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Abstract

A popular model to describe credit risk in practice is CreditRisk
+
and in

this paper a Fourier inversion to obtain the distribution of the credit loss is

proposed. A deeper analysis of the Fourier transformation showed that there

are at least two methods to obtain the distribution although the corresponding

characteristic function is not integrable.

The CreditRisk
+
model will be extended such, that general dependent sec-

tor variables can be taken into consideration, for example dependent lognormal

sector variables. Then the transfer to a continuous time model will be per-

formed and the sector variables become processes, more precisely geometric

Brownian motions.

To have a time continuous credit risk model is an important step to combine

this model with market risk. Additionally a portfolio model will be presented

where the changes of the spreads are driven by the sector variables. Using a

linear expansion of the market risk, the distribution of this portfolio can be

determined. In the special case that there is no credit risk, this model yields

the well known Delta normal approach for market risk, hence a link between

credit risk and market risk has been established.

1 Introduction

A quite popular way to describe credit risk is given by the CreditRisk+ model

presented by Credit Suisse Fist Boston in 1997. This is a two state model which is

quite natural from point of view of a buy�and�hold investor who is only interested

in the states default and no default. The CreditRisk+ model is easy to implement

and the technique of Panjer recursion is known from insurance risk models. But

these recursion may be unstable for the determination of the Value at Risk and it is

useful to have alternative algorithms like saddlepoint approximations presented in

[10] or an algorithm based on Fourier inversion presented in this paper. There are

additional shortcomings in the CreditRisk+ approach; so there is the need in further

development of credit risk models.

One disadvantage of the CreditRisk+ model is the introduction of a basic loss unit

and that all losses in the case of default must be integer multiple of this unit. Since

a loss given default can range for a bank from a few hundred Euro (e.g. a credit

card expose) up to more than a billion Euro (e.g. a large company loan), it is quite

di�cult to �nd a proper value for the loss unit. If it is chosen to be small, the

computations take too much time and if it is taken too big, the results could have
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too big errors. Therefore the CreditRisk+ model without assuming a basic loss unit

is presented in section 2.

The result of the analysis is the characteristic function of the credit portfolio loss and

its distribution will be determined by Fourier inversion. However, a plain Fourier

inversion is not possible since the characteristic function is not integrable. The

properties of the Fourier transformation are recalled and two methods to perform a

Fourier inversion are presented, which apply to the CreditRisk+ model. One method

is based on the structure of the Fast Fourier Transform algorithm and the second one

uses an approximation based on the �rst two moments of the unknown distribution.

Another disadvantage of the CreditRisk+ model is the assumption of independent

sector variables. A �rst study in [2] showed that there is an e�ect of dependent

sector variables on the variance of the credit loss. Another generalization of the

CreditRisk+ model to dependent sector variables is presented in section 4. Since

it is di�cult in general to describe the dependency of random variables completely,

it is suggested for the application in practice to introduce dependent lognormal

sector variables, because the dependency of lognormal random variables can easily

be described by a covariance matrix. The resulting model is more complex and the

valuation can be done by Monte Carlo only, but the computational e�ort is tolerable.

The CreditRisk+ model gives an answer to the question of the size of the losses at

the end of a �xed period, but one would like to analyse the process of the losses

during this period. Therefore a model with lognormal sector processes is introduced

in section 5. The description of the default events in this model arise quite natural

according to the CreditRisk+ model.

With a model which allows time continuous description of credit risk one has made

a large step to combine market and credit risk. In section 6 a portfolio valuation

of a combined model is introduced, where the credit spreads are modelled by the

sector processes. The pro�t and loss distribution of the portfolio can be obtained

with the same techniques presented in the previous sections. One can consider two

special cases of this model. First, if there is no market risk one obtains the model

presented in section 5. In the special case, that the portfolio contains no credit risk,

one gets the well known Delta normal approach to determine market risk.

2 The CreditRisk+ Model

In this section a credit model is presented, which is very close to the CreditRisk+

model [4]. The main di�erence is, that no basic loss unit is introduced, which is no

longer necessary if one applies Fourier inversion techniques. Also a speci�c risk sec-

tor, the so�called �idiosyncratic risk�, is introduced as proposed in the CreditRisk+

manual [4][A 12.3].
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2.1 Introduction of the Model

The aim of the following analysis is to characterize the losses which may occur in a

loan portfolio with N obligors. In order to describe the reliability of the jth obligor,

a rating parameter pj is introduced. As it will be shown below in lemma 1, pj is the

probability that the obligor j will default within one year.

In order to describe dependencies between the obligors K sectors are introduced.

For each obligor the sector a�liations a
j

k
and the idiosyncratic risk a

j

0 are given and

the following relations hold:

a
j

k
� 0 8 j = 1; : : : ; N ; k = 0; : : :K (1)

KX
k=0

a
j

k
= 1 8 j = 1; : : : ; N (2)

The sectors in this model are described by independent Gamma distributed random

variables Rk with expectation 1 and variance �2k. The parameter �k > 0 is the

volatility parameter of the kth sector. For each obligor a default intensity is now

de�ned by

�j := pj

 
a
j

0 +

KX
k=1

a
j

k
Rk

!
=: pj~�j (3)

Remark 1 By de�nition, the following statements hold:

~�j > 0 (4)

E[~�j] = 1 (5)

Since one is interested in credit risk one may assume that pj > 0 which is equivalent

with the assumption, that it is possible for each obligor to default, hence �j > 0 1.

Let Y j be independent exponential distributed random numbers with intensity �j.

Then interpret Y j as the date of default of the jth obligor. Let us concentrate on a

�xed time horizon T and the jth obligor defaults, if Y j � T . For simplicity in the

following calculations the following binary random numbers are introduced:

Xj
=

�
1 if Y j � T

0 else
(6)

Let Lj denotes the loss if the obligor j defaults. So Lj is the so called �loss given de-

fault�, that is the credit nominal times a non�random recovery rate for the investor.

1This assumption is only necessary to de�ne exponential distributed random numbers with in-

tensity �j . But if one de�nes Xj = 0 almost sure in the case that pj = 0, all following computations

go through.

3



Hence the overall loss of the credit portfolio up to the �xed time horizon T is given

by the random variable

Z :=

NX
j=1

XjLj (7)

Remark 2 For a bank, typical values are N � 10; 000 or even bigger, K
<� 100

and the losses given default Lj can range from a few hundred Euro for credit card

exposure up to more than a billion Euro for large company loans. A typical value

for the time horizon T in this context is 1 year.

Assumption 1 In the whole paper it is assumed, that the rating parameters pj are

small. By the next lemma it is equivalent to assume, that there is a low probability

for each obligor to default within one year.

