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I. Introduction 

Following the discovery of quasicrystals by Shechtman et al. (1,2] there has been a continuing 

interest of both physicists and mathematicians in structures that exhibit what has been termed 

deterministic disorder. A class of models that has attracted particular attention in this context 
are one dimensional Schrodinger operators with potentials obtained from so-called substitution 
sequences (3,4] and a number of analytical and numerical tools have been developed for t~eir 

investigation. On the other hand, substitution sequence provide examples. of various types of 
aperiodic structures, e.g. quasiperiodic or not, that can be characterized by the nature of their 
Fourier spectrum which may be dense pure point (Fibonacci sequence), singular continuous (Thue-

Morse sequence), or even absolutely continuous (Rudin-Shapiro sequence). It is naturally of great 

interest to investigate the spectral and transport properties of systems in dependence of such 
properties. Let us mention that models based on substitution sequences have since enjoyed an 
increasing popularity also in different contexts such as one-dimensional quantum Ising chains (5,6], 
aperiodically kicked quantum systems (7], etc. 

About a decade has passed since the pioneering papers by Kohmoto et al. [8] and Ostlund et 
al. (9] appeared and a vast amount of knowledge has since been accumulated through the work 
of both physicists and mathematicians and through methods ranging from numerical simulations, 
judicious guessing to heuristic and rigorous mathematics [10-22]. In spite of these efforts, we are 
today still far from a complete and coherent understanding of the properties of these systems 

which are, by and large, both subtle and unusual. This situation, together with the prospective 
technological applications (e.g. superlattices corresponding to substitution sequences can today he 
manufactured [23,24]), invites a continued and coordinated effort to further research in this area. 

A regrettable feature of the current situation is that in spite of a flourishing literature a~d 

the existence of a number of review papers (2,25,26], the communication between different schools 
has been less than perfect and in particular it appears that what has been obtained "in terms of 
mathematically rigorous results has not generally been recognized. As a result, there have appeared 

still very recently a number of papers in renowned journals (see in particular (2.7-30]) in which, on 
the basis of numerical and heuristic methods, results are claimed that are in striking contradiction 
to rigorously proven facts. 

The present article is an attempt to improve this situation by explaining some of the mathe-
matical results concerning the spectral theory of Schrodinger operators with substitution potentials 

and to rectify the errors in several recent papers that came to our attention. More importantly, 

we will try to explain the sources of the misinterpretations in these papers. Also, we would like 
to indicate, in an informal way that should be accessible to non-mathematicians what mechanisms 
are important in leading to the mathematical results, what further results may be expected and 
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what information would be needed to obtain these. We will also try to point to the serious open 
problems in the field. To a lesser extend, this article may also serve as a survey for the less involved 
reader. 

Let us briefly review the types of models we consider. First we recall the definition of a 
substitution sequence. Take a finite set A, called an alphabet and denote by A* the set of all finitely 
long words that can be written in this alphabet. Moreover, we write A.JN and Az for the sets of 
all semi-infinite and infinite sequences of letters from A, respectively. Now let l be a map from A 
to A*, i.e. a rule that associates to any letter in A a finite word. We call l a substitution rule and 
extend it to a map from A* to A* by specifying that l acts on a word by substituting each letter 
ai of this word by its corresponding image l( ai). By the same rule the action of l is extended to 
A JN and A z. A sequence u E A JN is then called a substitution sequence, if it is a fixpoint of l, i.e. 
if it remains invariant if each letter in the sequence is replaced by its image under l. Some simple 
conditions on l assure the existence of such fixpoints. Moreover, except for trivial examples of 
substitution rules this fixpoints are aperiodic sequences. Examples of substitution sequences that 
have attracted most attention in physics are 

(i) The Fibonacci sequence. Here A= {a, b} and the substitution rule is simply 

a ~ l (a) = ab, b --? l ( b) = a (1.1) 

(ii) The Thue-Morse sequence. Again A= {a, b }, but the rule is this time 

a--? l(a) =ab, b--? l(b) = ba (1.2) 

(iii) The period-doubling sequence. Again A = {a, b}, and the rule is 

a --? l( a) = ab, b --? l( b) = aa (1.3) 

(iv) The Rudin-Shapiro sequence. Here A= {a, b, c, d}, and the rule is 

a--? l(a) = ac, b--? l(b) =de, C--? l(c) =ab, d--? l(d) =db (1.4) 

All of these examples, and in fact all substitutions we will consider have the property of being 
'primitive' [4] which means that there exists an integer k such that for all pairs of letters a, (3 in A 
the word lk (a) contains the letter (3. Here lk means the k-fold application of l · In the sequel the 
term substitution will always be understood to mean 'primitive· substitution'. 

