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Abstract

We give a new adaptive method for selecting the number of upper order statistics

used in the estimation of the tail of a distribution function. Our approach is based on

approximation by an exponential model. The selection procedure consists in consecu-

tive testing for the hypothesis of homogeneity of the estimated parameter against the

change-point alternative. The selected number of upper order statistics corresponds

to the �rst detected change-point. Our main results are non-asymptotic and state

optimality of the proposed method in the �oracle� sense.

1 Introduction

This paper is concerned with the adaptive estimation of the tail of a distribution function

(d.f.) F: A popular estimator for use in the extreme value theory was proposed by Hill

(1975). Given a sample X1; :::; Xn from the d.f. F the Hill estimator is de�ned as

b�n;k =
1

k

kX
i=1

log
Xn;i

Xn;k+1

;

where Xn;1 � ::: � Xn;n are the order statistics pertaining to X1; :::; Xn and k is the

number of upper order statistics used in the estimation. There is a vast literature on

the asymptotic properties of the Hill estimator. Suppose that d.f. F is regularly varying

with index of regular variation � [see for example Bingham, Goldie and Teugels (1987)].

Weak consistency for estimating � was established by Mason (1982), under the conditions

that k ! 1 and k=n ! 0 as n ! 1: Asymptotic normality of the Hill estimator was

proved by Hall (1982). A strong consistency result can be found in Deheuvels, Haeusler

and Mason (1988). Further properties concerning the e�ciency have been studied in Dress

(2001). For extensions to dependent observations see, for instance, Resnik and Starica

(1998) and the references therein. The asymptotic results mentioned above do not give

any recipe about selecting the parameter k in practical applications, while the behavior of

the error estimation depends essentially on it. Di�erent approaches for data driven choices

of k have been proposed in the literature, mainly based on the idea of balancing the bias

and the asymptotic variance of the Hill estimator. We refer to Hall and Welsh (1985),

Danielson, de Haan, Peng, Vries (2001), Beirlant, Teugels and Vinysaker (1996), Resnik
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and Starica (1997), Dress and Kaufman (1998), among many others. However the bias of

the Hill estimator for estimating the parameter of regular variation as a rule diminishes

very slowly, which makes any choice of the parameter k not very e�cient from the practical

point of view. A striking example is the so called Hill Horror plot (see Figure 1, left).

Order statistics k

H
ill

 e
st

im
at

or

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

The Hill horror plot

Order statistics k

H
ill

 e
st

im
at

or

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0
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Figure 1: Left: 100 realizations of the Hill estimator for Pareto-log d.f. F (x) = 1 �

(x=e)�1=� logx; x � e; where the parameter � = 1 is expected to be estimated. Right: 100

realizations of the Hill estimator for Pareto-log d.f. and the �tted Pareto parameter. Here the

dark lines represent the �tted Pareto index computed from the approximation formulas (3.5), (3.1)

and the light ones are the corresponding Hill plots.

For more insight on the problem the reader is referred to the book by Embrechts, Klüp-

pelberg and Mikosch (1997), from which we cite on the page 351: �On various occasions

we hinted at the fact that the determination of the number k of upper order statistics

�nally used remains a delicate point in the whole set-up. Various papers exist which o�er

a semi-automatic or automatic, so-called �optimal�, choice of k: ... We personally prefer a

rather pragmatic approach realizing that, whatever method one chooses, the �Hill horror

plot� ... would fool most, if not all. It also serves to show how delicate a tail analysis in

practice really is.� An interesting exchange of opinions on this subject may be found in

the survey paper by Resnik (1997) and in the supplied discussion.

The aim of the present paper is to give a natural resolution to the �Hill horror plot� paradox

and to rehabilitate the Hill estimator, for �nite sample sizes, by looking at the problem

from the point of view of selecting an appropriate tail. In Section 3 we shall see that, for

�nite sample sizes, the Hill estimator is close to another quantity which can be interpreted

as the parameter of the approximating Pareto distribution and which we shall call the

�tted Pareto index [see (2.4) for the de�nition of this quantity]. In Figure 1, right, we

give a simulation for the Pareto-log d.f.; other examples are presented in the Appendix 8.

The importance of this interpretation, perhaps, is justi�ed by the fact that it allows new

2



approaches for selecting the number k of retained upper order statistics. For estimating

the �tted Pareto index we propose a method based on successive testing of the hypothesis

that the �rst k normed log-spacings follow exponential distributions with homogeneous

parameters. The idea goes back to Spokoiny (1998). However our procedure is di�erent

in several aspects. First, our test is based on the likelihood ratio test statistic for testing

homogeneity of the estimated parameters against the change-point alternative. Second, in

our procedure the number k is selected to be the detected change-point. We also refer the

reader to Picard and Tribulieu (2002) where the change point Pareto model (see Pareto-CP

d.f. in the Appendix) is used for estimation in the parametric context.

