Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

Solution of Linear Systems with Sparse Matrices

Friedrich Grund
Weierstrass Institute for Applied Analysis and Stochastics

E-Mail: grund@wias-berlin.de

submitted: 17th February 2003

No. 816
Berlin 2003

2000 Mathematics Subject Classification. Primary 65F05; Secondary 65F50, 65Y05.

Key words and phrases. Direct Linear Solver, Sparse-Matrix—Techniques, Parallel Computa-
tion, Circuit Simulation, Chemical Process Simulation.

Edited by

Weierstraf-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39

D — 10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/

Solution of Linear Systems with Sparse Matrices

Friedrich Grund

To my grandchildren Anna, Janina and Paula

Abstract. For large scale problems in electric circuit simulation as well as in
chemical process simulation, the linear solver often needs about 50 — 80 %
of the total amount of computing time. For that purpose, we consider di-
rect methods for the numerical solution of linear systems of equations with
unsymmetric sparse coefficient matrices. The Gaussian elimination method

PAQ = LU,
Ly = Pb, UQ 'z=y
is applied to solve the linear system Az = b. Here, the row permutation

matrix P is used to provide numerical stability and the column permutation
matrix) is chosen to control sparsity. In a new approach, implemented in
the solver GSPAR2, the determination of the pivot columns is done with a
modified algorithm, which has only a complexity of O(n). A partial pivoting
technique is used to maintain numerical stability.

For solving several linear systems with the same pattern structure of the
coeflicient matrix efficiently, we generate a list of pseudo code instructions for
the factorization of the matrices. With it, the solver GSPAR2 has been proven
successful within the simulation of several real life problems. For a number of
linear systems arising from different technical problems, the computing times
of GSPAR2 are compared to that of some recently released linear solvers.

1. Introduction

For the dynamic simulation of large scale applications in electric circuit analysis
[2] as well as in chemical process engineering [3], initial value problems for large
systems of nonlinear differential-algebraic equations (DAEs) have to be solved.
For solving such problems, implicit integration methods like e.g. backward differ-
entiation formulas [11] are used and the resulting systems of nonlinear equations

Received by the editors December 15, 2002.

1991 Mathematics Subject Classification. Primary 65F05; Secondary 65F50, 65Y05.

Key words and phrases. Direct Linear Solver, Sparse-Matrix—Techniques, Parallel Computation,
Circuit Simulation, Chemical Process Simulation.

This work was supported by the Federal Ministry of Education and Research of the Federal
Republic of Germany under grants GATFVB and GR7FV1.

2 Friedrich Grund

are then solved with Newton-type methods [6]. Thus, for the dynamic simulation
of real life problems, large linear systems have to be solved repeatedly. In this
applications, the linear solver often needs about 50 — 80 % of the total amount of
computing time [18].

The sparse, unsymmetric, and high dimensional Jacobian matrices, appearing
as coefficient matrices of the linear systems, usualy maintain their sparsity struc-
ture during the integration over many time steps. For these steps, the Gaussian
elimination method can be used with the same ordering of the pivots, in general.
Thus, the following approach can be used for the numerical solution of the linear
systems in this context. At the beginning of the simulation and at some later time
points, e.g. after a discontinuity in the functions have occured, the pivot ordering
is determined with the Gaussian elimination method. This step is called first fac-
torization. Then a list of pseudo code instructions is generated to perform repeated
factorizations of matrices with the same pattern structure, using the same order
of pivots. This code contains only the necessary operations for the factorization
and thus it works very efficiently. It is defined independently of a computer and
can be adapted to exploit the features of vector as well as parallel computers. The
factorization of a matrix by using the pseudo code instructions is called fast second
factorization. This fast second factorization can now be used within the numerical
integration process until e.g. a discontinuity in the function appears, the condition
number of the matrix becomes too large, or the Newton method does not converge.
In the later cases a new first factorization is performed and a new pseudo code is
generated. Then the fast second factorization can be used again.

