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Abstract

We study the optimization of three dimensional curved rods and of shells

under minimal regularity assumptions for the geometry. The results that we

establish concern the existence of optimal shapes and the sensitivity analysis.

We also compute several numerical examples for the curved rods. The mod-

els that we use have been investigated in our previous work [11], [16] and a

complete study of the Kirchho�-Love arches and their optimization has been

performed in [10].

1 Introduction

The scienti�c literature concerning the modeling of curved mechanical structures

o�ers presently a variety of mathematical models for the study of the displacement

of such an elastic body under the action of various internal or external forces and

tractions. We refer just to the monographs of Ciarlet [9], Trabucho and Viaño

[17], Antman [2], where a very rich material can be found for investigations in this

direction.

It is a natural question now to develop a research program concerning the optimiza-

tion of such objects, including numerical experiments. It should be mentioned that

there are already several works of interest discussing such problems, Chenais and

Rousselet [8], Rousselet [14], Myslinski, Piekarski and Rousselet [12], Sprekels and

Tiba [15], Ignat, Sprekels and Tiba [10], etc.

In this article, we attempt a general analysis of optimization problems associated to

curved rods and shells. The generality of our setting is related to the consideration of

a general performance index, of general constraints on the geometry, the relaxation

of the regularity assumptions, and the implementation of numerical experiments. In

particular, we are assuming just C2-regularity, instead of the usual C3-hypotheses

from the literature. For shells, we obtain this by using the generalized Naghdi-type

model introduced in Sprekels and Tiba [16]. For rods, this is achieved by replacing

the classical Frenet frame with a new general algebraic construction that will be

introduced in Section 2. Other variants of local coordinates systems associated to

three-dimensional curves under low regularity conditions may be found in Cartan

[6] (the Darboux frame) or in Ignat, Sprekels and Tiba [11] from where we take

the linear model that we are using. It consists of a system of nine ordinary dif-

ferential equations with clamped boundary conditions, written in the weak form.

Comparing with the regularity assumptions from the modeling process, we see that

the optimization hypotheses are minimal.
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Our approach allows to minimize within the class of curved rods of a prescribed

length, which is a natural condition in applications. This is preserved as well by the

variations that we are using, according to Section 4. We also show how to avoid

certain degenerate cases: rods of zero length or with multiple points.

It is also to be noticed that, besides the fact that we have general constraints on

the geometry, in certain important examples the parametrization used here allows

to re-express them in a convex way. The optimization problems considered in this

paper are nonconvex, but the convexity of the constraints set is very helpful in the

numerical experiments.

The plan of the paper is as follows. We start with the theoretical discussion of

optimization problems for curved rods. In Section 2, we indicate the necessary pre-

liminaries and the formulation of the problem. In Section 3, we prove the existence of

the solution (while uniqueness is not valid, in general), and in Section 4 we perform

a sensitivity study.

A similar program is carried out in Sections 5, 6 and 7, in connection with the study

of optimal shell con�gurations. Our basic assumption is that the geometry of the

shell can be described by some mapping in C2(�!) . While this setting still allows

for many applications, it is also helpful as it reduces the complexity of the problem

and of the notations.

We underline that, in order to prove the existence of optimal shapes, coercivity

inequalities of Korn-type, uniform with respect to the geometry, are to be established

(in Sections 3 and 6). In particular, for shells the extension property in Lipschitz

domains, Adams [1], plays an essential role.

In the last section, we present some numerical experiments for optimization problems

for three-dimensional curved rods. Their di�culty is already quite big and shows

that the numerical treatment of the shells optimization (which is not considered

here) would require very special numerical approximation methods.

2 Description of the curved rods problem

Let �� = (�1; �2; �3) 2 Ck[0; L]3; k 2 IN , be a three-dimensional Jordan curve of

length L > 0 , and let �t = (t1; t2; t3) 2 Ck�1[0; L]3 be its tangent vector. We shall

always assume that �� originates in the origin of the coordinates system and that it

is parametrized with respect to its arc length, i.e. j�t(x3)jIR3 = 1 8 x3 2 [0; L] .

Then, alternatively, we may consider ' 2 Ck�1[0; L] and  2 Ck�1[0; L] to be some

spherical coordinates of a unit vector given by (sin' cos ;
sin' sin ; cos') 2 Ck�1[0; L] which we denote again by �t . The corresponding

three-dimensional curve is obtained by

��(x3) =

x3Z
0

�t(�) d� ; x3 2 [0; L] : (2.1)
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Notice that, although the polar coordinates may not be uniquely determined in

certain cases, relation (2.1) with arbitrary ' ;  generates a rich class of three-

dimensional regular curves having Ck-regularity, which is enough for optimization

applications.

One advantage of the form (2.1) is that the curve is automatically parametrized with

respect to its arc length, and that a local frame may be de�ned by purely algebraic

means

�n = (cos' cos ; cos' sin ; � sin') (2.2)

�b = (� sin ; cos ; 0) (2.3)

in all the points of the curve.

We denote by A the orthogonal matrix having the columns �t; �n;�b . The geometric

meaning of this construction is that we perform a rotation of the global axes system,

corresponding to the angles ' and  and indicated by A , i.e., �t = A(1; 0; 0)T ; �n =
A(0; 1; 0)T ; �b = A(0; 0; 1)T .

Remark 2.1 It is possible to apply (2.1)� (2.3) to absolutely continuous regular (i.e.

with non-zero tangent) curves, after reparametrization with respect to the arc length.

Although we employ the same notations, the vectors �n ; �b are di�erent, in general,

from the normal and binormal vectors of the classical Frenet frame obtained under

stronger regularity assumptions, Bloch [4]. Other useful variants of local frames

with low smoothness hypotheses may be found in Cartan [6], Ignat, Sprekels and

Tiba [11].