Our main results are non-asymptotic. We establish an �oracle� inequality for the adaptive

estimator of the �tted index. The result claims that the risk of the adaptive estimator is

only within come constant factor worse than the risk of the best possible estimator for the

given model.

The paper is organized as follows. In Sections 2 and 3 we formulate the problem and

give the approximation by the exponential model. The adaptive procedure is presented in

Section 4. Section 5 illustrate the numerical performances of the method on some arti�cial

data sets. The results and the proofs are given in Sections 6 and 7.

2 The model and the problem

Let X1; :::;Xn be i.i.d. observations with common d.f. F (x) supported on (a;1); where

a > 0 is a �xed real number. Assume that the function F is strictly increasing and has a

continuous density f: Since F (a) = 0; the d.f. F can be represented as

F (x) = 1� exp

�
�
Z

x

a

� (t) dt

�
; x � a; (2.1)

where

� (x) =
f (x)

1� F (x)
; x � a

is the hazard rate. Note that if � (x) = 1
�x
; then the d.f. F is Pareto with index 1=�;

which is a typical fat tail distribution. To allow more general laws with heavy tails we

shall assume that

� (x) =
1

� (x)x
; (2.2)

where the function � (x) ; x > a; can be approximated by a constant for big values of x:

For instance, this is the case when there exists an � > 0 such that

lim
x!1

� (x) = �: (2.3)
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Many regularly varying at in�nity d.f.'s F satisfy the assumptions (2.1), (2.2) and (2.3),

see representation theorems in Seneta (1976) or Bingham, Goldie and Teugels (1987). If

this is the case, then the limit in (2.3) is nothing else but the index of regular variation.

Our problem can be formulated as follows. Let Xn;1 > ::: > Xn;n be the order statistics

pertaining to X1; :::;Xn: The goal is to �nd a natural number k such that on the set

fXn;1; :::;Xn;kg the function � (x) ; x � a; can be well approximated by the value � (Xn;1)

and to estimate this value. The intuitive meaning of this is to �nd a Pareto approximation

for the tail of the d.f. F on the data set fXn;1; :::; Xn;kg : Note that this problem is di�erent

from that of estimating the index of regular variation � de�ned by the limit (2.3). As it

was stressed in the Introduction the main advantage of the present setting is, perhaps,

the fact that it allows new algorithms for the choice of the nuisance parameter k: The

approach adopted in this paper is based on the approximation by an exponential model

which is presented in the next section.

Before to proceed with this, we shall point out the connection of the function � (�) to the

logarithmic mean excess of F :

� (t) =

Z 1

t

log
x

t

F (dx)

1� F (t)
; t � a: (2.4)

Integration by parts gives, for any t � a;Z 1

t

� (x)
F (dx)

1� F (t)
= � (t) : (2.5)

By straightforward calculations it can be seen that the number � (t) is the minimizer of

the Kullback-Leibler distance between Pareto d.f. P� (x) = 1 � x�1=�; x � 1 and the

excess d.f. F (xjt) = 1 � (1� F (xt)) = (1� F (t)) ; x � 1: Thus the number � (t) can be

interpreted as the parameter of the best Pareto �t to the tail of the d.f. F on the interval

[t;1): We shall call the function � (t) ; t � a the �tted Pareto index.

3 Approximation by exponential model

The function � (�) will be estimated from the approximating exponential model. Our mo-

tivation is somewhat similar to that of Hill (1975) [see also Beirlant, Dierskx, Goegebeur

et Matthys (2000) for another exponential approximation]. The construction of the ap-

proximating exponential model employs the following lemma, called Renyi representation

of order statistics.

Lemma 3.1. Let X1; :::;Xn be i.i.d. r.v.'s with common strictly increasing d.f. F and
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Xn;1 > ::: > Xn;n be the order statistics pertaining to X1; :::; Xn: Then the r.v.'s

�i = i log
1� F (Xn;i+1)

1� F (Xn;i)
; i = 1; :::; n � 1:

are i.i.d. standard exponential.

Proof. See for instance Reiss (1989) or Example 4.1.5 in Embrechts, Klüppelberg and

Mikosch (1997)].

Let Yi = i log
Xn;i

Xn;i+1
; i = 1; :::; n � 1: Then Yi = �i�i; i = 1; :::; n � 1; where

�i = � log
Xn;i

Xn;i+1
= log

1� F (Xn;i)

1� F (Xn;i+1)
: (3.1)

It is easy to see that the function � (x) is de�ned through the d.f. F by the equations

1

� (x)
= x� (x) =

xf (x)

1� F (x)
= �

d

dx
log (1� F (x))

d

dx
log x

; x � a: (3.2)

By identity (3.2) the value �i can be regarded as an approximation of the value of the

function � (�) at the point Xn;i+1: More precisely, the mean value theorem implies

�i = �

�
Xn;i+1 + �n;i+1

Xn;i �Xn;i+1

Xn;i

�
;

with some �n;i+1 2 [0; 1]; for i = 1; :::; n�1: These simple considerations reduce the original

model to the following inhomogeneous exponential model

Yi = �i�i; i = 1; :::; n� 1; (3.3)

where � = (�1; :::; �n�1) is a vector of unknown parameters. We assume local homogeneity

of this model which stipulates that the components �i's nearly equal �1 within some

interval I = [1; k]: In the sequel �nding the Pareto approximation for the tail of the d.f.