This algorithms are realized in the linear solver GSPAR [12]. By using a
new method for the determination of the pivot ordering, the performance of the
first factorization can be improved considerably compared to that of GSPAR.
This and other methods have recently been implemented in the solver GSPAR2.
The solver has been proven successful for the dynamic process simulation of large
real life chemical production plants and for the electric circuit simulation as well.
Computing times for complete dynamic simulation runs of industrial applications
are given. A modification of the solver is used in the new process simulator BOP
(Block Oriented Process Simulator) [5].

2. The Gaussian elimination method

The Gaussian elimination method

(2.1) PAQ = LU,
Ly = Pb, UQ 'lz=y

is used for solving the linear system

(2.3) Az =b.

Linear Systems with Sparse Matrices 3

The nonzero elements of the matrix A are stored in compressed sparse row
format, also known as sparse row wise format. L is a lower triangular and U an up-
per triangular matrix. The row permutation matrix P is used to provide numerical
stability and the column permutation matrix () is used to control sparsity.

In GSPAR we consider the following approach for the determination of the
matrices P and (). At each elimination step, the algorithm searches for the first
column with a minimal number of nonzero elements. This column becomes the
pivot column. Then the columns are reordered. The method can be implemented
easily, but the order of the numerical complexity is O(n?). For keeping the method
numerically stable, the pivot a; ; of each elimination step is selected among those
candidates satisfying the numerical threshold criterion

lai,j| > B max a1,

with a given threshold parameter 8 € (0, 1]. This process is called partial pivoting.
In our applications we usually choose 8 = 0.01 or 8 = 0.001.

In GSPAR2 we consider another approach. Here, we first reorder the columns
according to the number of nonzeros in ascending order. Therefore, the first col-
umn becomes the pivot column of the first elimination step. At the end of each
elimination step, the number of nonzeros in the remaining columns is corrected.
The algorithm uses linked list techniques and is more complicated as the algo-
rithm for GSPAR. The advantage of the algorithm of GSPAR2 over the algorithm
of GSPAR is its minor numerical complexity. The complexity is here only O(n).
For the numerical stability, partial pivoting is used as described above.

Matrix discipline n |A]
bayer01 chemical 57 735 277 774
bayer02 engineering 13 935 63 679
bayer03 6 747 56 196
bayer04 20 545 159 082
bayer06 3008 27576
bayer10 13 436 94 926
advice3388 circuit 3388 40 545
megl simulation 2904 58 142
meg4 5 860 46 842
rlxADC _tr 5355 32 251
zy3315 3315 150985
poli account of 4 008 8 188

poli large capital links 15575 33 074

TABLE 1. Test matrices

In Table 2 on page 4 the performance of the first factorization with GSPAR2
is compared to that of GSPAR for some test matrices characterized in Table 1. The

4 Friedrich Grund

given CPU times are for a DEC AlphaServer with a processor 21164A operating
at 400 MHZ. The number of columns and rows is denoted by n and |A| identifies
the number of nonzero elements in the matrix. Many of test matrices can be found

in [7].

Matrix GSPAR GSPAR2

bayer01 34.92 2.35
bayer02 2.20 0.55
bayer03 0.67 0.30
bayer04 5.18 1.82
bayer06 0.82 0.83
bayer10 3.07 1.27

TABLE 2. First factorization with GSPAR and GSPAR2, CPU

times in seconds

FIGURE 1. Matrix structure for bayer04

In Figure 1 the structure of the matrix bayer04 is shown. For the creation of
the figure, a tool from T. Davis [7] has been used. The matrix bayer04 as well as
the other bayer matrices in Table 1 are very unstructured and unsymmetric.

Linear Systems with Sparse Matrices 5

3. Fast second factorization

If initial value problems for large systems of differential-algebraic equations have
to be treated numerically, e.g. in the dynamic simulation of large scale applica-
tions in electric circuit analysis or chemical process engineering, numerous linear
systems have to be solved. In this cases it mostly happens, that the Gaussian
elimination method has to be used repeatedly for the factorization of a number
of matrices with the same pattern structure. To exploit this circumstance for an
efficient implementation, a list of pseudo code instructions for the computation of
the factorization is generated.