Lemma 1 For small pj, the one year default probability is given by pj:

P [Y j � 1] = pj +O
�
(pj)2

�
(8)

Proof. The default probability of obligor j conditioned on the state of the sector

variables R is given by:

P [Y j � 1jR] = 1� e��
j

= 1� e�p
j~�j (9)

One can take the expectation over R and expand the exponential function:

P [Y j � 1] = E[P [Y j � 1jR]] = E[1� e�p
j~�j ] (10)

= pjE[~�j] +O
�
(pj)2

�
= pj +O

�
(pj)2

�
(11)

2.2 The characteristic function of the loss distribution

The characteristic function of Z conditioned on R is given by:

�ZjR(s) =

NY
j=1

�LjXj
jR(s) =

NY
j=1

�Xj
jR(L

js) (12)

For the characteristic function of Xj conditioned on R one obtains:

�Xj
jR(s) = E[eisX

j jR] =
TZ

0

eis1�je
��j tdt+

1Z
T

eis0�je��
j tdt (13)

= eis(1� e��
jT
) + e��

jT (14)
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Lemma 2 For all x � 0 and s 2 R holds:����eis(1� e�x) + e�x
�
�
�
e�x(1�e

is)
���� � 3x2 (15)

Proof. Fix s 2 R and de�ne the function

fs(x) := eis(1� e�x) + e�x � e�x(1�e
is) (16)

fs(x) is two times continuous di�erentiable; the �rst two derivatives are given by:

f 0s(x) = eise�x � e�x + (1� eis)e�x(1�e
is) (17)

f 00s (x) = �eise�x + e�x � (1� eis)2e�x(1�e
is) (18)

Since fs(0) = 0, f 0s(0) = 0 and jf 00s (x)j � 6 for all x � 0, one obtains the statement

of the lemma by the Taylor theorem.

Since �jT is proportional to pj and hence small, one may approximate by lemma 2:

�Xj
jR(s) � exp

�
�jT (eis � 1)

�
(19)

This is the characteristic function of the Poisson distribution. Let f j(s) denote the

error of this approximation, then this error is bounded by jf j(s)j � 3(�jT )2. One

thus obtains together with (3) and (12):

�ZjR(s) = exp

 
NX
j=1

pj

 
a
j

0 +

KX
k=1

a
j

kR
k

!
T (eiL

js � 1)

!
+ F (s) (20)

The error term F (s) comes from the products of the characteristic functions

�Xj
jR(s), each with an bounded error f j(s). Since characteristic functions are

bounded by 1, the overall error F (s) of the conditioned characteristic function

�ZjR(s) is bounded by powers of (�jT )2. The conditioning on R will be solved

by taking the expectation and terms of order O((pj)2) will be neglected2. Recall,

that Rk are independent gamma distributed with mean 1 and variance �2k, hence:

�Z(s) = E
�
�ZjR(s)

�
(21)

= E

"
exp

 
NX
j=1

pj

 
a
j

0 +

KX
k=1

a
j

k
Rk

!
T (eiL

js � 1)

!#
(22)

= e

NP
j=1

a
j
0
pjT (eiL

js
�1)

E

"
exp

 
KX
k=1

Rk

NX
j=1

pja
j

k
T (eiL

js � 1)

!#
(23)

= e

NP
j=1

a
j
0
pjT (eiL

js
�1)

KY
k=1

E

"
exp

 
NX
j=1

pja
j

k
T (eiL

js � 1)Rk

!#
(24)

2The error analysis holds for any distribution of R as long as all moments of R exist. In the

case of the Gamma distribution, one can show more easily, that the error is of order O((pj)2).

However, for generalizations of the CreditRisk+ model it is useful to have an error analysis which

is independent of certain properties of the distribution.
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By well known properties of the gamma distribution one obtains

�Z(s) = exp

 
NX
j=1

a
j

0p
jT (eiL

js � 1)

!
KY
k=1

0
BBB@ 1

1 + �2
k

NP
j=1

pja
j

k
T (1� eiL

js)

1
CCCA

1

�2
k

(25)

Using the main branch of the logarithm, one can rewrite the characteristic function:

�Z(s) = exp

 
NX
j=1

a
j

0p
jT (eiL

js � 1)�
KX
k=1

1

�2
k

ln

"
1 + �2kT

NX
j=1

a
j

k
pj(1� eiL

js)

#!

(26)

This is the characteristic function of the losses of the credit portfolio and one aims

to determine the distribution of Z. But this characteristic function is not integrable

and a usual Fourier inversion fails. First, some properties of Z are studied, which

can be obtained directly from the characteristic function. These properties are the

�rst moments and the distribution in the limit of an in�nite number of homoge-

neous obligors. In section 3 more sophisticated Fourier inversion techniques will be

presented to determine the distribution of Z.

2.3 The First Moments of Z

The cumulant generating function 	Z(s) of a random variable Z is de�ned by

	Z(s) := lnE[esZ ], if the expectation exists. In this case the general relationship

	(s) = ln�(�is) between the cumulant generation function and the characteristic

function holds. Hence, the cumulant generating function of the credit loss is given

by:

	Z(s) =

NX
j=1

a
j

0p
jT (eL

js � 1)�
KX
k=1

1

�2
k

ln

"
1 + �2kT

NX
j=1

a
j

kp
j
(1� eL

js
)

#
(27)

The cumulant generating function can be used to prove the

Theorem 1 The �rst two moments of Z are given by:

E[Z] = T

NX
j=1

pjLj (28)

Var[Z] = T

NX
j=1

pj(Lj
)
2
+ T 2

KX
k=1

�2k

 
NX
j=1

a
j

kp
jLj

!2

(29)

E[Z2] = T

NX
j=1

pj(Lj)2 + T 2

KX
k=1

�2k

 
NX
j=1

a
j

k
pjLj

!2

+ T 2

 
NX
j=1

pjLj

!2

(30)
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Proof. Compute the �rst and second derivative of 	Z(s) to determine the �rst two

cumulants of Z:

	0(s) = T

NX
j=1

a
j

0p
jeL

jsLj +

KX
k=1

T
NP
j=1

a
j

k
pjeL

jsLj

1 + �2
k
T

NP
j=1

a
j

k
pj(1� eL

js)

(31)

	00(s) = T

NX
j=1

a
j

0p
jeL

js(Lj)2 +

KX
k=1

T
NP
j=1

a
j

k
pjeL

js(Lj)2

1 + �2kT
NP
j=1

a
j

kp
j(1� eL

js)

+

KX
k=1

�2k

 
T

NP
j=1

a
j

k
pjeL

jsLj

!2

 
1 + �2

k
T

NP
j=1

a
j

k
pj(1� eL

js)

!2
(32)

Note, that the �rst cumulant is the expectation and the second cumulant is the

variance. So the valuation of these expressions at s = 0 yields:

E[Z] = T

NX
j=1

a
j

0p
jLj + T

NX
j=1

KX
k=1

a
j

k
pjLj = T

NX
j=1

pjLj (33)

Var[Z] = T

NX
j=1

pj(Lj)2 + T 2

KX
k=1

�2k

 
NX
j=1

a
j

k
pjLj

!2

(34)

E[Z2] = Var[Z] +E[Z]2 (35)

Using the same idea one can of course also compute the next cumulants, but their

explicit knowledge is not so important for our analysis. The introduction of the

idiosyncratic risk does not e�ect the mean of Z, but there is an in�uence on the

variance of the resulting distribution; it reduces the variance.