F will be viewed as the problem of choosing the interval I = [1; k] and of estimating the

component �1 from the observations (3.3).

Under the assumption that

�1 = ::: = �k; (3.4)

the maximum likelihood estimator of �1 is the sample mean

b�k =
1

k

kX
i=1

Yi;

which is the well-known Hill estimator. Our main concern is to choose appropriately the

number k of upper order statistics used in the estimation.
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If the condition (3.4) is not satis�ed, then from the de�nition of the model (3.3) it follows

that the Hill estimator b�k approximates without bias the quantity

�k =
1

k

kX
i=1

�i; (3.5)

which, in turn, is an approximation of the �tted Pareto index (2.4): �k � � (Xn;k+1) ; for

k big enough. The assumption of local homogeneity implies that the quantities �k; �k and

�1 = �1 are close to each other and thus under this assumption the Hill estimator also

approximates the �tted Pareto parameter � (t) at the point t = Xn;k+1: The simulations

show a good concordance between the two latter quantities (see Figures 1, 4 and 5).

Although the above considerations shed some light on what does the Hill estimator es-

timate, the main problem, how to choose an appropriate value of k (even for the �tted

Pareto index � (Xn;k+1) or equally for �k) still remains open. Model selection based on the

penalisation terms [see Barron, Birge and Massart (1999)] could be a reasonable alternative

for de�ning the optimal and adaptive values of k: In this paper we take another adaptive

approach. To avoid di�cult interpretations with the choice of the optimal value k for the

parameter �k we shall consider that the Hill estimator estimates the value �1; which may

be regarded as a constant approximation of the values �i; i = 1; :::; k:

4 Adaptive selection of the parameter k

This section presents a method of selecting the parameter k in a data driven way. Through-

out the paper we shall denote by jIj the number of elements of the set I:

4.1 The adaptive procedure

Let I be a family of intervals of the form I = [1; k]; where k 2 f1; :::; n � 1g; such
that jIj � 2m0; for a prescribed natural number m0; where m0 is much smaller that

(n� 1) =2: A special case of the family I is given by the set of all the intervals I =

[1; k]; satisfying this condition. Another example used later on in the simulations, is

the set I = Iq of intervals I = [1; k]; with k approximately lying in the geometric grid�
l : l � n; l = [m0 +m0q

j ]; j = 1; 2; :::
	
; where q > 1: In the latter case the numbers m0

and q will be parameters of the procedure.

The family I is naturally ordered by the length jIj of I 2 I . The idea of our method is

to test successfully the hypothesis of no change-point within the interval I and to select

k equal to the �rst detected change-point. The formal steps of the procedure for selecting

the adaptive interval bI reads as follows:
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INITIALIZATION Start with the smallest interval I = I0 2 I:

STEP 1 Take the next interval I 2 I.

STEP 2 From observations (3.3) test on homogeneity the vector � within the interval I

against the change-point alternative, as described in Section 4.2.

STEP 3 If the change point was detected for the interval I; then de�ne bI as the interval

from one to the detected change-point and stop the procedure, otherwise repeat the

procedure from the Step 1. If there was no change-point for all I 2 I; then de�nebI = [1; n� 1]:

The adaptive estimator is de�ned as b� = b�bI ; where

b�I = 1

jIj
X
i2I

Yi; (4.1)

for any interval I: The essential point in the above procedure is the Step 2 which stipulates

testing the hypothesis of homogeneity for the interval I: It consists in applying the classical

change-point test which is described in the next section.

4.2 Test of homogeneity against the change-point alternative

The test of homogeneity against the change-point alternative is based on the likelihood

ratio test statistic. For any interval I 2 I denote by JI the set of all subintervals J � I;

J 2 I; such that jIj =2 � jJ j � jIj �m0: For every interval J 2 JI consider the problem of

testing the hypothesis of homogeneity �i = �; i 2 I against the change-point alternative

�i = �1; i 2 J and �i = �2; i 2 I n J with �1 6= �2: The likelihood ratio test statistic is

de�ned by

TI;J = sup
�1

L (YJ ; �1) + sup
�2

L
�
YInJ ; �2

�
� sup

�

L (YI ; �)

= L (YJ ; b�J) + L
�
YInJ ; b�InJ�� L (YI ; b�I) ;

where b�I is the corresponding maximum likelihood estimator de�ned by (4.1) and

L (YI ; �) =
X
i2I

log p (Yi; �) :