We introduce the open set


 =
[

x32]0;L[

�
!(x3) � fx3g

�
� IR3 (2.4)

with !(x3) � IR2 ; x3 2 [0; L] , being a bounded domain, not necessarily simply

connected, such that !(x3) � ! , an open subset of IR2 satisfying the symmetry

relations

0 =

Z
!

x1 dx1 dx2 =

Z
!

x2 dx1 dx2 =

Z
!

x1 x2 dx1 dx2 : (2.5)

The curved rod ~
 associated with �� is obtained by the one-to-one transformation

F : 
! ~
 ,

(x1; x2; x3) = �x 2 
 7! F �x = ~x = ( ~x1; ~x2; ~x3)

= ��(x3) + x1 �n(x3) + x2 �b(x3) 2 ~
 ; 8 �x 2 
 ; (2.6)

where ~
 = f~x = F �x ; �x 2 
g :

In the sequel, we will always assume that ';  2 C1[0; L] , i.e. k = 2 . Then we getD
�t(x3) ; �t

0(x3)
E
IR3

=
D
�n(x3) ; �n

0(x3)
E
IR3

=
D
�b(x3) ; �b

0(x3)
E
IR3

= 0 ; (2.7)
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which yields the �equations of motion� of the considered local frame:

�t0(x3) = a(x3)�b(x3) + �(x3) �n(x3) ;
�b0(x3) = � a(x3) �t(x3) + c(x3) �n(x3) ; (2.8)

�n0(x3) = � �(x3) �t(x3) + c(x3)�b(x3) ;

with a ; � ; c 2 C[0; L] expressing the curvature and torsion properties of the curved
rod.

The Jacobian of F , denoted by J(�x) = DF (�x) , is given by

J(�x) =

2
4 n1(x3) b1(x3) t1(x3) + x1 n

0

1(x3) + x2 b
0

1(x3)
n2(x3) b2(x3) t2(x3) + x1 n

0

2(x3) + x2 b
0

2(x3)
n3(x3) b3(x3) t3(x3) + x1 n

0

3(x3) + x2 b
0

3(x3)

3
5 : (2.9)

By (2.8), (2.9), we have

det J(�x) = 1 � �(x3) x1 � a(x3) x2 ; 8 �x 2 �
 : (2.10)

If !(x3) ; x3 2 [0; L] , is contained in a su�ciently small disk in IR2 , then we may

assume that

det J(�x) � c > 0 ; 8 �x 2 �
 ; (2.11)

which justi�es the introduction of the curved rod ~
 via the geometric transformation

F , Ciarlet [9], Thm. 3.1�1.

We assume that it is clamped at both ends, and that it is subjected to body forces
~f 2 L2(~
)3 (weight, electromagnetic �eld, etc.), as well as to surface tractions ~g
on the lateral surface of the rod, denoted by ~� ; ~g 2 L2(~�)3 . On the �inside� lateral

face of ~
 (i.e. corresponding to the possible holes), we take ~g � 0 .

Denote by �y : ~
 ! IR3 the corresponding displacement of each point ~x 2 ~
 . In

Ignat, Sprekels and Tiba [11], the general geometrical assumption that

�y(~x) = �� (x3) + x1 �N(x3) + x2 �B(x3) ; 8 ~x 2 ~
 ; (2.12)

with �x = (x1 ; x2 ; x3) = F�1(~x) and �� ; �N ; �B 2 H1
0 (0; L) unknown functions, is

imposed. This is a special case of the so-called polynomial approximation of the

displacement, see Trabucho and Viaño [17]. Then, the following boundary value

problem is obtained from the elasticity problem:

B(�y; �v) = ~�

Z



3X
i;j=1

"
Ni(x3) h1i(�x) +Bi(x3) h2i(�x)

+
�
� 0i(x3) + x1N

0

i(x3) + x2B
0

i(x3)
�
h3i(�x)

#"
Mj(x3) h1j(�x)

+ Dj(x3) h2j(�x) +
�
�0j(x3) + x1M

0

j(x3) + x2D
0

j(x3)
�
h3j(�x)

# ��� det J(�x)��� d�x
+ ~�

Z



X
i<j

"
Ni(x3) h1j(�x) +Bi(x3) h2j(�x) +

�
� 0i(x3) + x1N

0

i(x3)
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+ x2B
0

i(x3)
�
h3j(�x) +Nj(x3) h1i(�x) +Bj(x3) h2i(�x)

+
�
� 0j(x3) + x1N

0

j(x3) + x2B
0

j(x3)
�
h3i(�x)

#"
Mi(x3) h1j(�x) +Di(x3) h2j(�x)

+
�
�0i(x3) + x1M

0

i(x3) + x2D
0

i(x3)
�
h3j(�x) +Mj(x3) h1i(�x) +Dj(x3) h2i(�x)

+
�
�0j(x3) + x1M

0

j(x3) + x2D
0

j(x3)
�
h3i(�x)

#��� det J(�x)��� d�x
+ 2 ~�

Z



3X
i=1

"
Ni(x3) h1i(�x) +Bi(x3) h2i(�x) +

�
� 0i(x3) + x1N

0

i(x3)

+ x2B
0

i(x3)
�
h3i(�x)

#"
Mi(x3) h1i(�x) +Di(x3) h2i(�x)

+
�
�0i(x3) + x1M

0

i(x3) + x2D
0

i(x3)
�
h3i(�x)

# ���det J(�x)��� d�x
=

3X
l=1

Z



fl(�x)
�
�l(x3) + x1Ml(x3) + x2Dl(x3)

�
j detJ(�x)j d�x

+
3X

i;j=1

3X
l=1

Z
@


gl(�x)
�
�l(x3) + x1Ml(x3) + x2Dl(x3)

�
j det J(�x)j

q
�i(�x) gij(�x) �j(�x)d� : (2.13)

Above, ~� � 0 ; ~� > 0 are the Lamé coe�cients of the material, the matrices

(hij(�x)) = J(�x)�1 and (gij(�x)) = (gij(�x))
�1 ; (gij(�x)) = J(�x)T J(�x) and �� ; �M ; �D 2

H1
0 (0; L)

3 are arbitrary test functions with �v(�x) = ��(x3) + x1 �M(x3) + x2 �D(x3) .
More details and the proof of the coercivity of the bilinear functional B( � ; � ) :
H1

0 (0; L)
9 �H1

0 (0; L)
9 ! IR , given by (2.13), may be found in Ignat, Sprekels and

Tiba [11], where di�erent local bases are used. This yields the existence and the

uniqueness of the solution �y of (2.13), in H1
0 (0; L)

9 .