2.4 The in�nite large and homogeneous loan portfolio

Since the number of obligors N is quite large in typical credit portfolios, one may

think about the distribution of a portfolio with an in�nite number of obligors. A

special case of such an portfolio limit is presented here, more general results can be

found in [3]. Even if this discussion seems to be rather theoretical than practical, one

gets a good impression, how the distribution of the losses of a large loan portfolio

will look like.
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De�ne a sequence of credit portfolios with losses Zn and assume that all loans are

in�uenced by one sector only. The idea is to consider portfolios with an in�nite

number of loans, where each loan is of in�nitesimal size:

De�nition 1 De�ne a series of loan portfolios, using the previous notations, by

K(n) = 1 (36)

�
(n)

1 > 0 (37)

a
j(n)

0 = a
(n)

0 (38)

a
j(n)

1 = a
(n)

1 = 1� a
(n)

0 (39)

Lj(n) = L(n) (40)

pj(n) = p(n) (41)

Let further hold:

lim
n!1

a
(n)

0 = a0 > 0 (42)

lim
n!1

L(n) = 0 (43)

lim
n!1

N (n)
= 1 (44)

lim
n!1

N (n)p(n)L(n) = c with 0 < c <1 (45)

Then the series Z(n), de�ned as the loss of the nth portfolio, is a series of homoge-

neous loan portfolios.

Theorem 2 Let Z(n) be a series of homogeneous loan portfolios. Then the limit

Z1 := limn!1Z(n) exists and the distribution of Z1 is given by a shifted Gamma

distribution.

Proof. Using the de�nition of a series of homogeneous loan portfolios, one can write

down the characteristic function of Z(n) for any �xed s using (25):

�Z(n)(s) = e

N(n)P
j=1

a
(n)
0

p(n)T (eiL
(n)s

�1)

0
BBB@ 1

1 + �21

N(n)P
j=1

p(n)a
(n)

1 T (1� eiL
(n)s)

1
CCCA

1

�2
1

(46)

= eN
(n)a

(n)
0

p(n)T iL(n)s

 
1

1� i�21N
(n)a

(n)

1 p(n)TL(n)s

! 1

�2
1

+ o(1) (47)

Taking the limit for n!1:

�Z1(s) = exp(ia0cTs)

�
1

1� i�21a1Tcs

� 1

�2
1

(48)

This is the characteristic function of the shifted gamma distribution.
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3 Fourier Inversion Techniques for CreditRisk+

From the last section, some properties and the characteristic function of the portfolio

loss Z are known. The aim is now to determine the distribution Z. In many cases,

a Fourier inversion of the characteristic function will give the density. But if �Z(s)

is not integrable � that is the situation one is faced with in the CreditRisk+ model,

the straight Fourier inversion integral does not exist. Nevertheless one can obtain

the distribution of Z by Fourier inversion techniques.

First, some properties of the Fourier transformation are recalled. Then two methods

are presented, which can be applied in the context of CreditRisk+ , i.e. which can

be used to determine the distribution of Z. The �rst method is based on the very

special structure of the well known Fast Fourier Transformation (FFT) algorithm.

The idea of the second method is to approximate the unknown distribution by

another distribution with the same mean and variance. Then the Fourier inversion

can be used to determine the di�erence between the two distributions.

3.1 The Fourier Transformation

Some known facts about the Fourier transformation and characteristic functions are

collected. The proofs of these results can be found in several textbooks, e.g. [8].

De�nition 2 A function f : R ! R is a L1 function, if

1Z
�1

jf(x)jdx <1 (49)

De�nition 3 Let f be L1. Then the Fourier transform of f exists and is de�ned by

�f (s) :=

1Z
�1

eisxf(x)dx (50)

Remark 3 Let f be a probability density, that is f(x) � 0 and
R
f(x)dx = 1.

Then the Fourier transform of f exists and �f(s) is called the characteristic func-

tion. Even in the case, that a real�valued random variable X has no density, the

characteristic function de�ned by E[eisX ] always exist.

Theorem 3 (Fourier Inversion) Let �f be the characteristic function of a dis-

tribution F and let �f be L1. Then F has a continuous density f given by:

f(x) =
1

2�

1Z
�1

e�isx�f(s)ds (51)
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Lemma 3 Let f be a function and �f its Fourier transform. Then the following

inequalities hold whenever the integrals on the right hand side are de�ned:

j�f (s)j �
1Z

�1

jf(x)jdx (52)

jf(x)j � 1

2�

1Z
�1

j�f(s)jds (53)

Proof. The �rst equation is a simple inequality:

j�f(s)j =

������
1Z

�1

eisxf(x)dx

������ �
1Z

�1

jeisxjjf(x)jdx =

1Z
�1

jf(x)jdx (54)

The second equation follows similarly from the Fourier inversion theorem.

Remark 4 If � is a characteristic function, then � is bounded by 1.

Lemma 4 Let f be L1 and �f its Fourier transform. Then holds

lim
s!�1

�f (s) = 0 (55)

If f has an nth derivative f (n) and if f (n) is L1, then

lim
s!�1

jsjn�f (s) = 0 (56)

Remark 5 If f is a two times di�erentiable density and f 00 is L1, then the charac-

teristic function �f is also integrable.

Lemma 5 Let F be an arbitrary distribution function and �f its corresponding

characteristic function. De�ne the absolute moments by

Mn :=

1Z
�1

jxjndF (x) (57)

If Mn <1 then the nth derivative of �f exists and is given by

�
(n)

f (s) = in

1Z
�1

eisxxndF (x) (58)
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Remark 6 The moments of a distribution determine the distribution uniquely, if

� := lim sup
k!1

k

r
Mk

k!
= e lim sup

k!1

1

k

k
p
Mk <1 (59)

and 1

�
is the convergence radius of the characteristic function

1P
k=0

1

k!
mk(is)

k, where

mk denotes the kth moment. That is a su�cient condition; su�cient and necessary

is the Carleman's condition

1X
k=0

1
2k
p
M2k

=1 (60)

3.2 The FFT based Fourier Inversion

It is obvious from the de�nition of Z that the distribution of Z has no density, but

for a large number of obligors one would expect that the distribution is �almost�

continuous. So one may look for an approximative density f of the random variable

Z.

For the approximation f is now required, that the following condition holds for each

g in a suitable class of functions G:Z
f(x)g(x)dx = E[g(Z)] (61)

and a proper choice of G is given by

G := fg(x) = eisxjs 2 Sg (62)

where S is a �nite set of real numbers.