Given a substitution sequenc~, one may consider various associated Schrodinger operators. 
The most studied one is doubtlessly the tight binding model, where the Hamiltonian act on wave 
functions 7/; in the Hilbert space t2 (Lt) of square integrable sequences as 

Htb7/J(n) = 'l/;(n + 1) + 'l/;(n - 1) + Vn7/J(n) (1.5) 
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Here the potential Vn is obtained by assigning real value v( a) to each letter in A and setting 
Vn = v(a), if then-th letter in the substitution seq~ence u is a. Moreover, for negative values of n 
one sets Vn = V-n-1 · 

Another example are models of the Kronig-Penney type which have for instance been proposed 
to describe transport in structured_superlattices [30-40]. Here the operator is defined on continuum 
wave functions in L2(JR) and is given by 

d2 
Hxp = - dx 2 + V(x) (1.6) 

where V(x) is a step-function describing a sequence of potential barriers of IAI types that are again 
arranged consecutively according to the chosen underlying substitution sequence. 

As always in the theory of differential operators one is interested in the spectrum of the op-

erators H. Let us recall that the spectrum, a(H), of an self-adjoint operator His defined as the 
complement of the set of values E for which the resolvent, (H - E)-1 is a bounded operator. 
An important criteria that characterizes the spectrum in the case of Schrodinger operators is that 

a(H) coincides with the closure of the set of values E for which the time independent Schrodinger 

equation 

H'l/;=E'l/; (1. 7) 

possesses a solution that is polynomially bounded, i.e. for which there exists constants a and b such 

that l'l/1E(n)I ::; blnla, for all n E m. The values for which 'l/;E(n) is a square integrable function are 
called the eigenvalues of H, and the closure of the set of eigenvalues is called the point spectrum; the 
remaining spectrum is the continuous spectrum which can be further decomposed into the absolutely· 
continuous and singular continuous parts, in accordance with the Lebesgue decomposition of the 
spectral measure. Roughly speaking, the absolutely continuous spectrum is a closed set with . 

non-empty interior, while the singular continuous part ('what remains' of the spectrum after the 

point and the a.c. parts have been removed) is a Cantor set. The spectral type has important 
consequences for the transport properties of the models; if the Fermi-energy falls ill the a.c. part of 
the spectrum, we expect a conductor, while if it falls into the point spectrum (or in the complement 
of the spectrum) one expects to have an insulator. The singular continuous spectrum has generally 
been considered to be somewhat exotic and is much less understood; however, for the very models 
we are dealing with here it is quite common and is expected to give rise to interesting new transport 
phenomena. 

Basically since t;h.e early papers of Kohmoto et al. it had been conjectured that, at least in the 

case of the Fibonacci sequence, the operator Htb should have singular continuous spectrum. This 
was later proven in two remarkable papers by Siito [12] and (for more general Fibonacci sequences) 

Bellissard et al. [13]. It is a natural question to ask whether this property depends on particular 
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features of the Fibonacci sequence, e.g. on the fact that it is quasi-periodic, and one may pose 
the question whether and how the spectral type of the Hamiltonian reflects certain features of 
the sequence, and in particular the nature of the Fourier spectrum of the sequence, or if it could 
be an indicator for the degree of 'randomness' of the substitution sequence. The most prominent 
example of a substitution sequence that is not quasi-periodic is certainly the Thue-Morse sequence 
and this has led to a rather extensive investigation of this example. The question of the spectral 
type in this case has been discussed in a number of papers [14-18,27-30] both for the tight-binding 
model and the Kronig-Penney model. In their most recent papers, Ryu et al. [30] arrive at the 
conclusion that in both cases the spectrum contains an absolutely continuous component. On this 
basis they argue that the Thue-Morse sequence should be regarded as more 'periodic' than the 
Fibonacci sequence. Unfortunately, their claim is false. In fact, in [18] (see also [17] for a slightly 
incomplete argument) it has been proven rigorously that the spectrum of the Thue-Morse model 
is purely singular continuous (this paper deals mainly with another sequence, the period doubling 
sequence, but the result applies also to the Thue-Morse case (see the remark following Theorem 3 
in [18]). In fact, a much more general result on the absence of absolutely continuous spectrum has 
been obtained in [22] which suggests that the spectral type is quite independent on the particular 
properties of the substitution sequence. In the next sections we explain those results in more detail 
and comment in more detail on how the erroneous claims in [30] have been obtained. 