For the generation of these pseudo code instructions, the factorization of the
Gaussian elimination method is used as shown in Figure 2. The algorithm in this
form needs exactly n divisions. Only a few different types of pseudo code instruc-
tions are needed in this case. The types of the pseudo code instructions and the
corresponding lists of indices are stored in integer arrays. For the factorization of
matrices with a very large number of nonzero elements, it can happen that the
number of integer array elements needed for the storage of the pseudo code in-
structions exceed main memory limits [12]. In this cases the pseudo code technique
can not be used and may be replaced by using FORTRAN subroutines.

fori =2,n do
ai—1i-1 = 1/ai—1,i-1
forj =1i,ndo
i—2
ajim1 = (@jim1 = Dopry Ay k@h,i—1)0i—1,i—1
enddo
for j =i,n do
i—1
Qijj = Qi — Dopey Gi kO,
enddo
enddo

a =1/a .
) ,
n,n /nn

FIGURE 2. Gaussian elimination method

4. Vectorization and Parallelization

The pseudo code instructions can be used for both vectorization as well as paral-
lelization. In both cases, elements of the factorized matrix have to be found which
can be computed independently of each other.

For the factorization, a matrix

M = (m;;), m;; € NU{0,1,2,...,n2}

is assigned to the matrix

LU = PAQ,

6 Friedrich Grund

where m; ; denotes the level of independence.

The elements with the assigned level zero do not need any operations. All
elements with the same level in the factorized matrix (2.1) can be computed inde-
pendently. First all elements with level one are computed, then all elements with
level two and so on. The levels of independence for the matrix elements in (2.1) can
be computed with the algorithm of Yamamoto and Takahashi [17]. The algorithm
for the determination of the levels of independence m; ; is shown in Figure 3.

For an application on a vector computer, we have to find vector instructions
at the different levels of independence [12]. For parallelization, it needs to be dis-
tinguished between parallel computers with shared memory and with distributed
memory. In the case of parallel computers with shared memory and p processors,

M=0
for i=1,n—1do
forall {j:a;; #0 & j > i}
mj; = 1+ max(m;;,m;;)
forall {k:a;x #0 & k> i}
mjr = 1+ max(m; g, mj;, m;)
enddo
enddo
enddo

FIGURE 3. Algorithm of Yamamoto and Takahashi

we assign the pseudo code for each level of independence in p parts of approxi-
mately same size to the processors. After the processors have executed their part
of the pseudo code instructions of a level concurrently, a synchronization among
the processors is needed. Then the execution of the next level can be started. If
the processors are vector processors then this property can be used analogously.
The parallel computer Compaq AlphaServer GS80 6/731 and the IBM 7040-681,
pSeries 690 are examples for such computers.

In the case of parallel computers with distributed memory and g processors,
the pseudo code for each level of independence is again partitioned into g parts of
approximately same size. But in this case, the parts of the pseudo code are moved
to the memory of each individual processor. The transfer of parts of the code to
the memories of the individual processors is done only once. A synchronization
is carried out analogously to the shared memory case. The partitioning and the
storage of the matrix as well as of the vectors is implemented in the following way.
For small problems the elements of the matrix, right hand side, and solution vector
are located in the memory of one processor, whereas for large problems, they have
to be distributed over the memories of several processors. We assume that the

Linear Systems with Sparse Matrices 7

data communication between the processors for the exchange of data concerning
elements of the matrix, right hand side, and solution vector is supported by the
operating system. The massive parallel computer Cray T3E is an example for such
a computer.