Note, that the functions g 2 G are linear independent, which is necessary to expect

a suitable approximation. The expectation in (61) for these functions g is the char-

acteristic function evaluated at some points s with s 2 S. Since the characteristic

function is known, the density f is the only unknown in equation (61) and hence

one can use this equation to determine f . It is natural to expect that f will be a

good approximation.

Now we are at the point, where the structure of the FFT algorithm will be used.

Let us assume, that the unknown density f vanishes outside a given interval [a; b]3.

Then its Fourier transform can be numerically computed by the following algorithm.

Let S be the number of sample points (usually a power of 2) and de�ne �x := b�a

S�1

3In application to CreditRisk+ this interval is naturally given by a = 0 (the loss if no obligor

defaults) and b =
NP

j=1

Lj (the loss if all obligors default).
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and �s := 2�

S�x
. Further de�ne three S dimensional vectors and a S � S matrix M

for j; k = 0; : : : S � 1 by:

xk := a+ k�x (63)

fk := f(xk) (64)

sk :=

�
k�s if k < S

2

(k � S)�s else
(65)

Mjk := exp

�
2�i

jk

S

�
(66)

The set S is given by S := fskjk = 0; : : : S � 1g and the Fourier transform of f at

the points sk will be denoted by �k := �Z(sk).

The Fourier integral can be computed by the approximation

1Z
�1

eisxf(x)dx � �xeisa
S�1X
k=0

eisk�xf(a+ k�x) (67)

Using the vector and matrix notations, this equation yields4:

�k = �xeiask
S�1X
j=0

Mkjfj (68)

Having chosen a suitable interval [a; b] and the number of Fourier steps S, the density

fk is the only unknown in equation (68). To determine fk one has to solve the system

of linear equations, which can be solved easily, since the inverse of Mjk is given by:

M�1
jk

=
1

S
exp

�
�2�ijk

S

�
(69)

A short calculation shows, that this is in fact the inverse:

S�1X
k=0

MjkM
�1
kl

=
1

S

S�1X
k=0

�
e2�i

j�l
S

�k
=

�
1 j = l
1

S

1�e2�i(j�l)

1�e2�i(j�l)=S
= 0 j 6= l

(70)

Hence the inversion formula based on the linear equations is given by

fj =
1

S�x

S�1X
k=0

exp

�
�2�ijk

S

�
e�iask�k (71)

Since M�1 has a quite similar structure as M , one can compute the matrix vector

multiplication by the FFT algorithm to save computation time. So even if the

characteristic function is not integrable, the Fourier inversion by FFT works, since

the algorithm does not compute an integral, but it solves a set of linear equations

which describe the Fourier transformation of the unknown density f .

4Using the special form of Mjk one can valuate the matrix vector product by O(S lnS) instead

of the usual O(S2) operations, which is the reason why this kind of Fourier transformation is called

�Fast�.
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3.3 Fourier Inversion using an Approximate Density

The idea of this method is not to obtain the density, but the integral of the distribu-

tion function. Even if the density is only de�ned in terms of Dirac Æ functions, this

function will be continuous and hence it is a good candidate for numerical computa-

tions. In order to use this method, one needs to know the �rst two moments of the

unknown distribution, because the idea is to approximate the unknown distribution

by a distribution with the same mean and variance. Then the Fourier inversion can

be done using the following

Theorem 4 Let F;G be the distribution functions of two distributions with existing

third absolute moment, both with the same mean and variance, and let �f ;�g denote

their characteristic functions. Further de�ne

F̂ (x) :=

xZ
�1

F (y) dy; Ĝ(x) :=

xZ
�1

G(y) dy (72)

Then the following inversion formula holds:

F̂ (x) = Ĝ(x)� 1

2�

1Z
�1

e�isx
�f (s)� �g(s)

s2
ds (73)

The theorem applies exactly for the situation one is faced with in the context of the

CreditRisk+ model. The characteristic function and the �rst two moments of an

unknown density f are given and one can approximate f by another density g with

the same �rst and second moment. For the application in the context of CreditRisk+

a good choice for g is the Gamma distribution. Its characteristic function is explicitly

known and the two parameters of this distribution can be expressed by the mean

and variance. Additional, for large and homogeneous loan portfolios one expects a

loss distribution which is almost gamma distributed.

Of course, one can also use other densities for the approximation. But since Z � 0

by de�nition, one should concentrate on distributions on R
+ . So the lognormal

distribution or the generalized gamma distribution (without shift and �tted to the

�rst three moments) will also work, but the handling of these distributions is more

expensive. The advantage in using such distribution could be, that the valuation of

the Fourier integral becomes more accurate, or faster if a smaller number of sample

points su�ces.

As a result, one obtains the di�erence between F̂ and Ĝ. Since Ĝ is also known for

the gamma distribution one only needs to di�erentiate F̂ to obtain the distribution

function of the loss variable Z and the second di�erentiation yields the density f .

The advantage of this approach is, that one is independent of a special algorithm and

so one can use more sophisticated integration methods than FFT for the valuation

of the integral.
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Remark 7 (Excursus on the Gamma distribution) Let �; a > 0. Then the

density of the Gamma distribution is given by

g(x) =
�

�(a)
(�x)

a�1
e��x x � 0 (74)

Let X be Gamma distributed with � and a. Then holds:

E[X] =
a

�
(75)

Var[X] =
a

�2
(76)

Additional, the following statements also hold for x � 0:

G(x) = P (a; �x) (77)

Ĝ(x) = xP (a; �x)� a

�
P (a+ 1; �x) (78)

�g(s) =
�a

(�� is)a
(79)

where P denotes the incomplete gamma function (see e.g. [1, 11]).

3.3.1 Proof of Theorem 4

Lemma 6 Let two distributions have an existing third absolute moment. Let also

have the distributions the same �rst and the same second moment. Then holds for

the characteristic functions �f , �g of these distributions:

lim
s!0

�f(s)� �g(s)

s2
= 0 (80)

Proof. Since the third moment exists, the characteristic functions may be expanded

near 0:

�f (s) = 1 + i�1s+
i2

2
�2s

2
+O(s3) (81)

�g(s) = 1 + i�1s+
i2

2
�2s

2 +O(s3) (82)

Hence �f (s)� �g(s) = O(s3), what proves the lemma.

Lemma 7 Let F and G be two distribution functions of two distributions with the

same mean � and let F̂ and Ĝ be their integrals. Then holds:

lim
x!�1

(F̂ � Ĝ) = 0 (83)
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Proof.