II. Sequences and spectra 

It is a natural question to ask what properties of a given sequence determine the spectral type 
of the corresponding Schrodinger operator. Classical candidates might appear to be 

(i) the entropy of a sequence, defined as (see e.g. [4]) 

I = lim _kl ln # {different words of length k occurring in the sequence} 
kjoo 

(ii) the Fourier spectrum of the sequence. 

However, the entropy of a sequence is clearly too crude a measure; all substitution sequences 
have zero entropy and are thus not distinguishable from periodic ones. Nonetheless, their spectra 
are quite different. It is an interesting, and as yet not much investigated question whether more 
refined quantities related to the number of different words in a sequence are related to spectral 
properties. However, again, within the class of substitution sequences this quantity always behaves 
in the same way and no distinction can be seen. 

The Fourier spectrum (see e.g. [41,42]), on the other hand, varies widely in nature between 
substitution sequences, ranging all the way from pure point (Fibonacci) over singular continu-
ous (Thue-Morse) to absolutely continuous (Rudin-Shapiro). One might naturally think that this 
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should be reflected in the spectra of the corresponding operators: pure point Fourier should give 
rise to singular continuous spectrum of the Schrodinger operator and absolutely continuous Fourier 

aught to correspond to point spectrum, with the intermediate singular continuous Fourier s·ome-
where in between. However, there is little evidence to support such conjectures. An attempt to 
provide a theoretical basis to relate properties of the Fourier spectrum of a sequence to spectral 

properties of the Schrodin'ger operators was made by Luck [19] on the basis of perturbation the-

ory. Although his arguments are mathematically heuristic, he succeeded in predicting the scaling 
of the spectral gaps, at least in cases where the Fourier spectrum is pure point. In other cases, 
such as Thue-Morse and Rudin-Shapiro, there were no conclusive predictions. This method does 
demonstrate, however, that a relation between Fourier spectrum and the spectrum of the operator 
is basically limited to first order perturbation theory, and higher order effect will become relevant 
if the singularities in the Fourier spectrum are not strong enough. 

A more pragmatic point of view would favour the idea that the crucial features of a substitution 

sequences should reside in its self-similarity which is encoded in its substitution rule. From that 
point of view, it would seem more natural to conjecture that the spectral type for all substitution 
sequences (excepting maybe some pathological cases) should be the same, namely singular continu-
ous spectrum. There are a number of sound mathematical results indicating in this direction, with 
a number of open problems left to close the argument and the remainder of this section is devoted 

to their explanation. 

In all the one dimensional models of the type we consider here, i.e. the tight-binding or 
the Kronig-Penney models, the basic tool of spectral analysis is the transfer matrix formalism. 

Without entering into the presentation of details that have been presented many times elsewhere 

(for the Kronig-Penney model see e.g. (30,38]) we just note that in all these cases this leads to the 
investigation of a product of two-by two matrices of the form 

n 

Pn(E) = II TE( Un-k) (2.1) 
k=l 

w~ere uk is the k-th letter in the substitution sequence u and TE : A ~ S L(2, a1) is a map that 
assigns, for fixed energy E, to each letter in the alphabet a unimodular two-by-two matrix. The 

precise form of this map depends, of course, on the specific model and its parameters (such as 
potential strength, etc.). As we shall see, however, this precise form of TE is irrelevant for many 
qualitative properties of the model such as the spectral type of H. Let us also recall that the 
Lyapunov exponent is defined as 

;(E) = lim -1
1

1 ln llPn(E)ll 
lnl-+oo n 

(2.2) 

The self-similarity properties of substitution sequences can be used to derive a very efficient method 
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for obtaining crucial information on the asymptotic properties of Pn(E). Let for any word w E A* 