This approach can be illustrated by small artificial example. We assume that
the permutation matrices P and) are given, so that

2 4
5 7 9
(4.1) PAQ = 2 9 1
1 7 8
1 3 5

The nonzero elements of the matrix A are stored in sparse row format in the
vector a. Let denote the index of the i-th element in the vector a, then the
elements of the matrix PAQ are stored in the following way

(4.2)
[9] [10] [11]
[4] [5] [6]

The matrix M assigned to the matrix PAQ is found to be

[Ell[E]

0 0
1 2 0

(4.3) M= 3 0 4
1 0 5

1 1 6

We can see from (4.3), that six independent levels exist for the factorization.
The detailed instructions for the factorization of the matrix A resulting from (4.1) —
(4.3) are shown in Table 3 on page 8.

Let us now consider, for example, the instructions of level one in Table 3 only.
Then, at one hand on a vector computer, one vector instruction of the length four
can be generated. And at the other hand on a parallel computer with distributed
or shared memory, a allocation of the four instructions to two or four processors
can be done [12].

From our experiments with many different matrices arising from the process
simulation of chemical plants and the circuit simulation respectively, it was found
that the number of levels of independence is in general small. The number of
instructions in the first two levels is very large, in the next four to six levels it is
large and finally it becomes smaller and smaller.

8 Friedrich Grund

Level Instructions
a(12) = a(12)/a(7)
a®) = a(9)/a(l)
Loa@) = a@/a()
a(b) = a(5)/a(10)
2 a(13) = a(13) —a(12) x a(8)
3 a(2) = a(2)/a(13)
4 a(3) = a(3)-a(2) xa(14)
5 a(1l) = a(l11) —a(5) x a(3)
6 a(6) = a(6)—a(4) xa(3)—a(b)xa(ll)

TABLE 3. Instructions for the factorization

5. Numerical results

The developed numerical methods are realized in the program packages GSPAR
and GSPAR2. The latest version GSPAR2 has been released in 2002. Whereas
GSPAR is written in Fortran 77 and implemented on workstations (Digital Alpha-
Station, IBM RS/6000, SGI, Sun UltraSparc 1 and 2), vector computers (Cray J90,
C90), parallel computers with shared memory (Cray J90, C90, SGI Origin2000,
Digital AlphaServer) and parallel computers with distributed memory (Cray T3D),
its successor GSPAR2 is written in Fortran 90 and currently implemented on Win-
dows PC’s, workstations (Compaq Workstation, SGI, IBM) and parallel computers
(Compaq AlphaServer GS80 6/731, IBM 7040-681, pSeries 690).

Numerical results will be given for GSPAR, GSAPAR2, and some other lately
released linear solvers. GSPAR has been applied to the test matrices from Table 1
on page 3. In Table 4 on page 9 results are shown using the solver GSPAR on
a DEC AlphaServer with an alpha EV5.6 (21164A) processor. Here # op LU is
the number of operations (only multiplications and divisions) and fill-in is the
number of fill-ins during the factorization. The CPU time (in seconds) for the first
factorization, presented in First factor., includes the times for the analysis as well
as for the numerical factorization. The CPU time for the generation of the pseudo
code is given in Pseudo code.

In Table 5 on page 9, CPU times (in seconds) for the second factorization are
shown for the linear solvers UMFPACK V1.0 [9], SuperLU V1.0 with minimum
degree ordering of AT A (upper index *) or of AT + A (upper index) [16, 10],
and GSPAR, using a DEC AlphaStation with an alpha EV4.5 (21064) processor.

In many applications, mainly in the numerical simulation of physical and
chemical problems, the analysis step including ordering and first factorization is
performed only a few times, but the second factorization is performed very often.

Linear Systems with Sparse Matrices 9

Therefor the CPU time for the second factorization is essential for the overall
simulation time.