From the existence of the expectation one can conclude:

1Z
x

y dF (y) = o(1) as x!1 (84)

Since o(1) =
1R
x

y dF (y) � x
1R
x

dF (y) = x(1� F (x)) holds:

F (x) = 1� o(
1

x
) as x!1 (85)

The same asymptotic behaviour also holds for G. Since both distributions have the

same mean, holds:

o(1) = lim
x!1

xZ
�1

y d(F �G)(y) (86)

= lim
x!1

[y(F (y)�G(y))]
x

�1
�

xZ
�1

F (y)�G(y) dy (87)

= lim
x!1

x(F (x)�G(x))� (F̂ (x)� Ĝ(x)) (88)

= lim
x!1

Ĝ(x)� F̂ (x) (89)

The case x! �1 is trivial, since limx!�1 F (x) = limx!�1G(x) = 0.

Proof of Theorem 4. Let F;G ful�ll the conditions of the theorem. By de�nition

of the characteristic function holds:

�f (s)� �g(s) =

1Z
�1

eisx d(F �G)(x) (90)

=
�
(F (x)�G(x))eisx

�
1

�1
� is

1Z
�1

(F (x)�G(x))eisxdx (91)

Since limx!�1 F (x)�G(x) = 0 and eisx is bounded, one obtains:

�f (s)� �g(s) = �is
1Z

�1

(F (x)�G(x))eisxdx (92)

Lemma 7 and another integration by parts yield:

�f (s)� �g(s) = �is
h�
F̂ (x)� Ĝ(x)

�
eisx
i
1

�1
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+(is)2

1Z
�1

�
F̂ (x)� Ĝ(x)

�
eisxdx (93)

�f (s)� �g(s)

(is)2
=

1Z
�1

�
F̂ (x)� Ĝ(x)

�
eisxdx (94)

So
�f (s)��g(s)

(is)2
is the Fourier transform of F̂ (x) � Ĝ(x). The left hand side of the

last equation is well de�ned (see lemma 6) and is integrable since it decays with 1

s2

because �f and �g are bounded by 1. Therefore one may apply the Fourier inversion

formula (51) to obtain:

F̂ (x)� Ĝ(x) =
1

2�

1Z
�1

�f (s)� �g(s)

(is)2
e�isxds (95)

4 Lognormal or other Sector Variables

In the CreditRisk+ model, the sector variables are assumed to be independent. From

a practitioners point of view, this assumption is too rigorous, since one would like

to introduce the sectors due to general classes of business and typical sectors could

be construction, banking, utility industry, transportation, etc. Also economic sectors

like gross domestic product or the business activity of certain countries or currency

areas can be taken into account. Using such sectors, it is quite easy to estimate the

sector a�liations of each obligor, but these sectors are obviously not independent.

One way to abstain from the independence assumption is presented in [2]; another

is the topic of this section.

In the CreditRisk+ model the sector variables Rk are assumed to be independent

gamma distributed. The reason for this assumption is based on the simple calcu-

lations resulting from this supposition and not on statistical evidence. Hence one

may suggest another distribution for the sector variables and one suggestion is to

use dependent lognormal sectors. The advantage of this choice is, that the depen-

dence of the sectors can be easily described by a correlation matrix. To estimate

these correlations one can use as a �rst approximation the correlations between the

corresponding asset indices. On the other hand, the characteristic function of the

credit loss can not be obtained by a closed form solution any more, but it can be

computed numerically by a Monte Carlo method.

To show, that the changeover from the Gamma distribution to the lognormal dis-

tribution has no dramatic impact on the distribution, the case of independent log-

normal sector variables is shortly discussed. In this case, the di�erence between this

model and the CreditRisk+ model is rather small, because the gamma distribution
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and the lognormal distribution each with mean 1 and variance �2 look quite similar.

It is shown in 4.2, that the expectation and the variance of the credit loss are also

equal in this situation.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: The lognormal den-

sity (solid) and the density of

the gamma distribution (dashed);

Both with mean 1 and � = 0:3.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: The lognormal den-

sity (solid) and the density of

the gamma distribution (dashed);

Both with mean 1 and � = 0:5.

However, the computations in this section are valid for any jointly distributed sector

variables Rk � as long as all pairwise covariances exist.

4.1 Introduction of the Model

This model is similar to the CreditRisk+ model presented in section 2, but now

the sector variables are dependent distributed, such that Cov[Rk; Rl] exists and

E[Rk] = 1 holds.

Since the other ingredients of the model are unchanged, one can inherit the charac-

teristic function of the credit losses conditioned on R, see (20):

�ZjR(s) = exp

 
NX
j=1

pjT

 
a
j

0 +

KX
k=1

a
j

k
Rk

!
(eiL

js � 1)

!
(96)

In order to obtain the characteristic function of the credit loss Z one has to take

the expectation over R. One approach to solve this problem is to use a Monte Carlo

method to compute the characteristic function of Z. But before the Monte Carlo

approach is studied, the mean and the variance of Z under dependent sector variables

will be determined. Since there is no closed form solution for the characteristic

function �Z(s) one has to change the way to get the moments: Invert the order of

di�erentiation and integration.

4.2 The �rst Moments of Z

Theorem 5 The �rst two moments of Z are given by:

E[Z] = T

NX
j=1

pjLj (97)
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E[Z2
] = T

NX
j=1

pj(Lj
)
2
+ T 2

"
NX
j=1

pjLj

#2

+T 2

NX
j;n=1

pjLjpnLn

KX
k;l=1

a
j

k
anl Cov[R

k; Rl
] (98)

Var[Z] = T

NX
j=1

pj(Lj)2 + T 2

NX
j;n=1

pjLjpnLn

KX
k;l=1

a
j

ka
n
l Cov[R

k; Rl] (99)

Proof.

In general holds:

�Z(s) = E[�ZjR(s)] (100)

To determine the nth moment one needs to compute:

E[Zn] = lim
s!0

1

in
dn

dsn
E[�ZjR(s)] (101)

In fact, there are three limits in this expression: the expectation (integration), a

di�erentiation and the valuation at one point. From (96) it is clear, that �ZjR(s) is

analytical and that it may written as a power series in s. Since power series converge

uniformly on a compact interval, the exchange of the limits is allowed:

E[Zn] = E[lim
s!0

1

in
dn

dsn
�ZjR(s)] (102)

The �rst two derivatives of �ZjR(s) are

�0ZjR(s) = �ZjR(s) �
NX
j=1

pjT

 
a
j

0 +

KX
k=1

a
j

k
Rk

!
eiL

js(iLj) (103)

�00ZjR(s) = �ZjR(s) �
NX
j=1

pjT

 
a
j

0 +

KX
k=1

a
j

k
Rk

!
eiL

js(iLj)2 (104)

+�ZjR(s) �
"

NX
j=1

pjT

 
a
j

0 +

KX
k=1

a
j

kR
k

!
eiL

js
(iLj

)

#2
(105)

Valuation at s = 0 yields:

1

i
�0ZjR(0) = T

NX
j=1

pjLj(a
j

0 +

KX
k=1

a
j

k
Rk) (106)

1

i2
�
00

ZjR(0) = T

NX
j=1

pj(Lj)2(a
j

0 +

KX
k=1

a
j

k
Rk

) +

"
T

NX
j=1

pjLj
(a

j

0 +

KX
k=1

a
j

k
Rk)

#2
(107)
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Take the expectation over R and recall that E[Rk] = 1. To simplify the expressions,

the relation a
j

0 +
KP
k=1

a
j

k = 1 has been used:

E[Z] = T

NX
j=1

pjLj (108)

E[Z2
] = T

NX
j=1

pj(Lj
)
2
+ T 2

"
NX
j=1

pjLj

#2

+T 2

NX
j;n=1

pjLjpnLn

KX
k;l=1

a
j

k
anl Cov[R

k; Rl
] (109)

Remark 8 Note that in the case of uncorrelated sector variables the �rst two mo-

ments are identical to the moments in the CreditRisk+ model, since the variance of

the random variables Rk is given by �2k = Cov[Rk; Rk].