In the sequel, we shall suppose that !(x3) = ! for x3 2 [0; L] , with ! satisfying

(2.5).

For given �f ; �g , a general shape optimization problem associated to (2.13) is

Min
'; 

n
�(';  ) = j(��; �y)

o
; (P)

subject to �� 2 K � C2[0; L]3 , a closed bounded subset, and �y = (�� ; �N; �B) 2
H1

0 (0; L)
9 obtained as the solution of (2.13). We assume that the mapping j :

C2[0; L]3 �H1
0 (0; L)

9 ! IR and satis�es some regularity properties. An important

5



case for a cost functional j is the quadratic case. For instance, if

j(��; �y) = j�1j2H1
0
(0;L) + j�2j2H1

0
(0;L) + j�3j2H1

0
(0;L) ; (2.14)

then (P) aims at �nding the shape of the curved rod that minimizes the displacement

of the line of centroids under the prescribed forces and tractions. This is a natural

safety requirement in many applications.

Concerning the constraints to which the curved rod may be submitted, we underline

that our formalism automatically ensures a prescribed length L > 0 . This elimi-

nates possible trivial cases, such as �� constant in [0; L] , and is also important from

the optimization point of view, since otherwise the cost may depend on L . A simple

su�cient condition under which �� has no multiple points is

0 � '(x3) �
�

2
� " ; x3 2 [0; L] ; (2.15)

with " > 0 small. It may be used in problems concerning the optimization of

strings, where the periodicity condition (for �1; �2 )

LZ
0

t1 dx3 =

LZ
0

t2 dx3 = 0 (2.16)

is also important.

Notice that relations (2.14), (2.15) correspond to convex optimization problems,

while relation (2.16) is nonlinear in ';  and, consequently, the corresponding set

K is nonconvex. Relation (2.11) should also be included in the de�nition of K .

Remark 2.2 A very simple variant of representation of the unit tangent vector is
�t = (u1; u2;

p
1� u21 � u22) , but this already assumes a prescribed sign for t3 and

requires the most restrictive hypothesis

u21 + u22 � 1 � "

for the di�erentiability of the local frame. However, under this representation rela-

tion (2.16) becomes linear, which may be useful in some applications.

3 Existence of optimal curved rods

We prove the following continuous dependence result:

Theorem 3.1 Assume that 'n ! ' ;  n !  strongly in C1[0; L] . If �yn ; �y
denote the solutions to (2:13) associated with ('n ;  n) , respectively with (' ;  ) ,
then

�yn ! �y strongly in H1
0 (0; L)

9 : (3.1)
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Proof. Clearly, we have

�tn = (cos n sin'n ; sin n sin'n ; cos'n)! �t = (cos sin' ; sin sin' ; cos')
(3.2)

in C1[0; L]3 . Then, (2.1) shows that ��n ! �� in C2[0; L]3 . By (2.2), (2.3), and with

obvious notations, we get that �nn ! �n and �bn ! �b in C1[0; L]3 .

From (2.8) it is easy to infer that

an = h�t0n ; �bniIR3 ! a = h�t0 ; �biIR3 strongly in C[0; L] : (3.3)

Here, h � ; � i is the inner product in IR3 , and we also have �n ! � ; cn ! c in

C[0; L] .

Relation (2.10) shows that

det Jn(�x) ! det J(�x) ; in C(�
) (3.4)

and, by (2.11), we see that fdet Jn(�x)g is bounded from below by some positive

constant.

Moreover, (2.9) gives clearly that Jn(�x) ! J(�x) in C(�
)9 , and, likewise, that
J�1n (�x)! J�1(�x) , by (3.4) and the above observations. In particular, we have that

hnij(�x) ! hij(�x) in C(�
) : (3.5)

Let Bn denote the bilinear functional (2.13) with coe�cients hnij ; det Jn .

Lemma 3.2 There are c1 > 0 ; c2 > 0 such that

Bn(�y; �y) � c1j�yj2H1
0
(0;L)9 � c2j�yj2L2(0;L)9 (3.6)

for any �y 2 H1
0 (0; L)

9
and any n 2 IN .

Proof. By (3.4) and (2.11), we have

Bn(�y; �y) � ~� c

Z



X
i<j

"
Ni h

n
1j +Bi h

n
2j +

�
� 0i + x1N

0

i + x2B
0

i

�
hn3j

+Nj h
n
1i +Bj h

n
2i +

�
� 0j + x1N

0

j + x2B
0

j

�
hn3i

#2
d�x

+2 ~�c

Z



3X
i=1

"
Ni h

n
1i +Bi h

n
2i +

�
� 0i + x1N

0

i + x2B
0

i

�
hn3i

#2
d�x :

By the uniform boundedness of the coe�cients due to (3.5) and by usual binomial

inequalities, we get

1

~� c
Bn(�y; �y) � 1

2

Z



X
i<j

"�
� 0i + x1N

0

i + x2B
0

i

�
hn3j +

�
� 0j + x1N

0

j + x2B
0

j

�
hn3i

#2
d�x

+

Z



3X
i=1

"�
� 0i + x1N

0

i + x2B
0

i

�
hn3i

#2
d�x � ~cj�yj2L2(0;L)9 :

7



We use the following algebraic identity:

1

2

"�
z1 h

n
32 + z2 h

n
31

�2
+
�
z2 h

n
33 + z3 h

n
32

�2
+
�
z1 h

n
33 + z3 h

n
31

�2#

+
3

2

"
z21(h

n
31)

2 + z22(h
n
32)

2 + z23(h
n
33)

2

#

=
1

2

�
z21 + z22 + z23

�"
(hn31)

2 + (hn32)
2 + (hn33)

2

#
+

1

2

�
z1 h

n
31 + z2 h

n
32

�2

+
1

2

�
z1 h

n
31 + z3 h

n
33)

2 +
1

2

�
z2 h

n
32 + z3 h

n
33)

2 ;

with zi := � 0i + x1N
0

i + x2B
0

i ; i = 1; 3 . It follows

1

~� c
Bn(�y; �y) �

1

4

Z



3X
i=1

�
� 0i + x1N

0

i + x2B
0

i

�2 3X
i=1

(hn3i)
2 d�x� ~c j�yj2L2(0;L)9 : (3.7)

A direct calculus allows to �nd hnij and to check that, for some k > 0 ,

3X
i=1

(hn3i)
2 =

h
det Jn

i
�2

3X
i=1

(tni )
2 =

h
det Jn

i
�2

� k > 0 (3.8)

since j�tnjIR3 = 1 .