First Pseudo

Matrix # op LU fill-in factor. code

bayer01 10 032 621 643 898 35.18 12.72
bayer02 2 095 207 134 546 2.28 1.30
bayer03 1000 325 64 130 0.68 0.47
bayer04 5954 718 268 006 5.33 3.93
bayer05 119 740 11 024 0.15 0.03
bayer06 3042620 73773 0.85 1.00
bayer09 364 731 23 145 0.18 0.15
bayer10 5992 500 227 675 3.05 2.55
advice3388 310 348 9 297 0.38 0.65
megl 796 797 40 436 0.32 0.40
meg4 420 799 38 784 0.68 0.62
rlxADC_dc 73 612 5 404 0.38 0.13
rlxADC _tr 988 759 47 366 0.85 1.13
zy3315 47 326 8 218 0.12 0.03
poli 4 620 206 0.15 0
poli large 43 310 10 318 2.38 0.25

TABLE 4. GSPAR first factorization and generation pseudo code

Matrix UMFPACK V1.0 SuperLU V1.0 GSPAR
bayer01 5.02 6.70 * 3.20
bayer02 1.13 1.47* 0.55
bayer03 0.72 0.70 * 0.27
bayer04 3.37 2.77* 1.70
bayer05 0.13 0.75* 0.05
bayer06 0.83 0.90* 0.82
bayer09 0.23 0.23* 0.10
bayer10 1.60 1.57* 1.65
advice3388 0.25 0.28 0.10
megl 0.58 1.437F 0.22
meg4 0.37 0.75F 0.13
rlxADC dc 0.15 0.18% 0.03
rlxADC _tr 0.40 0.90 0.30
zy3315 0.15 0.18 0.02
poli 0.03 0.07+ 0.00
poli large 0.13 0.27+ 0.03

TABLE 5. CPU times for second factorization

10 Friedrich Grund

GSPAR achieves a good performance for second factorization for all linear
systems in Table 5. For systems with a large number of equations, GSPAR is at
least two times faster then UMFPACK V1.0 and SuperLLU V1.0 respectively.

In Table 6, wall-clock times (in seconds) are shown for the second fac-
torization, using GSPAR with different pivoting on a DEC AlphaServer with
four alpha EV5.6 (21164A) processors. The parallelization technique is based on
OpenMP [15]. The wall—clock times have been determined with the system routine
gettimeofday.

processors bayer01 bayer04 bayer0l bayer04

1 0.71 0.39 1.08 0.43
2 0.54 0.27 0.75 0.29
3 0.45 0.23 0.63 0.25
4 0.49 0.24 0.70 0.30

TABLE 6. Wall-clock times for second factorization

In the following, we compare the performance of some of the new software
packages for solving linear systems with sparse matrices on a single CPU of a Com-
paq AlphaServer GS80 6/731 with alpha EV6.7 (21264A) processors, operating at
731 MHz and on an IBM 7040-681, pSeries 690 with 64—bit POWERA4 processors,
operating at 1.3 GHz. The used packages are now GSPAR2, UMFPACK V3.0, and
WSMP Version 1.7 (Watson Sparse Matrix Packages) [13]. We compare GSPAR2
and UMFPACK V3.0 on the Compaq and GSPAR2 and WSMP Version 1.7 on
the IBM for the test matrices in Table 7 respectively.

Matrix discipline n |A] nnc
bayer01 Process simul. 57 735 277 774 33
big Device simul. 13 209 91 465 12
circuit_3 Circuit simul. 12 127 48 137 5 682
bayer02 Process simul. 13 935 63 679 28
lhr34c Process simul. 35 152 764 014 36
meg4 Circuit simul. 5860 46842 1194
bayer04 Process simul. 20 545 159 082 43
nopoly Device simul. 10 774 70 842 11
circuit_4 Circuit simul. 80 209 307 604 8 900
pesa Device simul. 11 738 79 566 10
shermanACb Circuit simul. 18 510 145 149 10 405
bayer10 Process simul. 13 436 94 926 32

TABLE 7. Test matrices

Linear Systems with Sparse Matrices 11

Here, |A| identifies the number of nonzero elements in the matrix and nnc
the maximum number of nonzeros in columns.