TE(w) = IT TE( a) (2.3) 
aEw 

Set moreover, for k E IN, 
(2.4) 

with r1°) = TE. Obviously, the quantities T1k) (a) can then be computed recursively. It has turned 
out even more useful to derive from these recursion a system of recursive equations for the traces 
of these transfer matrices, called the trace map. The existence of a trace map has been established 
first in the case of the Fibonacci sequence by Kohmoto et al. [10], for general substitutions on 
two-letter alphabets by Allouche and Peyriere [43] and in all generality by Kolar and Nori [44]. 
More recently, there has been considerable effort by several groups to find the simplest form of the 
trace map [45,46], but this is not really relevant for the question we are concerned with. We will 
not enter into the derivation of the trace map (for an exposition see e.g. [22]) but only state that 
in general there exists a finite subset BC A* such that if we set x<;)(w) = t.rT1k)(w), then there 
exist for all /3 E B polynomial maps Ff3 : m8 1 --+ (C, such that 

(k+l)( ) ( (k)( ) (k)( )) x E /3 = F{3 x E /31 ' ... 'x E /31BI (2.5) 

In the specific examples that we consider mostly here, the trace map takes the following form: 

(i) (Period doubling sequence) B =A, and 

x<;+1)(a) = x<;)(a)x<;)(b) - 2 

x<;+i) (b) = x<;)( a )x<;) (a) - 2 
(2.6) 

(ii) (Thue-Morse sequence) Here it is useful to use slightly more complicated variables. We set 

.x<;) = trT1k)(a) and v<;) = ttr (r1k)(a)-T1k)(b))
2 

and finally w<;) = v<;) + 4 - (x<;))2. 
Then (16] 

(k+l) - 2 (k) XE - -WE , (k+l) - ( (k)) 
2 

(k) WE - XE WE. (2.7) 

These trace maps are universally used tools to investigate these models. They do depend only 
on the substitution sequence and not on the specific choice of the model or its parameters which 
enter only through the initial conditions in a straightforward manner. 

To use the trace map in the spectral analysis we need to relate the spectrum to quai:tities 
related to the dynamical system given by the trace map. This quantity will be, naturally, the stable 
set of the dynamical system: we should expect that a particular value of the energy, E, is in the 
spectrum of the Hamiltonian, if and only if the corresponding vector of initial traces x~) remains 
bounded under subsequent applications of the trace map. 
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However, this point turns out to b~ quite subtle and represents, in fact, the main difficult part 
in the determination also of the spectral type. First of all, it is quite easy to give a precise definition 
of a stable set which guarantees that it will contain the spectrum: We say that its complement, 
called the unstable set, is the set of initial traces x~) with the property that th~re exists an no 

large enough such that for all n > n0 , the images under n applications of the trace map have 
first component, x~)(a0 ) whose absolute value is larger than two (for a precise formal definition 
see e.g. [22]). The point is that under this condition, we can construct a sequence of periodic 
approximants of H, converging strongly to H for which we know by Floquet theory that Eis in 
the interior of a spectral gap, and this implies that the same holds for the limiting operator. Note 
that this definition does not imply that in the stable set the traces remain bounded; it suffices that 
there exists an infinite number of values n for which the first trace gets smaller than two! The 
period doubling sequence furnishes an example in which such behaviour actually occurs, i.e. for 
some certain values of the energy .the traces undergo :fluctuations with ever growing amplitudes, 
although, and this is a general characteristic feature, the growth is slower than ex_ponential (see 
Ref. [22]). 'l;'his can easily be deuced from the results presented in Ref. [18). 

So what about the converse statement? Intuitively, one is tempted to believe that if the trace 
of the transfer matrix has modulus less than two, this should imply that all solutions of both the 
homogeneous Schrodinger equation ( 1. 7) and the inhomogeneous equation for the Green' s function 

(H-E)G=oo (2.8) 

where 80 denotes the delta-function concentrated at zero, cannot tend to zero at infinity and in 
particular are not square-summable (recall that the transfer matrices have determinant one; thus 
if their trace is less than or equal to two, both their eigenvalues have modulus one!) which implies 
first that E is not an eigenvalue and second that E is in the spectrum of H. However, a moment's 
reflection will show that this argument is premature and more work is needed to justify it (the 
point being that no information is given on the eigenvectors of the transfer matrices, the angle· 
between which could tend to zero in which case a decaying solution cannot be excluded). Still, 
this argument has been made rigorous in some examples, namely the Fibonacci sequences, the 
Thue:.Morse sequence and the period-doubling sequence. However, already in the period-doubling 
case, this required a fairly cumbersome analysis that appeared to be impossible to carry through 
in more complicated situations. 