Relations (3.7), (3.8) give

1

~� c
Bn(�y; �y) �

k

4

Z



3X
i=1

�
� 0i + x1N

0

i + x2B
0

i

�2
d�x � ~c j�yj2L2(0;L)9 :

Performing the computations in the right-hand side, and integrating with respect to

x1 ; x2 , we obtain the inequality (3.6) by means of (2.5). 2

Proof of Theorem 3.1 (continued). We use a contradiction argument to show

that the functionals Bn are uniformly coercive. We assume that there is a sequence

"n ! 0 and a sequence ~yn 2 H1
0 (0; L)

9 ; j~ynjH1
0
(0;L)9 = 1 , such that

0 � Bn(~yn; ~yn) � "nj~ynj2H1
0
(0;L)9 : (3.9)

Let ŷ be the weak limit of ~yn in H1
0 (0; L)

9 , which may be supposed to exist.

We give a detailed computation for the last integral in the de�nition of Bn(~yn; ~yn) :

In = 2 ~�

Z



3X
i=1

"
~Nn
i h

n
1i + ~Bn

i h
n
2i +

�
~�n

0

i + x1 ~Nn0

i + x2 ~Bn0

i

�
hn3i

#2
det Jn d�x

8



= 2 ~�

Z



3X
i=1

"
~Nn
i h1i + ~Bn

i h2i +
�
~�n

0

i + x1 ~Nn0

i + x2 ~Bn0

i

�
h3i

#2
det J d�x

+2 ~�

Z



3X
i=1

"
~Nn
i

�
hn1i

p
det Jn � h1i

p
det J

�
+ ~Bn

i

�
hn2i

p
det Jn � h2i

p
det J

�

+
�
~�n

0

i + x1 ~Nn0

i + x2 ~Bn0

i

��
hn3i

p
det Jn � h3i

p
det J

�#
"
~Nn
i

�
hn1i

p
det Jn + h1i

p
det J

�
+ ~Bn

i

�
hn2i

p
det Jn + h2i

p
det J

�

+
�
~�n

0

i + x1 ~Nn0

i + x2 ~Bn0

i

��
hn3i

p
det Jn + h3i

p
det J

�#
d�x :

Here, ~yn = (~�n; ~Nn; ~Bn) belong to the unit ball in H1
0 (0; L)

9 . The uniform conver-

gence of the coe�cients (see (3.4), (3.5)) shows that the last integral converges to

zero. The weak lower semicontinuity of quadratic forms gives

lim inf
n!1

In = lim inf
n!1

2~�

Z



3X
i=1

"
~Nn
i h1i + ~Bn

i h2i +
�
~�n

0

i + x1 ~Nn0

i + x2 ~Bn0

i

�
h3i

#2

� det Jd�x

� 2 ~�

Z



3X
i=1

"
N̂i h1i + B̂i h2i +

�
�̂ 0i + x1 N̂

0

i + x2 B̂
0

i

�
h3i

#2
det J d�x ;

where (�̂ ; N̂ ; B̂) 2 H1
0 (0; L)

9 is the detailed notation of ŷ .

Computing the other terms in a similar way, we get

lim inf
n!1

Bn(~yn; ~yn) � 2 ~�

Z



3X
i=1

"
N̂i h1i + B̂i h2i

+
�
�̂ 0i + x1 N̂

0

i + x2 B̂
0

i

�
h3i

#2
det J d�x

+~�

Z



3X
i;j=1

"
N̂i h1i + B̂i h2i +

�
�̂ 0i + x1 N̂

0

i + x2 B̂
0

i

�
h3i

#
"
N̂j h1j + B̂j h2j +

�
�̂ 0j + x1 N̂

0

j + x2 B̂
0

j

�
h3j

#
det J d�x

+ ~�

Z



X
i<j

"
N̂i h1j + B̂i h2j +

�
�̂ 0i + x1 N̂

0

i + x2 B̂
0

i

�
h3j

9



+N̂j h1i + B̂j h2i +
�
�̂ 0j + x1 N̂

0

j + x2 B̂
0

j

�
h3i

#2

det J d�x = B(ŷ; ŷ) : (3.10)

By assumption (3.9) and by (3.10), we have B(ŷ; ŷ) = 0 .

It is known that such a relation yields ŷ = 0 (see, for instance, Lemma 2.3 in [11]).

We use again the inequality (3.9) with Lemma 3.2,

"n � Bn(~yn; ~yn) � c1 � c2j~ynj2L2(0;L)9 ; (3.11)

since j~ynjH1
0
(0;L)9 = 1 .

Notice that ~yn ! ŷ = 0 strongly in L2(0; L)9 , by the above argument. Then,

combining (3.10) and (3.11), we obtain the contradiction 0 � c1 . We conclude that

there is some Æ > 0 such that, 8 n � 1 :

Bn(�y; �y) � Æj�yj2H1
0
(0;L)9 ; 8 �y 2 H1

0 (0; L)
9 : (3.12)

Let us �x in the corresponding to Bn(�; �) state equations (2.13), �v = �yn . Taking

into account (3.12), we immediately obtain that f�yng is bounded in H1
0 (0; L)

9 . We

may take a subsequence such that �yn ! �y weakly in H1
0 (0; L)

9 . Due to the uniform

convergence of the coe�cients hnij ; det Jn ; g
ij
n , one may pass to the limit in (2.13)

and see that �y is indeed the solution of (2.13) associated to (' ;  ) .