Since in the case under consideration p (y; �) = exp (�y=�) =�; one gets

TI;J = �
X
i2J

�
log

b�Jb�I � Yi

�
1b�I � 1b�J

��
+
X
i2InJ

�
log

b�InJb�I � Yi

�
1b�I � 1b�InJ

��

= jJ jG
�b�Jb�I � 1

�
+ jI n J jG

�b�InJb�I � 1

�
; (4.2)
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where G (x) = x � log (1 + x) ; x > �1: The use of Taylor's expansion gives the approxi-

mating test statistic

T I;J =
jJ j
2

�b�Jb�I � 1

�2

+
jI n J j

2

�b�InJb�I � 1

�2

:

By simple algebra we can represent the latter statistic in the form

T I;J =
jJ j � jI n J j

2 jIj

�b�J � b�InJb�I
�2

: (4.3)

Now the test of homogeneity of � on the interval I can be based on the maximum of all

such de�ned statistics TI;J or T I;J over the set JI : The hypothesis of homogeneity on the

interval I will be rejected if

TI = max
J2JI

TI;J > t
 ; or T I = max
J2JI

T I;J > t
 ;

where the critical values t
 and t
 are de�ned to provide the prescribed rejection proba-

bility 
 under the hypothesis of homogeneity within the interval I: These values can be

computed by Monte-Carlo simulations from the homogeneous model with i.i.d. standard

exponential observations Yi; i = 1; :::; n: Here we utilize the fact that under the hypothesis

of homogeneity the distributions of the test statistics TI and T I do not depend on �:

If the hypothesis of the homogeneity of � is rejected on the interval I then the detected

change-point k� corresponds to the length of the interval J� 2 JI for which the statistic

TI attains its maximum, i.e.

k� = jJ�j ; where J� = arg max
J2JI

TI;J :

5 Simulation study

The aim of the present simulation study is to demonstrate the numerical performance of

the proposed procedure. We focus on the quality of the selected interval I and of the

corresponding adaptive estimator. The next �gures present box-plots of the length of the

selected interval bI and of the adaptive estimator b� for di�erent values of the parameter
p
t


from 500 observations following Pareto and Pareto-log d.f.'s (see a list in the Appendix).

The box-plots are obtained from 500 Monte-Carlo realizations. The set I is a geometric

grid with parameters m0 = 25; q = 1:1 :

In Table 1 the mean absolute error (MAE) of the adaptive estimator �̂ w.r.t. the value

�1 = �(Xn;1) is computed for the d.f.'s introduced above.

The results clearly indicate that the increase of the parameter t
 results in a smaller

variability of the estimator but in a larger bias (in case when the model is not Pareto). A
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Figure 2: Box-plots of selected intervals and the adaptive estimators for Pareto d.f. from 500

realization.
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Figure 3: Box-plots of selected intervals and the adaptive estimators for Pareto-log d.f. from 500

realization.

reasonable compromise is attained for
p
t
 about 2:6 leading to a relatively stable behavior

of the procedure in the Pareto case and to a moderate bias in the non-Pareto case. The

numerical simulation for the procedure with the parameter
p
t
 = 2:6 for di�erent values of

the sample size n and di�erent distributions (see a list in the Appendix 8) are summarized

in Table 2. The other parameters are kept as in the previous case. In this table MAE is

computed w.r.t. the value �1 = �(Xn;1) for 500 simulations.

In the Appendix 8 we present the box-plots of the length (in %) of the selected intervalbI and of the adaptive estimator b� for di�erent values of n from 500 simulations following

di�erent d.f.'s.
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Table 1: MAE computed for 500 realizations

t
=2.2 t
=2.4 t
=2.6 t
=2.8 t
=3.0 t
=3.2 t
=3.4

Pareto 0.0642 0.0583 0.0546 0.0487 0.0459 0.0433 0.0395

Cauchy-plus 0.1036 0.1076 0.1116 0.1166 0.1204 0.1232 0.1275

Pareto-log 0.1838 0.2039 0.2231 0.2388 0.2581 0.2854 0.3106

Pareto-CP 0.0746 0.0704 0.0697 0.0658 0.0642 0.0626 0.0615

Table 2: MAE computed for 500 realizations

n=200 n=300 n=400 n=500 n=800 n=1000 2000 n=3000

Pareto 0.0573 0.0507 0.0473 0.0521 0.0456 0.0495 0.0453 0.0415

Cauchy-plus 0.1483 0.1210 0.1133 0.1155 0.0846 0.0943 0.0720 0.0577

Pareto-log 0.2544 0.2309 0.2274 0.2178 0.1895 0.1828 0.1783 0.1713

GPD 0.2563 0.1829 0.1770 0.1564 0.1488 0.1301 0.1171 0.1095

Hall model 0.2498 0.2448 0.2377 0.2439 0.2344 0.2222 0.1961 0.1699

Pareto-CP 0.1001 0.0881 0.0737 0.0669 0.0566 0.0558 0.0432 0.0321

Standard Normal tail 0.2273 0.1718 0.1438 0.1242 0.0983 0.0941 0.0689 0.0654

Standard Exponential 0.2989 0.2370 0.1913 0.1707 0.1432 0.1373 0.1133 0.1007

6 Theoretical results

This section discusses some theoretical properties of the procedure presented in Section 4.