4.3 The Characteristic Function by a Monte Carlo Approach

From equation (96) the characteristic function of Z conditioned on R is known and

hence the characteristic function of Z can be written as an expectation:

�Z(s) = E[�ZjR(s)] (110)

= e

 
NP
j=1

pjTa
j
0
(eiL

js
�1)

!
E

"
exp

 
KX
k=1

Rk

NX
j=1

Tpja
j

k
(eiL

js � 1)

!#
(111)

= exp (�0(s)) E

"
exp

 
KX
k=1

Rk�k(s)

!#
where (112)

�k(s) :=

NX
j=1

Tpja
j

k
(eiL

js � 1) for k = 0; : : :K (113)

First one has to decide, for which s one wants to compute the characteristic function

�Z(s) and S denotes the number of sample points. Since the functions �k(s) are

deterministic functions, this functions can be valuated before starting the Monte

Carlo loop for each regarded s. The advantage of this organisation of the Monte

Carlo procedure is, that each diced tuple of R can be used for each s to compute

the expectation, hence the computation time for generation of the random numbers

is independent of S. In the case that Rk are dependent lognormal distributed, the

e�ort to dice one sample is given by O(K2), however, the same e�ort will mostly hold
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for other multivariate distributions. If M is the number of Monte Carlo iterations,

the computational e�ort of this method is given by:

O(KNS)| {z }
Computing �k

+O(MK2
)| {z }

Dicing Rk

+ O(MSK)| {z }
Valuation of the Monte Carlo sum

(114)

Note, that in practice N and M are larger than K;S and that the computational

e�ort does not contain a term NM . So the e�ort of this Monte Carlo method is

tolerable, in contrast to a direct simulation. A direct Monte Carlo approach on

the model for Z would e�ort for each Monte Carlo simulation �rst to sample the

sector variables R, then compute the default intensities and sample the time of

default of each obligor. Hence the direct simulation approach is not feasible due to

a computational e�ort of O(KMN).

The proposed algorithm admits two possibilities for parallel computing. The �rst

possibility is the usually Monte Carlo parallelism of valuating the expression parallel

for several diced random numbers. Second, one can also compute independently the

expression for each s and �xed dice of random numbers R. Since one is interested in

a expectation and not in the simulation of a stochastic process, it may be favourable

to use Quasi-Monte-Carlo, due to a potentially much better convergence.

Since the �rst two moments of Z are known and a numerical algorithm to obtain

the characteristic function of Z is established, one can compute the distribution

of Z by one of the Fourier inversion techniques presented in section 3. Using the

method based on FFT, one only has to choose the number of sample points S and

then this method determines the sample points s, since the sample interval in the

Z space is naturally given by [0;
PN

j=1
Lj]. Since the �rst two moments of Z are

known, one may also perform a Fourier inversion based on theorem 4. Then one has

the freedom to select an arbitrary Fourier integration method and the sample points

s of the characteristic function will be determined by the choice of the integration

method.

5 A time continuous model

In the previous models the distribution of the loss for a �xed date T was studied. In

this part, a model is introduced, which allows the credit risk analysis in continuous

time. This model is abutted to the model with dependent sector variables; but

to describe the sectors continuous time processes are involved rather than discrete

random variables.

5.1 Introduction of the model

Let us �x a time horizon T1 > 1 and introduce K sector processes Rk
t on t 2 [0; T1]

which are assumed to be geometric Brownian motions with:

Rk
0 = 1 (115)

20



E[Rk
t ] = 1 (116)

Cov[lnRk
t ; lnR

l
t] = Cklt (117)

As before, consider sector a�liations a
j

k
, such that the following relations hold:

a
j

k
� 0 8 j = 1; : : : ; N ; k = 0; : : : ; K (118)

KX
k=0

a
j

k = 1 8 j = 1; : : : ; N (119)

Again there is a rating parameter pj for each obligor, which is the probability that

the jth obligor defaults within one year and again it is assumed that pj is rather

small. For the interpretation of this parameter, the proof of lemma 1 holds. In

contrast to the previous models, the default intensity becomes a stochastic process

now:

�
j

t := pj

 
a
j

0 +

KX
k=1

a
j

k
Rk
t

!
=: pj~�

j

t (120)

The default event of the jth obligor is denoted by T j and T j is exponentially dis-

tributed with the intensity process �
j

t . Also the processes X
j

t are introduced:

X
j

t :=

�
0 if t < T j

1 if t � T j (121)

Conditioned on R, these processes are independent from the sector processes and

P [T j < t] = P [Xt = 1] = 1� exp

0
@�

tZ
0

�sds

1
A (122)

If the jth obligor defaults, the loss due to this default is given by Lj and hence the

process of cumulated defaults is given by

Zt :=

NX
j=1

LjX
j

t (123)

5.1.1 The Default Indicator Process Xt

The default indicator process de�ned in this section is the natural extension from

the indicator variable de�ned in sections 2 and 4. To understand this, the relation

between the default process Xt and the indicator variable from sections 2 and 4 is

analyzed. In those models, the default time was given by an exponential distributed

random number and P [XT = 1] = 1 � e��T Apply this idea to in�nitesimal small

time intervals of size h. Then the probability that a default occurs up t+ h is given
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by the probability that there is a default before t plus the probability of default

between t and t+ h:

P [Xt+h = 1] = P [Xt = 1] + (1� P [Xt = 1])(1� e��th) (124)

Hence:

P [Xt+h = 1]� P [Xt = 1]

h
= (1� P [Xt = 1])(�t +O(h)) (125)

In the limit h! 0:

d

dt
P [Xt = 1] = (1� P [Xt = 1])�t (126)

This is a ordinary di�erential equation which has to be solved under the condition

P [X0 = 1] = 0. Since its solution is given by (122), (122) is the natural extension of

the default indicator to continuous time.