The last step of the proof is to show that the convergence is valid in the strong

topology of H1
0 (0; L)

9 . We substract the equations corresponding to (�n; Nn; Bn) ,
respectively to (�� ; �N; �B) , we intercalate advantageous terms and, �nally, we take

test functions of the form (�n; Nn; Bn)� (�� ; �N; �B) 2 H1
0 (0; L)

9 . We write in detail

just the simplest term:

2 ~�

Z



3X
i=1

"
Nn
i h

n
1i +Bn

1 h
n
2i +

�
�n

0

i + x1N
n0

i + x2B
n0

i

�
hn3i

#
"
(Nn

i � �Ni) h
n
1i + (Bn

i � �Bi) h
n
2i +

�
�n

0

i � �� 0i + x1(N
n0

i � �N 0

i) + x2(B
n0

i � �B0

i)
�

hn3i

#
det Jn d�x� 2 ~�

Z



3X
i=1

"
�Ni h1i + �Bi h2i +

�
�� 0i + x1 �N 0

i + x2 �B0

i

�
h3i

#
"
(Nn

i � �Ni)h1i + (Bn
i � �Bi) h2i +

�
�n

0

i � �� 0i + x1(N
n0

i � �N 0

i) + x2(B
n0

i � �Bi)
0

�

h3i

#
det J d�x = 2 ~�

Z



3X
i=1

"
(Nn

i � �Ni) h1i + (Bn
i � �Bi) h2i

10



+
�
�n

0

i � �� 0i + x1(N
n0

i � �N 0

i) + x2(B
n0

i � �B0

i

�
h3i

#2
det J d�x

+2 ~�

Z



3X
i=1

"
Nn
i h1i +Bn

i h2i +
�
�n

0

i + x1N
n0

i + x2B
n0

i

�
h3i

#
"
(Nn

i � �Ni)(h
n
1i � h1i) + (Bn

i � �Bi)(h
n
2i � h2i) +

�
�n

0

i � �� 0i + x1(N
n0

i � �N 0

i)

+ x2(B
n0

i � �B0

i)
�
(hn3i � h3i)

#
det J d�x

+2 ~�

Z



3X
i=1

"
Nn
i h1i +Bn

i h2i +
�
�n

0

i + x1N
n0

i + x2B
n0

i

�
h3i

#
"
(Nn

i � �Ni) h
n
1i + (Bn

i � �Bi) h
n
2i +

�
�n

0

i � ��n
0

i + x1(N
n0

i � �N 0

i) + x2(B
n0

i � �B0

i)
�
hn3i

#
h
det Jn � det J

i
d�x

+2 ~�

Z



3X
i=1

"
Nn
i (h

n
1i � h1i) +Bn

i (h
n
2i � h2i) +

�
�n

0

i + x1N
n0

i + x2B
n0

i

�
(hn3i � h3i)

#
"
(Nn

i � �Ni)h
n
1i + (Bn

i � �Bi)h
n
2i

+
�
�n

0

i � �� 0i + x1(N
n0

i � �N 0

i) + x2(B
n0

i � �B0

i)
�
hn31

#
det Jn d�� :

All the terms above, except the �rst one after the equality sign (the quadratic one),

converge to zero due to the weak convergence of (�n; Nn; Bn) and to the uniform

convergence of the coe�cients. Similar computations may be performed for all the

integrals in the variational equations, and we conclude that

lim
n!1

B(�yn � �y ; �yn � �y) = 0 : (3.13)

By (3.12), (3.13) the proof is �nished. 2

Corollary 3.1 If K � C2[0; L]3 is generated by a compact in C1[0; L]3 subset of

f';  g and j : C2(0; L)3�H1
0 (0; L)

9 ! IR is lower semicontinuous, then the shape

optimization problem (P) admits at least one optimal curved rod solution in K .

4 Sensitivity analysis of curved rods

We study �rst some di�erentiability properties of the mapping (';  ) 2 C1[0; L]2 7!
�y 2 H1

0 (0; L)
9 , with �y being the solution of (2.13) corresponding to (';  ) . We

11



consider ('�;  �) = (' + � 
 ;  + � �) 2 C1[0; 1]2 ; � 2 IR+ , to be some variation

around (';  ) , and we denote by �y� = (���; �N�; �B�) 2 H1
0 (0; L)

9 the corresponding

solution of (2.13). Similarly, we denote by �t�; ���; �n�;�b�; a�; ��; c�; J�; h
�
ij; g

ij
� all the

quantities de�ned in Section 2, starting from ('�;  �) . Notice that, by our construc-
tion, the perturbed curved rod ��� has length L and is parametrized with respect

to its arc length, i.e. j�t�jIR3 = 1 .

It is elementary, though tedious, to check that all the below listed limits and oper-

ators exist and satisfy the indicated properties

lim
�!0

�t� � �t

�
= ~t(
; �) ; ~t : C1[0; L]2 ! C1[0; L]3 ; (4.1)

lim
�!0

��� � ��

�
= ~�(
; �) ; ~� : C1[0; L]2 ! C2[0; L]3 ; (4.2)

lim
�!0

�n� � �n

�
= ~n(
; �) ; ~n : C1[0; L]2 ! C1[0; L]3 ; (4.3)

lim
�!0

�b� � �b

�
= ~b(
; �) ; ~b : C1[0; L]2 ! C1[0; L]3 ; (4.4)

lim
�!0

a� � a

�
= ~a(
; �) ; ~a : C1[0; L]2 ! C[0; L] ; (4.5)

lim
�!0

�� � �

�
= ~�(
; �) ; ~� : C1[0; L]2 ! C[0; L] ; (4.6)

lim
�!0

c� � c

�
= ~c(
; �) ; ~c : C1[0; L]2 ! C[0; L] ; (4.7)

lim
�!0

det J� � det J

�
= ~D(
; �) ; ~D : C1[0; L]2 ! C(�
) ; (4.8)

lim
�!0

J� � J

�
= ~J(
; �) ; ~J : C1[0; L]2 ! C(�
)9 ; (4.9)

lim
�!0

J�1� � J�1

�
= ~I(
; �) ; ~I : C1[0; L]2 ! C(�
)9 ; (4.10)

lim
�!0

h�ij � hij

�
= ~hij(
; �) ; ~hij : C1[0; L]2 ! C(�
) ; (4.11)

lim
�!0

g
ij
� � gij

�
= ~gij(
; �) ; ~gij : C1[0; L]2 ! C(�
) : (4.12)

All the operators ~t; ~�; ~n;~b; ~a; ~�; ~c; ~D; ~J; ~I; ~hij; ~gij are linear and bounded in the indi-

cated spaces.