Let t
 > 0 and t
 > 0 be the critical values entering the de�nition of the change point

tests from Section 4.2.

6.1 Properties of the selected interval

We start with results concerning the choice of the interval of homogeneity. We will ensure

that the following two properties hold:

A. The intervals of homogeneity are accepted with high probabilities.

B. The intervals of non-homogeneity are rejected with high probabilities at least in some

special cases, for instance, for the change-point model.

Consider �rst the property A. The assumption that the vector � is constant on some interval

I can be quite restrictive for practical applications. Therefore the desirable property would

be that the procedure accepts any interval I 2 I for which �i can be well approximated

by a constant within the interval I: Let I be an interval and let �I be the average of the

10



�i's over the interval I :

�I =
1

jIj
X
i2I

�i:

The non-homogeneity of the �i's within the interval I can be naturally measured by the

value

�I = max
i2I

�����i�I � 1

���� :
We say that I is a �good� interval if the value �I is small. The next result claims that a

�good� interval I will be accepted by the procedure with a high probability provided that

the critical value t
 was taken su�ciently large.

For every interval I 2 I, denote

SI =
1

jIj
X
i2I

�i (�i � 1) and V 2
I =

X
i2I

�2
i :

For given intervals I 2 I and J 2 JI , denote Jc = I�J and, with a real � > 0, de�ne the

events


I;J =

�
jSI j �

�VI

jIj ; jSJ j �
�VJ

jJ j ; jSJc j �
�VJc

jJcj

�
and


I =
\
J2JI


I;J :

The function G (x) is de�ned for all x > �1:We extend it to the whole real line by de�ning

G (x) = +1 for x � �1:

Theorem 6.1. A. Let 
 2 (0; 1) and I 2 I: Let the numbers � and m0 be such that

� � 2

q
log

2jJI j+1



and
p
m0 >

3
2
� (1 + �I) : Then P (
I) � 1� 
:

B. Let 
 2 (0; 1) and I 2 I: Let the numbers � and m0 be such that � � 2

q
log

2jJI j+1



and
p
m0 > 3� (1 + �I) : If �I ful�lls

G
�
�3�I � 3� (1 +�I)m

�1=2
0

�
� 4t


jIj ; (6.1)

then on the set 
I it holds TI � t
 :

C. Let 
 2 (0; 1) and I 2 I: Let the numbers � and m0 be such that � � 2

q
log

2jJI j+1



and
p
m0 > 3� (1 + �I) : If �I ful�lls

�I �
2
p
2

3
t
1=2

 jIj�1=2 � �m

�1=2
0

1 + �m
�1=2
0

;

then on the set 
I it holds T I � t
 :
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Remark 6.2. The condition on �I from the part C of the theorem is similar to the condi-

tion (6.1) with the function G(u) replaced by u2=2 . Moreover, the condition (6.1) follows

from �I � (Ct
�1=2

 jIj�1=2 � �m

�1=2
0 )=(1 + �m

�1=2
0 ) with some constant C > 2

p
2=3 pro-

vided that 3�I + 3� (1 + �I)m
�1=2
0 < 1=2 , see Lemma 7.3.

An immediate corollary of this result is an upper bound of the probability of rejecting a

�good� interval I:

Corollary 6.3. Under the conditions of the point B or C of Theorem 6.1 it holds respec-

tively

P (TI > t
) < 
 or P
�
T I > t


�
< 
:

Now let us turn to the property B of the intervals of homogeneity. Consider the special case

when the vector � = (�1; :::; �n) is piecewise constant. In this case an interval I is �good�

if it does not contain a change point. The best choice of I can be de�ned as the interval

I� = [1; k�]; where k� is the �rst change point. Theorem 6.1 claims that the interval I�

will be accepted with high probability. The next result shows that all larger intervals will

be rejected with high probability, thus implying that bI approximately equals I�:

Theorem 6.4. Let 
 2 (0; 1) and 2
q

log 3


� � � p

m: Assume that �i = �; for i 2 I�;

and �i = �; for i 2 I n I�; where I = [1; k� +m] and � 6= �: If m satis�es m � k� and

p
m � max

�
d�1

�
3
p
t
 + �

�
; 4t


	
; (6.2)

where d = j�� �j = (2�+ j�� �j) ; then

P (TI � t
) � 
 and P
�
T I � t
=2

�
� 
:

6.2 Properties of the adaptive estimator b�:

Let bI be the interval computed by the adaptive procedure described in Section 4.1 with

the test statistic TI;J : The next assertions describe the accuracy of the adaptive estimatorb� = b�bI under the condition that bI � I�; where I� 2 I is a �good� interval.