A less direct, but technically more feasible approach is based on the following observation: 
From quite general argument, it is known that the spectrum of a Schrodinger operator must always 
contain the set of energies for which the Lyapunov exponent is zero (the converse being false in 
general; for random sequences, the Lyapunov is strictly positive even in the spectrum). Thus, if 
one can show that the Lyapunov exponent is zero for all energies in the stable set, one can close the 
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circle of inclusions and shows that all three sets are identical! This idea was shown to work in [22] for 
a very large class of substitution sequences, namely those giving rise to so-called "semi-primitive" 
trace maps (for a definition see [22]). 

Apart from its generality, an advantage of this method is that it yields as a by-product imme-
diately the singular nature of the spectrum. By a result of Kotani [48] (augmented by some simple 
soft analysis that can be found in [18]) it is known that, for any substitution sequence (excepting 
the trivial case of periodic sequences), the set of energies on which the Lyapunov exponent van-
ishes must be of zero Lebesgue measure. Thus, the presence of absolutely continuous spectrum is 
immediately excluded in all these cases! We would like to stress that all these argument apply in 
the Kronig-Penney models just as in the tight-binding models, even though the theorems in the 
original literature were stated only for the latter case. The problem left open by this method is 
that of the possible existence of eigenvalues. They are excluded under assumptions which allow to 
show that the first method works but are certainly too restrictive. It is quite likely that in fact 
the spectrum will be singular continuous (i.e. of measure zero and no eigenvalues) whenever it 
coincides with the stable set of the trace map, but some new idea is needed to prove this. The 
other main open problem is of course to know whether the assumption of a semi-primitive trace 
map is really necessary for the absence of absolutely continuous spectrum. There is one example, 
the Rudin-Shapiro sequence, for which the trace map is not semi-primitive, but unfortunately, there 
are also no very definite results on the nature of the spectrum in this case. Dulea et al. [49] have 
presented some evidence based on a scaling analysis and numerical data that for strong potentials, 
the spectrum should be pure point. This would be very interesting, if it can be confirmed. But of 
course, all such results should be regarded with great caution. 

III. Extended states and spectra 

We have seen in the last section that the question of the nature of the spectra in our models 
is settled rigorously for a large class of substitution sequences and in particular, with great detail, 
in the case of the Thue-Morse sequence. It is still interesting to analyze why ~nd how the authors 
of (30] arrived at the false conclusion that in this example there exists an absolutely continuous 
component in the spectrum. 

The main basis of their analysis resides in the distinction of (generalized) eigenstates as 'ex-
tended' or 'critical'. Now, in the Thue-Morse case (and in fact in all examples where singular 
continuity of the spectrum was proven) it turns out that for all values of the energy in the spec-

trum, the solutions of the initial value problem ( H - E),,P = 0 do not tend to zero at infinity. Thus, 
reasonably, all states might be called 'extended'. Still, there are quite different ways a function 
that does not tend to zero may behave. A particularly nice one would be to be periodic, or, at 
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least, to be a possibly aperiodic repetition of several patterns of constant length. This latter case 
occurs quite typically for substitution potentials and it is apparently this behaviour that is referred 
to as 'extended states'. While this has nothing whatsoever to do with the presence or absence of 
absolutely continuous spectrum, this is an inteiesting phenomenon and deserves some comments. 

Let us for simplicity consider the case of a two-letter alphabet, say A = {a, b }. Now it may 
happen that for given integer k and for special values of the energy E the matrices Tkk) (a) and 
Tkk) ( b) commute. Then the two matrices will posses at least one common eigenvector, and this 
will give rise to a solution of the Schrodinger equation whose behaviour over steps oflength l~k( a )I 
resp .. l~k( b) I we can easily trace. If one of the traces of the two matrices is larger than 2, there are 
in fact two such solutions which will grow either to the left or to the right exponentially fast, so we 
are out of the spectrum. The interesting case arises when the two traces have modulus less than or 
equal to two: in this case they just multiply the eigenvector by a phase and we obtain an extended 
solution whose behaviour is particularly simple. Up to the phase factor, it consists of two patterns 
of length llk(a)I and l~k(b)I which alternate according to the way the letters a and bare arranged 
in the substitution sequence itself. 