Since Xt is a jump process, one may also be interested in the relationship between

Xt and the Poisson process:

Lemma 8 (Default indicator and Poisson process) Let Yt be a Poisson pro-

cess with time dependent default intensity �t � 0, that is a process with right con-

tinuous paths and existing left limits such that for all t > s � 0 holds:

Y0 = 0 (127)

Yt � Ys 2 N (128)

P [Yt � Ys = n] =
1

n!

0
@ tZ

s

�udu

1
A

n

� exp

0
@�

tZ
s

�udu

1
A (129)

Yt � Ys is independent of Y[0;s] (130)

Then the following relation holds for the default indicator process

Xt =

�
0 if Yt = 0

1 if Yt > 0
(131)

5.2 The characteristic function of Zt by Monte Carlo

Let Rt be the natural �ltration induced by the processes Rk. If one de�nes the

sector variables in section 4 to be 1

t

R t
0
Rk
� d� , one obtains the characteristic function

of Zt conditioned on Rt:

�ZtjR(s) = exp

0
@ NX

j=1

(eiL
js � 1)pj(a

j

0t +

KX
k=1

a
j

k

tZ
0

Rk
�d�)

1
A (132)
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Since the sector processes Rk
t are not independent, the expectation to get the char-

acteristic function �Zt(s) can be valuated by Monte Carlo only:

�Zt(s) = E[�ZtjR(s)] (133)

= exp

 
NX
j=1

(eiL
js � 1)pja

j

0t

!
E

2
4exp

0
@ KX

k=1

NX
j=1

(eiL
js � 1)pja

j

k

tZ
0

Rk
�d�

1
A
3
5

= exp(�0(s)t) E

2
4exp

0
@ KX

k=1

�k(s)

tZ
0

Rk
�d�

1
A
3
5 where (134)

�k(s) :=

NX
j=1

(eiL
js � 1)pja

j

k
for k = 0; : : :K (135)

Let S be the set of values of s for which one wants to valuate the characteristic

function. Then it is possible to compute the expressions �k(s) s 2 S before starting

the Monte Carlo procedure. For each Monte Carlo iteration one has to sample the

random numbers

Ik �
tZ

0

Rk
�d� (136)

with dependent geometric Brownian motionsRk
� . Using one draw of Ik one computes

KP
k=1

exp(�k(s)I
k) for each s 2 S and the total cost of this Monte Carlo method is

comparable with the method in section 4.3. There is only a larger e�ort in dicing Ik,

since one has to sample paths and to integrate them instead of dicing one lognormal

random number, but the asymptotic costs are again given by (114).

Remark 9 To sample Ik one can proceed as follows. Let B be the Cholesky de-

composition of the log�covariance matrix C and W l
t independent Brownian motions.

Then Rk
t is given by

Rk
t = exp

 
KX
l=1

BklW
l
t �

1

2
Ckkt

!
(137)

To compute the integral one divides the interval [0; t] into D intervals of equal length

and computes the integral by the approximation

Ik � t

2D

DX
i=1

(Rk
(i�1)t

D

+Rk
it
D

) (138)

There is a lot of literature on the properties of the integral of the geometric Brownian

motion, see for example [6, 7, 9, 14].
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In order to obtain the distribution of Z one can use the Fourier inversion techniques

presented in section 3. Usually one would use the FFT based method in this con-

text, since then the set S is clearly given by the discretization of the characteristic

function. To use the Fourier inversion method based on theorem 4 one needs to

know the �rst two moments of Z, which will be computed now to round o� the

discussion.

5.3 Moments of Zt

Lemma 9 Let Rk
t and R

l
t be two geometric Brownian motions where (lnRk

t +
1

2
Ckkt)

and (lnRl
t +

1

2
Cllt) are normal distributed with mean 0 and covariance Cklt. Then

holds:

E[

2
4 tZ

0

Rk
�d�

3
5 = t (139)

E

2
4 tZ

0

Rk
�d�

tZ
0

Rl
�d�

3
5 =

2

(Ckl)
2

�
eCklt � 1� Cklt

�
(140)

Proof. To prove the �rst equation, one only has to use Fubini's theorem. For the

second statement, let � � �:

E[Rk
�R

l
�] = E[Rk

�R
l
�

Rl
�

Rl
�

] = E[Rk
�R

l
� ] = exp(Ckl�) (141)

Hence,

E

2
4 tZ

0

Rk
�d�

tZ
0

Rl
�d�

3
5 =

tZ
0

d�

tZ
0

d�E
�
Rk
�R

l
�

�
(142)

= 2

tZ
0

d�

tZ
�

d�eCkl� = 2

tZ
0

d�eCkl� (t� �) (143)

=
2

(Ckl)
2

�
eCklt � 1� Cklt

�
(144)

This lemma and theorem 5 prove the

Theorem 6 The expectation and variance of Zt are given by

E[Zt] = t

NX
j=1

pjLj (145)

Var[Z] = t

NX
j=1

pj(Lj)2 +

NX
j;n=1

pjLjpnLn

KX
k;l=1

a
j

k
anl [

2

(Ckl)
2
(eCklt � 1� Ckl)t� t2]

(146)
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6 Combining Market Risk and Credit Risk

Up to now only credit risk has been analyzed in this paper. In this section the

previous model will be extended in such a way, that it incorporates market risk.

The idea of the approach presented here di�ers from other models, which combine

market and credit risk (see e.g. [5]). It starts from the CreditRisk+ model which is

widen in such a way, that when there is no credit risk one obtains the well known

Delta normal approach to assess market risk.

Whenever one talks about market risk, there is a portfolio depending on market risk

factors and one has the possibility to evaluate a portfolio for a given state of these

factors. Here a model of a portfolio which combines market risk and credit risk is

introduced. Finally, the computation of the pro�t and loss distribution (P&L) of

this portfolio is aspired and an approximative solution of this task can be given.

In addition to the assumption that default probabilities are small, it is also as-

sumed � according to the Delta normal model � that the e�ect of the (normal

distributed) market �uctuations may be linearized. An algorithm to compute the

P&L is presented which is based on these assumptions. The computational e�ort of

this algorithm is tolerable for a medium number of obligors and is independent of

the number of market risk factors.

6.1 A Portfolio with Market Risk and Credit Risk

The credit risk driving factors are the default indicators X
j

t and the sector processes

Rk
t of the credit risk model presented in section 5. Due to changes of the sector

processes Rk
t , the obligors default intensities alter and this e�ects the probability of

default of each obligor. In fact, this is the so�called spread risk, which is modelled

by the sector processes in this way.

Additional to the sector variables, there are market risk factors M l
t , l = 1; : : : ; ~K.