Matrix First Fac. Gen. Code Sec. Fac. Solv. Fast Fac. NNZ-LU

bayer01 1.583 1.248 1.134 0.094 0.328 932 190
big 3.371 2.658 2.656 0.076 0.727 685 441
circuit 3 0.126 0.013 0.014 0.004 0.005 64 608
bayer02 0.243 0.182 0.155 0.015 0.049 192 752
lhr34c 11.713 12.255 11.579 0.252 2.735 3 065 587
meg4 0.106 0.050 0.042 0.003 0.011 84 694
bayer04 0.887 0.799 0.695 0.038 0.181 458 086
nopoly 0.707 0.516 0.409 0.028 0.126 321 350
circuit 4 2.736 1.005 1.155 0.057 0.098 420 875
pesa 1.326 0.997 0.797 0.043 0.263 476 560
shermanACb 6.846 3.509 3.136 0.053 2.011 544 953
bayer10 0.473 0.394 0.305 0.022 0.102 306 865

TABLE 8. GSPAR2 on the Compaq GS80 6/731

In Table 8 the results are shown for GSPAR2 on the Compaq GS80 6/731.
The CPU times (in seconds) are given for the first factorization in First Fac.,
for the generation of the pseudo codes in Gen. Code, for the second factorization
using a Fortran routine in Sec. fac., for the solving in Solv. and for the fast second
factorization in Fast Fac.. The number of nonzero elements in the L— and U-matrix

is denoted by NNZ-LU.

Matrix Symb Fac. Num. Fac. Solv. Red. Fac. NNZ-LU

bayer01 0.583 1.017 0.050 0.917 1 080 365
big 0.117 0.367 0.017 0.300 828 480
circuit_ 3 0.083 0.450 0.000 0.400 106 286
bayer02 0.117 0.200 0.000 0.167 224 979
lhr34c 1.200 1.933 0.083 1.833 2 975 184
meg4 0.117 0.383 0.000 0.350 55 215
bayer04 0.267 0.383 0.017 0.367 362 366
nopoly 0.083 0.167 0.000 0.150 368 545
circuit_4 15.266 934.746 1.217 930.063 43 569 250
pesa 0.100 0.233 0.000 0.200 491 854
shermanACb 0.833 24.666 0.050 23.949 1 266 626
bayer10 0.133 0.233 0.017 0.200 245 986

TABLE 9. UMFPACK V3.0 on Compaq GS80 6/731

12

Friedrich Grund

In Table 9 on page 11 results are given for UMFPACK V3.0 on the GS80
6/731. The solver UMFPACK V3.0 is written in ANSI/ISO C and contains differ-
ent new algorithms [8]. The CPU times (in seconds) are identified for the symbolic
factorization in Symb. Fac., for the numeric factorization in Num. Fac., for solving

in Solv. and for the redo numeric factorization in Red. Fac.

Matrix First Fac. Gen. Code Sec. Fac. Solv. Fast Fac.
bayer01 0.840 0.740 0.450 0.020 0.160
big 1.850 1.320 0.820 0.020 0.360
circuit 3 0.080 0.010 0.010 0.010 0.010
bayer02 0.160 0.130 0.070 0.010 0.020
lhr34c 6.260 6.540 3.830 0.070 1.460
meg4 0.070 0.030 0.020 0.000 0.000
bayer04 0.510 0.460 0.250 0.010 0.100
nopoly 0.390 0.270 0.140 0.010 0.050
circuit_4 1.430 0.570 0.480 0.020 0.050
pesa 0.730 0.590 0.290 0.010 0.140
shermanACb 3.020 1.900 0.970 0.010 0.730
bayer10 0.290 0.230 0.120 0.000 0.050

TABLE 10. GSPAR2 on IBM pSeries 690

CPU times (in seconds) are shown for GSPAR2 on an IBM pSeries 690 in
Table 10. The description of the headline is the same as in Table 8.