In general it may be expected that the number of values E for which this phenomenon occurs. 
should increase with k: The entries of the corresponding matrices are polynomials of ever higher 
degree in E. Of course, the details here depend on the particular model via the dependence of the 
basic transfer matrices on the energy. In the Thue-Morse case and in the period-doubling case, it 
has previously been noticed that for each k there exist 2k-l values of E for which such solutions 
exist (see [18,17] and [18] resp.). Their occurrence in both sequences shows in particular, that they 
are not tied to the question of quasi periodicity of the sequence, as appears to be believed in (30]. 
It should be noted that the case of the Fibonacci sequence is quite peculiar, as there the matrices 
Tkk)(a) and Tkk)(b) can only commute if Tk0)(a) and Tk0 )(b) commute (this is readily proven by 

ind~ction; the crucial point is that A commutes with AB if and only if A commutes with B) which, 
at least in the tight binding model, is only true in the trivial case where v = 0. 

In any case, it should be kept in mind that the energies at which such solutions exist always 
form at most a countable set. The continuous spectrum, however, is by its definition uncountable. 
Therefore, they can .never be significant for absolutely continuous spectrum, and statement like 
'one half of the states are extended' are quite meaningless. 

We should stress, however, that the properties of generalized eigenfunctions will be quite 
important for other physical, in particular transport, properties of these systems (see e.g. [50,51]) 
even though this entire field is not yet sufficiently investigated. We would like to mention in this 
context that the types of extended states yve have discussed above occurs also in certain cases of 
random potentials with constraints. An example that was discussed extensively in recent years 
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is the 'random dimer model' (see [52,53]) introduced to describe certain anomalous conductivity 
properties of some polymers. 

IV. Conclusions 

We have explained in the preceeding sections that for a large class of models based on substitu-
tion sequences the spectrum has no absolutely continuous component and moreover is concentrated 

on a set of zero Lebesgue measure. Moreover, the spectrum coincides in all these cases with the set 
of energies for which the Lyapunov exponent is equal to zero (contrary to what is stated for instance 
in [39]). For some of the most studied examples, namely the Fibonacci sequences, the Thue-Morse 
sequence and the period-doubling sequence, it has moreover been shown that no eigenvalues can 
exist and therefore the spectrum is purely singular continuous in these cases. There appears to be 

' no connection between this fact and the nature of the Fourier spectrum of the sequences. 

There are' a number of important problems that remain, however, open. First, we would 

like to see whether the absence of absolutely continuous spectrum can be proven for all aperiodic 

substitution sequences. We expect this to be true. Second, it would be interesting to see whether 
there are e~amples of substitution sequences which give rise to point spectrum. A candidate is here 
the Rudin-Shapiro sequence and it is well worth-while to study it more thoroughly. 

Further questions regard the more detailed structure of the spectra, beyond just the spectral 

type. Only in the Thue-Morse and the period-doubling cases is a very detailed description of the 
spectrum available (e.g. precise asymptotics for the behaviour of all spectral gaps). It is a quite 
bothering feature that even in the simplest case of all, the golden Fibonacci sequence, the opening· 

of the gaps at small potentials is not known! In this context it would be very interesting to give 

a more rigorous foundation to the perturbation theoretic arguments of Luck [19]. Also one would . 

like to see more precise relations between characteristics of the spectra (e.g. fractal and correlation 
dimensions of the spectral measure) and actual transport properties. At least from a mathematical 
point of view, there is little more than some vague ideas that exist so far, and we do not want to 
discuss this point here. 

Finally, all results so far are obtained for models that are associated to products of two-by-two 

matrices (excepting the gap-labelling theorems (20,21] which are valid for much larger classes of 
systems). Thus models with long-range hopping models on a strip are not covered by existing 

theorems. The reason for this is basically that there is no analogue of the trace map known in these 

cases. This leaves a lot of room for further investigations. 
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