[ b =) - o - wldyds). (90)
0 JR4

Now, let [t' —t| | 0 as well as |2’ — z| | 0. We note that

sup sup pg(z) < oo, (91)
e<t<T gcRd
and that p®(z) is jointly continuous on (0,00) x R? (see Appendix in Fleisch-
mann and Gértner (1986) [11]). Thus, by Lebesgue’s Dominated Convergence
Theorem, the spatial integrals in (89) and (90) converge to zero, the latter for
all s < t. Since the spatial integral in (90) is further bounded by 2, another
application of Lebesgue’s Theorem concludes the proof. O



3 Immortality and infinite biodiversity

As already mentioned in Section 1.3, our process X is immortal and propagates
instantaneously:

Proposition 14 (Immortality and instantaneous propagation). Take
p#0,t>0, and ¢ € CL, with ¢ #0. Then (X, @) >0, P,—a.s.

In other words, almost surely the Lebesgue measure is absolutely continu-
ous with respect to X;. Recall that this is quite different from the behaviour
of the approximating supercritical X processes.

Proof. By the Markov property of X, we may fix 0 < ¢t < p L. Clearly,
. t’_g . .
Pu[(Xi,0) = 0] = [im B, [eX"] = exp [— lim (s, ut(9w)>}- (92)

Hence, by Monotone Convergence it suffices to show that for each z € R?,
u(fp)(z) oo as 61 oc. (93)

Let us now consider a sequence (¢,)n>1 with ¢, € CfH(R?) and ¢, | ¢
pointwise as well as ||¢n|lcoc — ||¢||co- By the Feynman-Kac representation of
solutions to (9) in the Lipschitz region,

wl0on)@) = 0B [ente)exo( — [ oroglu.@oe))], (09

where (&, P,) is a motion with generator A, started at z. Consequently, by
Lemma 3.2,
us(00n) (&) < Ollonllo, 520 (95)

Therefore,

u(06.)(@) > OF. [on(€) exp( — ptlog[Bllonlle] )|

= 0(0]@nlloo) ™ Ea [0n()]
0| onl| 2T 0 (). (96)

By Theorem 1(b) the left hand side converges to u;(6¢)(z) as n — oo. The
right hand side converges by assumption implying

u(0pn)(2) = 07 |l0l| L T (), (97)
which becomes infinite as 6 1 oo giving (93). This completes the proof. O

Proposition 14 implies that X has countably infinite biodiversity. This we
want to make precise now. Recall that an infinitely divisible random measure
Y € M; has a clustering representation

Y = 7+in (98)



(see, for instance, Lemma 6.5 in Kallenberg (1976) [16]). Here v € M; is
the deterministic component of Y (or the essential infimum of Y'), and the
clusters (families) x; € My are the “points” of a Poissonian point measure on
M;(R4) \ {0} with some intensity measure Q, , which is called the canonical
measure of Y. We can reformulate (98) as the classical Lévy-Hincin formula
for the log-Laplace transforms,

“logB, [ = )+ [ Qe ) (99)

(see Theorem 6.1 of Kallenberg [16]). Let B be a bounded Borel subset of R?.
If v = 0, then the number #{i : x;(B) > 0} of families in B has a Poisson
distribution with expectation Q(x : x(B) > 0). If yv(B) > 0 then one could say
a “continuum of families” contributes to Y (B). Therefore in [12] the following
terminology was introduced:

Definition 15 (Biodiversity). We say that the (local) biodiversity of the
infinitely divisible random measure Y is

e finite, if v = 0 and Q(x : x(B) > 0) < oo for every compact set B,

e countably infinite, if v = 0 and Q(x : x(B) > 0) = oo for every open set
B #19,

e uncountably infinite, if y(B) > 0 for every open set B # (. O

Armed with this terminology, we can now prove the following result:

Corollary 16 (Countably infinite biodiversity). For every fized u # 0
and t > 0, the random measure X; has (locally) countably infinite biodiversity.

Recall that this is in contrast to the finite biodiversity of the random states
of the approximating processes X (¥,

Proof. For Y to have finite local biodiversity, it is necessary and sufficient that
P,[Y(B)=0] >0 for any compact set B. (100)

This follows from the simple observation that

Q(x: x(B) >0) = —logP,[Y(B) = 0], (101)

provided that v = 0. Then from Proposition 14 it follows that the X; have
infinite biodiversity. Finally, X; does not have a deterministic component,
since X;(R?) has a stable distribution with index e=** [recall (23) and (26)].
This finishes the proof. O



4 Appendix

Proof of Proposition 8. We first note that ¢ — M;(X) := exp ( — @_(\)X;) =
exp(—A)X,) is a martingale, for each A > 0, since for s < ¢,

En [exp(— a—¢(A)X;) | Fs] = exp(— @—s(@_e(N))X,)
= exp( — u_s(N)X,) (102)

by the Markov and branching property of the process X and the semigroup
property of the solution @. Since M;()\) takes values in [0, 1] the limit as ¢ 1 oo
exists a.s., and we denote it by W (). By Lebesgue’s Dominated Convergence
Theorem, for all § > 0,

En[W/(N)] = lmEn[exp(~8a_.(\) X)) (103)
= limexp(—a,(6_())m)
= limexp(=(0A“")" "m)] = exp(~Am).

This implies that W(A) takes the value 1 with probability exp(—Am) and is
0 otherwise. Since M;(A) is monotonously non-increasing in A for each ¢ > 0,
the limit W () is non-increasing in A. Also note that W () is defined a.s. for
all rational A. With the exception of a null set, we can therefore define the
threshold variable V' := inf {rational A : W(X) = 0}. From P,[V < A] =
limypp P [W(XN') = 0] = 1 — exp(—Am), we obtain that V is exponentially
distributed with mean 1/m. It follows that a.s.

0 for A<V,

104
oo for A>V (104)

AIX, {

as t T oo. This implies that for any random variables V and V; with rational
values so that V, <V <V,

V<X <V, (105)
a.s. for t = t(w) large enough. Hence, we have a.s.,
log(3) < lirtrTl inf e~ log(X;) < limsupe™ log(X;) < log(s)- (106)
©° tToo

The statement now follows by letting almost surely V5 and V; tend to V. O
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