Matrix Analysis Factorization Back substitution NNZ-LU
bayer01 2.640 0.460 0.180 1 562 405
big 0.290 0.090 0.020 701 524
circuit 3 0.130 0.030 0.010 91 060
bayer02 0.600 0.100 0.040 376 018
lhr34c 2.710 0.470 0.110 2 955 105
meg4 0.080 0.030 0.010 111 676
bayer04 0.860 0.120 0.040 536 935
nopoly 0.190 0.060 0.020 390 502
circuit_4 1.980 0.300 0.120 603 556
pesa 0.210 0.080 0.020 509 346
shermanACb 0.460 0.110 0.040 430 300
bayer10 0.680 0.100 0.030 455 494

TABLE 11. WSMP Version 1.7 on an IBM pSeries 690

Linear Systems with Sparse Matrices 13

In Table 11 on page 12 results are given for the linear solver WSMP Version
1.7 [14] on an IBM pSeries 690. The CPU times (in seconds) are given for the
analysis step in Analysis, for the factorization step in Factorization and for the
back substitution step in Back substitution.

From the results in the Tables 8 — 11 one can see that the second factorization
with GSPAR2 is fast. The symbolic factorization with UMFPACK V3.0 is fast too
and the time difference between the factorization and the redo factorization is
marginal. The package WSMP has a fast factorization step also for large matrices.

6. Application in process engineering

The more and more integrated modeling in process engineering leads to large
scale problems in static and dynamic process simulation. The complex real world
process models used in this field usually depend on numerous parameters and are
in general highly nonlinear. Using concentrated physical models, high-dimensional
systems of nonlinear and differential-algebraic equations have to be solved in static
and dynamic process simulation respectively. For that purpose robust and efficient
numerical simulation tools are needed. They are urgently necessary to improve
process design, analysis, as well as operation in todays process industries.

The hierarchical modular simulation concept developed at WIAS [3, 4, 5] is
based on divide and conquer techniques and exploits the modular structure of the
process, which in most cases is defined by the hierarchical unit structure of the
underlying plant. With it the corresponding system of equations is structured into
subsystems according to the units and can be partitioned into m blocks

Fi(t,y(t), 5(),u(®)) = 0, i = 1()m,

Fi:RxR* xR* x R? = R™, Y "n;=n, t € [to, tend]
i=1

which can then be treated almost concurrently within appropriately modified nu-
merical methods. The approach has been implemented in the Block Oriented
Process simulator WIAS-BOP that uses an own compiler to generate a hierar-
chically structured data interface from a process description with its modeling
language MLPE (Modeling Language for Process Engineering). The numerical so-
lution within BOP require a repeated solution of linear systems with the same
pattern structure of sparse, unsymmetric coeflicient matrices, and with multiple
right-hand sides. A slightly modified version of the direct solver GSPAR is used
within BOP to solve these linear systems. For several real life problems, GSPAR
has proven to be a robust and reliable linear solver for this application on parallel
computers Cray J90 and SGI Origin 2000. For some distillation processes of Bayer
AG Leverkusen, resulting into DAE system with several ten thousand equations,
the dynamic simulation with BOP has achieved speedup factors of up to 10 in
wall-clock time on a Cray J90 with 24 processors. For detailed results in this case,
we refer to [5].

14 Friedrich Grund

Another application of GSPAR in process simulation has been performed
using the commercial process simulator SPEEDUP [1]. In SPEEDUP the vector
versions of the linear solvers FAMP and GSPAR have been used alternatively.
FAMP is the default linear solver in SPEEDUP and optimized on the Cray com-
puter architecture. Table 12 shows two large scale industrial problems of the Bayer
AG Leverkusen. The number of differential-algebraic equations are given.

name chemical plants equations

bayer04 nitration plant 3 268
bayer10 distillation column 13 436

TABLE 12. Large scale industrial problems

The problems have been solved on a vector computer Cray C90. The CPU
times (in seconds) for complete dynamic simulation runs are shown in Table 13.

name FAMP GSPAR in %

bayer04 451.7 283.7 62.8
bayer10 380.9 254.7 66.9

TABLE 13. CPU time for complete dynamic simulation

References

[1] SPEEDUP, User Manual, Library Manual. Aspen Technology, Inc., Cambridge, Mas-
sachusetts, USA, 1995.