By Theorem 3.1, we also have that

�y� ! �y strongly in H1
0 (0; L)

9 : (4.13)

In order to prove the di�erentiability properties of �y� , we substract the equations

of �y� ; �y , we divide by � , and we intercalate advantageous terms. Later, we shall

also �x the test functions of the form ��1(�y� � �y) 2 H1
0 (0; L)

9 .

12



In the right-hand side of (2.13), it is possible to pass to the limit

lim
�!0

(
3X
l=1

Z



fl(�x)
�
�l(x3) + x1Ml(x3) + x2Dl(x3)

�det J� � det J

�
d�x

+
3X

i;j=1

3X
l=1

Z
@


gl(�x)
�
�l(x3) + x1Ml(x3)

+x2Dl(x3)
�det J�q�i(�x) g

ij
� �j(�x)� det J

p
�i(�x)gij�j(�x)

�
d�

)

=
3X
l=1

Z



fl(�x)
�
�l(x3) + x1Ml(x3) + x2Dl(x3)

�
~D(
; �) d�x

+
3X

i;j=1

3X
l=1

Z
@


gl(�x)
�
�l(x3) + x1Ml(x3) + x2Dl(x3)

�"
~D(
; �)

p
�i gij �j

+detJ
�i ~g

ij(
; �)�j

2
p
�i gij �j

#
d� : (4.14)

We also write the corresponding transformation of the simplest term from B�( � ; � ) ,
the bilinear functional (2.13) obtained from ('�;  �) :

1

�

(
2 ~�

Z



3X
i=1

"
N�
i h

�
1i +B�

i h
�
2i +

�
��

0

i + x1N
�0

i + x2B
�0

i

�
h�3i

#
"
Mi h

�
1i +Di h

�
2i +

�
�0i + x1M

0

i + x2 d
0

i

�
h�3i

#
det J� d�x

� 2 ~�

Z



3X
i=1

"
Ni h1i +Bi h2i +

�
� 0i + x1N

0

i + x2B
0

i

�
h3i

#
"
Mi h1i +Di h2i +

�
�0i + x1M

0

i + x2D
0

i

�
h3i

#
det J d�x

)

= 2 ~�

Z



3X
i=1

"
N�
i �Ni

�
h1i +

B�
i � Bi

�
h2i

+
���0i � � 0i

�
+ x1

N�0

i �N 0

i

�
+ x2

B�0

i �B0

i

�

�
h3i

#
"
Mi h1i +Di h2i +

�
�0i + x1M

0

i + x2D
0

i

�
h3i

#
det J d�x

+2 ~�

Z



3X
i=1

"
N�
i h1i +B�

i h2i +
�
��

0

i + x1N
�0

i + x2B
�0

i

�
h3i

#

13



"
Mi

h�1i � h1i

�
+Di

h�2i � h2i

�
+
�
�0i + x1M

0

i + x2D
0

i

� h�3i � h3i

�

#
det J d�x

+2 ~�

Z



3X
i=1

"
N�
i

h�1i det J� � h1i det J

�
+B�

i

h�2i det J� � h2i det J

�

+
�
��

0

i + x1N
�0

i + x2B
�0

i

� h�31 det J� � h3i det J

�

#
"
Mi h

�
1i +Di h

�
2i +

�
�0i + x1M

0

i + x2D
0

i

�
h�31

#
d�x : (4.15)

The important term in (4.15) is the �rst term after the equality sign. Taking into

account (4.14), and similar transformations in the other integrals de�ning B�( � ; � ) ,
we obtain the relation

B
�
�y� � �y

�
; �v

�
= Z�(�v) (4.16)

for any test function �v = (��; �M; �D) 2 H1
0 (0; L)

9 , and with some linear bounded

operator Z� : H1
0 (0; L)

9 ! IR for any � 2 IR+ . The relations (4.14), (4.15) show

that the following estimate is valid

jZ�(�v)j � Cj�vjH1
0
(0;L)9 ; (4.17)

with some constant independent of � > 0 . Here, we use the di�erentiability proper-
ties of the coe�cients, given in (4.1)�(4.12), and the convergence of �y� , according to

(4.13). By �xing �v = ��1(�y� � �y) , relations (4.16) and (4.17) show that f �y� � �y

�
g

is bounded in H1
0 (0; L)

9 for � > 0 , by the coercivity of B . We may take a weakly

convergent subsequence

�y� � �y

�
! ŷ ; weakly in H1

0 (0; L)
9 : (4.18)

As in the previous section, one may see that the convergence is valid in the strong

topology of H1
0 (0; L)

9 . The equation in variations has the form

B(ŷ; �v) = Z(�v) ; 8 �v 2 H1
0 (0; L)

9 ; (4.19)

with Z(�v) = lim�!0Z�(�v) , which exists by the above discussion. Z depends lin-

early and boundedly on (
; �) 2 C1[0; L]2 .

Remark that (4.19) has a unique solution ŷ 2 H1
0 (0; L)

9 . We have proved the

following result:

Proposition 4.1 The mapping (';  ) 2 C1[0; L]2 7! �y 2 H1
0 (0; L)

9
is Gâteaux

di�erentiable, and the derivative ŷ satis�es (4:19).

14



We introduce now the so-called adjoint sytem, with unknowns �T = ( �R; �P; �Q) 2
H1

0 (0; L)
9 , and de�ned by

B( �T ; �v) = r2 j(��; �y)(�v) ; 8 �v 2 H1
0 (0; L)

9 : (4.20)

In (4.20), we assume that j : C2[0; L]3 � H1
0 (0; L)

9 ! IR is Fréchet-di�erentiable,

and that r2j denotes the second component of rj or, equivalently, the partial

Fréchet di�erential with respect to �y . The existence and uniqueness of a solu-

tion �T 2 H1
0 (0; L)

9 to (4.20) is obvious, due to the coercivity and boundedness of

B( � ; � ) .