Theorem 6.5. Let 
 2 (0; 1) and I 2 I: Let the numbers � and m0 be such that � �
2

q
log

2jJI j+1



and
p
m0 > max

�p
4t
 ;

3
2
� (1 + �I)

	
: Let the interval I� 2 I be such that

I� 2 JI : If TI � t
 ; then on the set 
I ; it holds���� b�I � b�I�b�I�
���� � �

1� �
;

where � = 2

q
t
 jI�j�1:

12



From Theorem 6.5 it follows that if b�I� provides a �good� estimate of �I� ; then the adaptive

estimator also provides a �good� estimate of �I� : A precise statement is given in the next

corollary.

Corollary 6.6. Let 
 2 (0; 1) and I 2 I: Let the numbers � and m0 be such that � �
2

q
log

2jJI j+1



and
p
m0 > max

�p
4t
 ;

3
2
� (1 +�I)

	
: Let the intervals I� 2 I and I be

such that I� 2 JbI(!) and bI (!) 2 JI ; for any ! 2 
I : Then on the set 
I the adaptive

estimator b� ful�lls
jb�� �I� j

�I�
� 1

1� �

� (1 + �I�)p
jI�j

+
�

1� �
;

where � = 2

q
t
 jI�j�1:

Similar properties can be established for the statistic T I;J :

7 Proofs of the main results

7.1 Auxiliary statements.

Lemma 7.1. Let �1; :::; �m be i.i.d. standard exponential r.v.'s and the numbers �1; :::; �m

satisfy the condition �����i� � 1

���� � �; i = 1; :::;m;

where � = (�1 + :::+ �m)=m and � 2 [0; 1]: Then, for every � � 2
3

p
m=(1 + �);

P

 �����
mX
i=1

�i(�i � 1)

����� > �Vm

!
� 2e��

2
=4;

where V 2
m = �21 + :::+ �2m:

Proof. By Chebyshev inequality, for any u > 0;

P

 �����
mX
i=1

�i�i

����� > �Vm

!
� E exp (u

P
m

i=1 �i (�i � 1))

exp (u�Vm)
:

Since �1; :::; �n are independent, for any u < min
�
��1
i

	
;

E exp

 
u

mX
i=1

�i (�i � 1)

!
=

mY
i=1

E exp (u�i (�i � 1)) =

mY
i=1

exp (�u�i)
1� u�i

:

Therefore

P

 �����
mX
i=1

�i�i

����� > �Vm

!
� exp

 
�u�Vm � u

mX
i=1

�i �
mX
i=1

log (1� u�i)

!
:
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This inequality with u = �

2Vm
and the elementary inequality � log (1� x) � x + x2; for

x � 1=3 yield

P

 �����
mX
i=1

�i�i

����� > �Vm

!
� exp

�
�u�Vm � u2V 2

m

�
= exp

�
��2

4

�
:

It remains to check that � � 2
p
m

3(1+�)
implies that u = �

2Vm
< min

�
��1
i

	
: Indeed V 2

m
=P

m

i=1 �
2
i
� m�

2
and therefore,

�iu =
��i

2Vm
� ��i

2�
p
m
� � (1 + �)

2
p
m

� 1

3
;

which proves the lemma. �

In the proofs we shall use the following bounds. Recall that G (x) = +1; for x � �1:
Lemma 7.2. For any Æ 2 [0; 1] and any real x; the function G (�) ful�lls

Æ (1� Æ)G (jxj) � ÆG ((1� Æ)x) + (1� Æ)G (�Æx) � Æ (1� Æ)G (� jxj) : (7.1)

Proof. The proof of these bounds is based on the simple fact that the function

H (x) = 2G (x) =x2; x > �1; (7.2)

is monotonously decreasing. �

Lemma 7.3. Let G�1+ (x) ; x � 0 be the inverse of the function G (�) on the interval [0;1):

Then

G�1+ (x) � 2
p
x; 0 � x � 1=2:

Let G�1� (x) ; x � 0 be the inverse of the function G (�) on the interval (�1; 0]: Then

�G�1� (x) � p
x; �1=2 � x � 0:

Proof. For any a > 0 and x 2 [0; G(a)] it holds G�1+ (x) �
q

2x
H(a)

; where H (�) is de�ned
by (7.2). Taking a = 1:4 one gets the �rst inequality. If a 2 (�1; 0] and x 2 [�G (a) ; 0] it

holds �G�1� (x) �
q

2x
H(a)

: The second inequality is obtained by putting a = �0:7: �

We shall also make use of the following bounds of the statistic TI;J :

Lemma 7.4. Let " = jJ j = jIj and RI;J = b�J�b�Jcb�I : Then the statistic TI;J satis�es

" (1� ") jIjG (jRI;J j) � TI;J � " (1� ") jIjG (� jRI;J j) : (7.3)

Proof. The trivial equality jIj b�I = jJ j b�J + jJcj b�Jc impliesb�Jb�I � 1 = (1� ")RI;J and
b�Jcb�I � 1 = �"RI;J : (7.4)