[2] J. Borchardt, F. Grund, D. Horn, M. Uhle, MAGNUS — Mehrstufige Analyse grofier
Netzwerke und Systeme. Weierstrafi-Institut fiir Angewandte Analysis und Stochastik,
Report No. 9, Berlin, 1994.

[3] J. Borchardt, F. Grund, D. Horn, Parallelized Methods for Large Nonlinear and Linear
Systems in the Dynamic Simulation of Industrial Applications. Surv. Math. Ind. 8
(1999), 201-211.

[4] J. Borchardt, K. Ehrhardt, F. Grund, D. Horn, Parallel Modular Dynamic Process
Stmulation. In F. Keil, W. Mackens, H. Voss, J. Werther, editors, Scientific Com-
puting in Chemical Engineering II, volume 2, pages 152-159, Springer-Verlag Berlin
Heidelberg New York, 1999.

[5] J. Borchardt, Newton-Type Decomposition Methods in Large-Scale Dynamic Process
Simulation. Comput. Chem. Engng. 25 (2001), 951-961.

[6] K. E. Brenann, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. North—Holland, New York, 1996.

Linear Systems with Sparse Matrices 15

[7] T. A. Davis, University of Florida Sparse Matriz Collection.
http://www.cise.ufl.edu/~davis/sparse

[8] T. A. Davis, UMFPACK V3.0. http://www.cise.ufl.edu/research/sparse/umfpack/

[9] T. A. Davis, I. S. Duff, An unsymmetric—pattern multifrontal method for sparse LU
factorization. Tech. Report TR-94-038, CIS Dept., Univ. of Florida, Gainsville, FL,
1994.

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and J. W. H. Liu, A Supernodal
Approach to Sparse Partial Pivoting. STAM J. Matrix Anal. Appl. 20 (1999), 720-755.

[11] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice—Hall, Inc., Englewood Cliffs, New Jersey, 1971.

[12] F. Grund, Direct Linear Solvers for Vector and Parallel Computers. In José M. L.
M. Palma and Jack Dongarra and Vicente Hernandez, editors, Vector and Parallel
Processing - VECPAR’98, Lecture Notes in Computer Science 1573, Springer—Verlag
Berlin Heidelberg New York, 1999.

[13] A. Gupta, Recent Advances in Direct Methods for Solving Unsymmetric Sparse Sys-
tems of Linear Equations. ACM Trans. Math. Softw. 28 (2002), 301-324.

[14] A. Gupta, WSMP: Watson Sparse Matriz Package.
http://www-users.cs.umn.edu/~agupta/wsmp.html

[15] OpenMP. http://www.openmp.org.

[16] X. S. Li, Sparse Gaussian elimination on high performance computers. Technical
Reports UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, Ph.D. dis-
sertation, 1996.

[17] F. Yamamoto, S. Takahashi, Vectorized LU decomposition algorithms for large—scale
nonlinear ctrcuits in the ttme domain. IEEE Trans. on Computer—Aided Design CAD—
4 (1985), 232-239.

[18] S. E. Zitney, L. Briill, L. Lang, R. Zeller, Plantwide dynamic simulation on super-
computers: modeling a Bayer distillation process. AIChE Symposium Series 91 (1995),
313-316.

Acknowledgment

The author thanks his coworkers Jiirgen Borchardt and Dietmar Horn for useful
discussions. The valuable assistance and the technical support from the Bayer AG
Leverkusen, the Cray Research Munich and Aspen Technology, Inc., Cambridge,
MA, USA are gratefully acknowledged.

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39,
10117 Berlin, Germany
E-mail address: grund@wias-berlin.de