Proposition 4.2 If j is Fréchet di�erentiable, then the directional derivative of

the cost functional � in the problem (P) at the point (';  ) 2 C1[0; L]2 and in the

direction (
; �) 2 C1[0; L]2 is given by

r�(';  ) (
; �)

= r1j(��; �y) ~�(
; �) +
3X
l=1

Z



fl(�x)
�
Rl(x3) + x1 Pl(x3) + x2Ql(x3)

�
~D(
; �) d�x+

3X
i;j=1

3X
l=1

Z
@


gl(�x)
�
Rl(x3) + x1 Pl(x3) + x2Ql(x3)

�
~D(
; �)

p
�i gij�j d�

+
3X

i;j=1

3X
l=1

Z
@


gl(�x)
�
Rl(x3) + x1 Pl(x3) + x2Ql(x3)

�

det J
1p

�i gij�j
�i~g

ij(
; �)�j d�

� 2 ~�

Z



3X
i=1

"
Ni h1i +Bi h2i +

�
� 0i + x1N

0

i + x2B
0

i

�
h3i

#
"
Pi ~h1i(
; �) +Qi

~h2i(
; �) +
�
R0i + x1 P

0

i + x2Q
0

i

�
~h3i(
; �)

#
det J d�x

� 2 ~�

Z



3X
i=1

"
Ni

~h1i(
; �) +Bi
~h2i(
; �) +

�
� 0i + x1N

0

i + x2B
0

i

�
~h3i(
; �)

#
"
Pi h1i +Qi h2i +

�
R0i + x1 P

0

i + x2Q
0

i

�
h3i

#
det J d�x

� 2 ~�

Z



3X
i=1

"
Ni h1i +Bi h2i +

�
� 0i + x1N

0

i + x2B
0

i

�
h3i

#
"
Pi h1i +Qi h2i +

�
R0i + x1 P

0

i + x2Q
0

i

�
h3i

#
~D(
; �) d�x
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� ~�

Z



3X
i;j=1

"
Ni h1i +Bi h2i +

�
� 0i + x1N

0

i + x2B
0

i

�
h3i

#
"
Pj ~h1j(
; �) +Qj

~h2j(
; �) +
�
R0j + x1 P

0

j + x2Q
0

j

�
~h3j(
; �)

#
det J d�x

� ~�

Z



3X
i;j=1

"
Ni

~h1i(
; �) +Bi
~h2i(
; �) +

�
� 0i + x1N

0

i + x2B
0

i

�
~h3i(
; �)

#
"
Pj h1j +Qj h2j +

�
R0j + x1 P

0

j + x2Q
0

j

�
h3j

#
det J d�x

� ~�

Z



3X
i;j=1

"
Ni h1i +Bi h2i +

�
� 0i + x1N

0

i + x2B
0

i

�
h3i

#
"
Pj h1j +Qj h2j +

�
R0j + x1 P

0

j + x2Q
0

j

�
h3j

#
~D(
; �) d�x

� ~�

Z



X
i<j

"
Ni h1j +Bi h2j +

�
� 0i + x1N

0

i + x2B
0

i

�
h3j +Nj h1i +Bj h2i

+
�
� 0j + x1N

0

j + x2B
0

j

�
h3i

#
"
Pi ~h1j(
; �) +Qi

~h2j(
; �) +
�
R0i + x1 P

0

i + x2Q
0

i

�
~h3j(
; �) + Pj ~h1i(
; �)

+Qj
~h2i(
; �) +

�
R0j + x1 P

0

j + x2Q
0

j

�
~h3i(
; �)

#
det J d�x

� ~�

Z



X
i<j

"
Ni

~h1j(
; �) +Bi
~h2j(
; �) +

�
� 0i + x1N

0

i + x2B
0

i

�
~h3j(
; �)

+Nj
~h1i(
; �) +Bj

~h2i(
; �) +
�
� 0j + x1N

0

j + x2B
0

j

�
~h3i(
; �)

#
"
Pi h1j +Qi h2j +

�
R0i + x1 P

0

i + x2Q
0

i

�
h3j + Pj h1i +Qj h2i

+
�
R0j + x1 P

0

j + x2Q
0

j

�
h3i

#
det J d�x

� ~�

Z



X
i<j

"
Ni h1j +Bi h2j +

�
� 0i + x1N

0

i + x2B
0

i

�
h3j

+Nj h1i +Bj h2i +
�
� 0j + x1N

0

j + x2B
0

j

�
h3i

#
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"
Pi h1j +Qi h2j +

�
R0i + x1 P

0

i + x2Q
0

i

�
h3j + Pj h1i +Qj h2i

+
�
R0j + x1 P

0

j + x2Q
0

j

�
h3i

#
~D(
; �) d�x : (4.21)

Remark 4.1 In order to compute (4.21), from (';  ) and (
; �) 2 C1[0; L]2 , one
has to compute �� 2 C2[0; L]3 by (2.1), �y = (�� ; �N; �B) 2 H1

0 (0; L)
9 by (2.13),

�T = ( �R; �P ; �Q) 2 H1
0 (0; L)

9 by (4.20), and to use (4.1)�(4.12). Since spaces of

continuous functions are taken into account, it is not advantageous to rewrite (4.21)

by using adjoint operators.

It is also to be noticed that the above argument holds for ';  ; 
; � piecewise in

C1[0; L] . This is important for the numerical experiments in Section 8.

Remark 4.2 Assuming that the cross-section of the rod is not constant, one may

study optimization problems with respect to the cross-section as well, under appro-

priate regularity conditions.

Let C = f(';  ) 2 C1[0; L]2 ; ��(';  ) 2 Kg and u0 = ('0;  0) 2 C be arbitrarily

�xed. We denote by

T (C; u0) = fu 2 C1[0; L]2 ; u = lim
n!1

�n(un � u0) ; �n � 0 ; un 2 C ; and un ! u0g

the cone of tangents to C at u0 , Barbu and Precupanu [3]. It is known that if C is

convex (see examples (2.15),(2.16) and Remark 2.2), then T (C; u0) =
S
�>0 �(C � u0) .

Corollary 4.3 Assume that u� = ('�;  �) is a (local) optimum point for (P).

Then, the following statements are valid:

i) If � is Fréchet di�erentiable on C1[0; L]2 , then

r�('�;  �)(
; �) � 0 ; 8 (
; �) 2 T (C; u�) :

ii) If C is convex, then the directional derivative of � satis�es

r�('�;  �)(
; �) � 0 ; 8 (
; �) 2 C � u� :

Remark 4.3 Corollary 4.3 gives the standard �rst order optimality conditions for

the problem (P), Tröltzsch [18]. Relations (4.21), (4.20), etc., indicate the explicit

calculation of the directional derivative of the cost functional and will be used in

the last section in the numerical experiments.