Then the statistic TI;J can be written as

TI;J = jIj ["G ((1� ")RI;J ) + (1� ")G (�"RI;J)] : (7.5)

Using (7.1) one gets the required bounds. �
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7.2 Proof of Theorem 6.1

Let I 2 I: For any J 2 JI denote Jc = I nJ: In the following J 0 denotes one of the intervals
J; Jc or I: The de�nition of the sets I and JI implies that jJ 0j �m0:

Note that the estimator b�J 0 can be written as b�J 0 = �J 0 + SJ 0 : Then, using Lemma 7.1,

for any � � 2
3

p
m0=(1 + �I); one gets

P (
I) � 1�
X
J2JI

P
�

c

I;J

�
� 1� (2 jJI j+ 1) exp

�
��2=4

�
:

With � � 2

q
log

2jJI j+1



; it holds

P (
I) � 1� 
;

thus proving the part A of the theorem.

For the part B we have to show that on the random set 
I the statistics TI;J and T I;J

obey jTI;J j � t
 and
��T I;J

�� � t
 ; for any J 2 JI :

For the proof we need some inequalities. Note that each �i satis�es �i � �I (1 + �I) ; for

i 2 I; and by summing �2
i
over i 2 J 0; it follows

V 2
J 0 � (1 +�I)

2 �2
I

��J 0�� : (7.6)

The latter inequality implies that, on the set 
I ; it holds

jSJ 0 j � �VJ 0=
��J 0�� � ��I (1 + �I)

��J 0���1=2 : (7.7)

The decomposition b�J 0 = �J 0 + SJ 0 and the inequality (7.7) imply that, on the set 
I ;���� b�J 0�J 0
� 1

���� � � (1 + �I)
��J 0���1=2 : (7.8)

Note that

����J��Jc
�I

��� � 2�I and jJ 0j � m0: Then, under the assumption
p
m0 � 3� (1 + �I) ;

the inequality (7.8) implies

jRI;J j �
2�I + � (1 +�I)

�
jJ j�1=2 + jJcj�1=2

�
1� � (1 + �I) jIj�1=2

� 2�I + 2� (1 + �I)m
�1=2
0

1� � (1 + �I)m
�1=2
0

� 3�I + 3� (1 + �I)m
�1=2
0 : (7.9)

We consider �rst the case of statistic TI : The bounds (7.3) and (7.9) yield

TI;J � " (1� ") jIjG (� jRI;J j) �
jIj
4
G
�
�3�I � 3� (1 + �I)m

�1=2
0

�
� t
 ;
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and the assertion of Theorem 6.1 concerning TI follows.

In the same way we prove the assertion concerning T I : The inequality jJ j � jJcj � jIj2 =4
implies, on the set 
I ;

T I;J �
jIj
4

h
3�I + 3� (1 + �I)m

�1=2
0

i2
2

� bt
 :
Theorem 6.1 is proved.

7.3 Proof of Theorem 6.4

To keep the same notations as in Theorem 6.1 denote J = I�; Jc = I nJ = [k�+1; k�+m]:

Using Lemma 7.1, for any � and m0 satisfying 2
q

log 1
3

� � � 2

3

p
m0=(1 + �I); one gets

P (
I;J) � 1� 3e��
2
=4 � 1� 
:

It su�ces to show that the event 
I;J implies TI;J � t
 : The lower bound in Lemma 7.4

implies

TI;J � " (1� ") jIjG (jRI;J j) ;

with " = jJ j = jIj and RI;J = b�J�b�Jcb�I : Since k� � m it follows that " = k�=(k� +m) � 1=2:

This and 1� " = m= jIj imply

TI;J �
1

2
mG (jRI;J j) ; (7.10)

Note that V 2
J

= k��2; V 2
Jc

= m�2 and VI � VJ + VJc : Then, similarly to the proof of

Theorem 6.1, on the set 
I;J ; it holds

jRI;J j �
j�J � �Jc j � �

�
�=
p
k� + �=

p
m
�

�I + �
�
�=
p
k� + �=

p
m
� :

For the change point model �J = �; �Jc = � and �I = �k�= (k� +m) + �m= (k� +m) :

This yields

jRI;J j �
b� �

�
1=
p
k� + (1 + b) =

p
m
�

1 + b m

k�+m
+ �

�
1=
p
k� + (1 + b) =

p
m
� ;

where b =
����
�
� 1
��� : It is easy to see that, for a �xed m; the minimum over k� � m of the

latter expression is attained for k� = m: Therefore

jRI;J j �
b� � (2 + b) =

p
m

1 + b=2 + � (2 + b) =
p
m

=
d� �=

p
m

1=2 + �=
p
m
;
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where d = b= (2 + b) : Together with (7.10) this yields

TI;J �
1

2
mG

�
d� �=

p
m

1=2 + �=
p
m

�
:

Now the assertion of the theorem amounts to prove that the right hand side in the latter

inequality is greater than t
 : This is equivalent to

d� �=
p
m

1=2 + �=
p
m
� G�1+

�
2t


m

�
:

Since G�1+ (x) � 2
p
x; for all x 2 [0; 1=2] and m > 4t
 ; it su�ces to show that

d� �=
p
m

1=2 + �=
p
m
� 2

r
t


m
:

The latter inequality is implied by the conditions (6.2) and � � p
m of the theorem. This

concludes the proof.