Examples of market risk factors are returns of stock prices, foreign exchange rates

or interest rates. Let M l
t are dependent Brownian motions with drift 0 and di�erent

volatilities. To describe the dependencies between Rk
t and M l

t a covariance matrix

C of the following structure is introduced:

C =

�
C1 C2>

C2 C3

�
(147)

C1 is a K � K matrix, C3 is a ~K � ~K matrix and C2 is a ~K � K matrix and the

entries of these matrices are given by

C1
kl =

1

t
Cov(lnRk

t ; lnR
l
t) (148)

C2
kl =

1

t
Cov(Mk

t ; lnR
l
t) (149)

C3
kl =

1

t
Cov(Mk

t ;M
l
t ) (150)
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Let N j(Mt; t) denote the nominal amount of the jth obligor at time t, discounted

by the risk free interest rate. For simplicity, let us assume that there is only one

and �xed settlement date T j for each obligor. The probability, that the jth obligor

survives up to T j under the condition that no default has occured up to time t is

given by P [X
j

T j
= 0jXj

t = 0]. These are functions of the state of the sector processes:

qj(r; t) := P [X
j

T j
= 0jRt = r ^X

j

t = 0] (151)

= E

2
4exp

0
@�pj

T jZ
t

(a
j

0 +

KX
k=1

a
j

kR
k
� )d�

1
A
������Rk

t = rk

3
5 (152)

Since any claim fraught with credit risk is discounted by this probability, the value

process of the portfolio can be written:

Vt =

NX
j=1

N j
(Mt; t)q

j
(Rt; t)(1�X

j

t ) (153)

6.2 Obtaining an approximative P&L

Besides the assumption that pj is small, also the following linearization is used:

Assumption 2 (Delta Approach) Let us assume, that the nominal functions

may be approximated by linear functions:

N j
(Mt; t) � N j

(M0; 0) +
@N j

@t
(M0; 0)t+

@N j

@Mt

(M0; 0) �Mt (154)

=:

0

N j (t)+
�

N j �Mt (155)

Using this assumption, the value process is given by:

Vt =

NX
j=1

(

0

N j (t)+
�

N j �Mt) q
j(Rt; t) (1�X

j

t ) (156)

In the next step the dependence between Mt and Rt will be analyzed. Let B be the

Cholesky decomposition of the covariance matrix C, with the structure:

C =

�
C1 C2>

C2 C3

�
=

�
B1 0

B2 B3

��
B1 0

B2 B3

�
>

= BB> (157)

Then the usual method to sample lnRt and Mt is to choose two vectors W 1
t ;W

2
t of

independent Brownian motions and to use the transformation�
lnRk

T + 1

2
Ckkt

Mt

�
=

�
B1 0

B2 B3

��
W 1

t

W 2
t

�
(158)
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Hence the state of the sector process is given by

Rk
t = exp

�
(B1W 1

t )
k � 1

2
C1
kkt

�
(159)

and Mt can be expressed by

Mt = B2W 1
t +B3W 2

t (160)

Hence, the portfolio has the representation

Vt =

NX
j=1

qj(Rt; t)(1�X
j

t )

 
0

N j (t) +B2>
�

N j �W 1
t +B3>

�

N j �W 2
t

!
(161)

The P&L may be determined by Fourier inversion of the characteristic function of Vt.

A �rst step to compute the characteristic function is to determine the characteristic

function conditioned on the state of Rt and Xt:

�Vtj(Rt;Xt)(s) = E[eisVtjRt; Xt] (162)

= exp

 
is

NX
j=1

qj(Rt; t)(1�X
j

t )(

0

N j (t)+
�

N j B2W 1
t )

!
�

exp

0
@�1

2
s2

�����
�����
NX
j=1

qj(Rt; t)(1�X
j

t )B
3>

�

N j

�����
�����
2

t

1
A (163)

As in the whole paper, the default probability for each obligor is assumed to be

rather small. Hence by lemma 2 one may approximate:

qj(r; t) � exp

 
�pj(T j � t)(a

j

0 +

KX
k=1

a
j

k
rk)

!
(164)

The characteristic function of Vt can now be evaluated by a Monte Carlo method

using the representation

�Vt(s) = E
�
�Vtj(Rt;Xt)(s)

�
(165)

For one Monte Carlo sample one has to sample the paths W 1
t of independent Brow-

nian motions. By equation (159) one can determine Rk
t and then by equation (164)

one obtains qj(Rt; t). Then for each obligor, one has to sample the binary random

variable

X
j

t =

8>><
>>:

0 with probability 1� exp

�
�pj

tR
0

(a
j

0 +
P
k=1

Rk
� )d�

�

1 with probability exp

�
�pj

tR
0

(a
j

0 +
P
k=1

Rk
� )d�

� (166)
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Of course, with one sample of Xt and Rt one can evaluate the expression under the

expectation for several s. If one proceeds so, the numerical e�ort of this method is

obviously of order O(M � (K + N + N � K + S)) where M denotes the number of

Monte Carlo valuations and S is the number of sample points of �Vt(s). Hence this

method can be used in practice if the number of obligors is not too big; but since

the e�ort is independent of the number of market risk factors ~K, this approach can

be applied even for large ~K. In order to obtain the density of the portfolios pro�t

and loss distribution one can use the Fourier inversion technique based on the Fast

Fourier Transformation described in section 3.2.

6.3 Concluding Remarks

A model which combines market risk and credit risk has been presented. In the

special case, that there is only one obligor who never defaults, the previous analysis

of the P&L distribution gives the so�called �Delta normal� approach, which is the

most simple and well known idea to deal with market risk alone. In the case, that

there is no market risk, the model conforms with the credit risk model presented in

section 5. This underlines that the presented model is a natural generalization to

describe market risk and credit risk.

In order to �nd other and more general models which combine market risk and

credit risk it is necessary to �nd other credit risk models which allow the handling

of a stochastic loss given default. One approach in this direction has been done by

Bürgisser et. al. [3]. They assume a stochastic independence between the sector

variables and the processes, which e�ect the amount of the loss given default. They

also give a remark how to overcome this assumption, but a deeper analysis remains

to be done. In [5] another approach is presented to model market and credit risk.

Du�e and Pan split the portfolio into a value component and a default component

and they treat each component separately.

For applications in risk management it seems to be necessary to model dependencies

between the sectors and the loss given default. For example, assume that you hold

put options on the stock of a bank which are sold by this bank. In the case of default

of this bank the stock will fall, but your (theoretical) win on the puts is worthless

since the bank is unable to pay them out.

Based on the density of the portfolios P&L one can perform much more computa-

tions. The most risk measures used in practice are functionals of the P&L which can

be determined, since the Fourier inversion yields the whole distribution of a portfo-

lio. The same argument also holds for the pricing of derivatives on such portfolios.

For example, the price of a European option can be represented as an expectation

of a function of the portfolio return. There are plain credit risk portfolios traded,

e.g. Asset backed securities, but it seems very likely that options on more complex

portfolios will be sold in future and hence there is a demand on models which unify

market and credit risk.
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