7.4 Proof of Theorem 6.5

To keep the same notations as in the proof of Theorem 6.1 let J = I�; Jc = I n I�;
" = jJ j = jIj and RI;J = (b�J � b�Jc) =b�I : It is clear that TI � t
 implies TI;J � t
 : The

bounds (7.1) imply

jIj " (1� ")G (jRI;J j) � TI;J � t
 ;

from which it follows that

jRI;J j � G�1+

�
t


" (1� ") jIj

�
;

where G�1+ (x) ; x � 0 is the inverse of the function G (�) on the interval [0;1): Now by

the de�nition of the set JI one has " = jJ j = jIj � 1=2: Since m0 > 4t
 it holds

t


" (1� ") jIj �
1
4
m0

1
2
jJ j �

1

2
:

An applications of the upper bound in Lemma 7.3 yields

jRI;J j � 2

s
t


" (1� ") jIj :

From the identities (7.4) it follows that RI;J =
� b�Jb�I � 1

�
= (1� ") ; which together with

the previous inequality gives���� b�Jb�I � 1

���� � 2
p

(1� ") t
p
" jIj

� 2
p
t
p
jJ j

:
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This implies ���� Æ

1� Æ

���� � 2

q
t
 jJ j�1;

where Æ = (b�J � b�I) =b�J ; which in turn implies jÆj � �= (1� �) ; where � = 2

q
t
 jJ j�1;

and the assertion concerning TI follows. The case of the statistic T I can be handled in the

same way.

7.5 Proof of Corollary 6.6

Since 
I0 � 
I ; for any I 0 � I; Theorem 6.5 implies that on the set 
I ;

jb�I � b�I� j � b�I� �

1� �
:

From this it follows that, on the set 
I ;

jb�� �I� j � jb�� b�I�j+ jb�I� � �I� j �
�

1� �
�I� +

1

1� �
jb�I� � �I� j :

Since, on the set 
I ;

jb�I� � �I� j = jSI� j �
�VI�

jI�j ;

one gets
jb�� �I� j

�I�
� 1

1� �

�VI�

�I� jI�j
+

�

1� �
:

The inequality V 2
I�
� (1 +�I�)

2 �2
I�
jI�j (see (7.6)) implies

jb�� �I� j
�I�

� 1

1� �

� (1 + �I�)p
jI�j

+
�

1� �
:
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8 Appendix

Table 3: The list of distribution functions used in the simulations.

F (x) Parameters

Pareto 1� x
�1=�

; x � 1 � = 1

Pareto-log F (x) = 1� (x=e)�1=� log x; x � e � = 1

Pareto-CP

1�
�

x

x1

�
�1=�1

; if x1 � x < x2

1�
�
x2

x1

�
�1=�1

�
x

x2

�
�1=�2

; if x > x2

�1 = 1=2; �2 = 1

x1 = 1; x2 = 5

Cauchy-plus F (x) = 2

�
arctan x; x � 0

GPD 1� (1 + �
x�a

�
)�1=�; x � a a = 0; � = 1; � = 1

Hall model 1� cx
�1=�(1 + x

�1=�); x � 1 � = 1; � = 1

Order statistics k

H
ill

 e
st

im
at

or

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

The Hill plot and fitted Pareto parameter

Order statistics k

H
ill

 e
st

im
at

or

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

The Hill plot and fitted Pareto parameter

Figure 4: 100 realizations of the Hill estimator for Cauchy-plus (left) and Pareto-CP (right) d.f.'s

and the corresponding �tted Pareto parameters. Here the dark lines represent the �tted Pareto

parameter computed from the approximation formula (3.5) and the light ones are the corresponding

Hill plots.
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Figure 5: 100 realizations of the Hill estimator for GPD (left) d.f. and for the Hall model (right)

and the corresponding �tted Pareto parameters. Here the dark lines represent the �tted Pareto

parameter computed from the approximation formula (3.5) and the light ones are the corresponding

Hill plots.
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Figure 6: Box-plots of selected intervals (in %) and the adaptive estimators for Pareto d.f. from

500 realization for di�erent sample sizes.
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Figure 7: Box-plots of selected intervals (in %) and the adaptive estimators for Cauchy-plus d.f.

from 500 realization for di�erent sample sizes.
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Figure 8: Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-log d.f.

from 500 realization for di�erent sample sizes.
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Figure 9: Box-plots of selected intervals (in %) and the adaptive estimators for Pareto-CP d.f.

from 500 realization for di�erent sample sizes.
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