17



5 Formulation of the shell optimization problem

Let ! � IR2 denote a bounded domain, not necessarily simply connected, with

Lipschitz boundary @! . De�ne


 = !� ]� " ; "[� IR3

for some �small� " > 0 . We denote by (x1; x2) 2 ! and x3 2 ] � "; "[ ; �x =
(x1; x2; x3) 2 
 , the independent variables.

Let p : ! ! IR be a C2(�!) mapping, whose graph represents the middle surface

S of a shell. We introduce the geometrical transformation

F : 
 ! IR3 ;

F (�x) = ��(x1; x2) + x3 �n(x1; x2) ; (5.1)

with �� = (�1; �2; �3) = (x1; x2; p(x1; x2)) , and with �n = (n1; n2; n3) denoting the

normal vector to S in the point ��(x1; x2) . Since the tangent vectors
@��

@x1
= (1; 0; p1)

and
@��

@x2
= (0; 1; p2) , with p1 =

@p

@x1
and p2 =

@p

@x2
, are always linearly indepen-

dent, we may take �n as the normalization of
@��

@x1
^ @��

@x2
, that is

�n =
1p

1 + p21 + p22
(�p1;�p2; 1) : (5.2)

Assume that @! = �
0 [ �
1 , with 
0 ; 
1 nonoverlapping open parts of @! such

that meas (
0) > 0 , and let �0 := 
0�] � "; "[ ; �1 := @
 n �0 . We introduce the

notations


̂ := F (
) ; �̂0 := F (�0) ; �̂1 := F (�1) :

We argue later (see (5.9)) that F is a homeomorphism for small " , and the open

set 
̂ will represent a shell. We assume that body forces f̂ 2 L2(
̂)3 and surface

tractions ĝ 2 L2(�̂1)
3 act on the shell. Our main mechanical assumption is that

the corresponding displacement û 2 V (
̂) = fv̂ 2 H1(
̂)3 ; v̂j�̂0 = 0g has the form

û(x̂) = �u(x1; x2) + x3 �r(x1; x2) ; x 2 
̂ : (5.3)

Here, �x = (x1; x2; x3) = F�1(x̂) 2 
 and �u = (u1; u2; u3) ; �r = (r1; r2; r3) belong

to the Hilbert space

V (!) = f�v = (v1; v2; v3) 2 H1(!)3 ; �vj
0 = 0g ; (5.4)

equipped with the norm

j�vjV (!) :=
Z
!

�
jrv1j2 + jrv2j2 + jrv3j2

�
dx1dx2 :

18



If we denote by ~V (
̂) the subspace of V (
̂) de�ned by (5.3), (5.4), we can see that
~V (
̂) can be simply identi�ed with V (!)� V (!) , and we shall do this repeatedly

later in this paper.

Clearly, �u represents the displacement of the middle surface S of the shell, while

�r is the modi�cation of the points along the normal �n(x1; x2) , assumed to remain

on a line. The form (5.3) allows for both dilation and contraction of the elastic

material; it is a generalization of the classical Naghdi model, Ciarlet [9], Blouza [5].

The Jacobian J = DF of F is given by

J(�x) =

2
4 1 + x3

@n1
@x1

x3
@n1
@x2

n1

x3
@n2
@x1

1 + x3
@n2
@x2

n2

p1 + x3
@n3
@x1

p2 + x3
@n3
@x2

n3

3
5 : (5.5)

As j�nj2
IR3 = 1 , we get h�n ; @�n

@xi
iIR3 = 0 ; i = 1; 2 , which shows that

@�n

@xi
can be

generated by
@��

@x1
and

@��

@x2
. We get the relations

@�n

@x1
(x1; x2) =

@n1

@x1

@��

@x1
+
@n2

@x1

@��

@x2
; (5.6)

@�n

@x2
(x1; x2) =

@n1

@x2

@��

@x1
+
@n2

@x1

@��

@x2
; (5.7)

which are special cases of the equations of motion of the local frame on the surface

S, Cartan [6]. The coe�cients
@ni

@x�
; i = 1; 3 ; � = 1; 2 are related to the curvatures

of S .

Equalities (5.5)�(5.7) yield

det J(�x) =

"
1 + x3

�
@n1

@x1
+
@n2

@x2

�
+ x23

�
@n1

@x1

@n2

@x2
� @n1

@x2

@n2

@x1

�#
�
q

1 + p21 + p22 :

(5.8)

Since p 2 C2(�!) , for �small� " > 0 we get that

det J(�x) � c > 0 ; 8 �x 2 
 : (5.9)

Let us notice that (5.9) justi�es the de�nition of the shell 
̂ via the transformation

F , see Ciarlet [9], Thm. 3.1�1.

We denote the elements of J(�x)�1 by

J(�x) = (hij(�x))i;j=1;3 : (5.10)
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In Sprekels and Tiba [16], the following generalized Naghdi model is obtained:

B ((�u; �r) ; (��; ��))

= ~�

Z



(
3X
i=1

"�
@ui

@x1
+ x3

@ri

@x1

�
h1i +

�
@ui

@x2
+ x3

@ri

@x2

�
h2i + ri h3i

#)

�
(

3X
j=1

"�
@�j

@x1
+ x3

@�j

@x1

�
h1j +

�
@�j

@x2
+ x3

@�j

@x2

�
h2j + �j h3j

#)
j detJ(�x)j d�x

+2 ~�

Z



3X
i=1

"�
@ui

@x1
+ x3

@ri

@x1

�
h1i +

�
@ui

@x2
+ x3

@ri

@x2

�
h2i + ri h3i

#
"�

@�i

@x1
+ x3

@�i

@x1

�
h1i +

�
@�i

@x2
+ x3

@�i

@x2

�
h2i + �i h3i

#
j detJ(�x)j d�x

+ ~�

Z



X
1�i<j�3

"�
@ui

@x1
+ x3

@ri

@x1

�
h1j +

�
@ui

@x2
+ x3

@ri

@x2

�
h2j + ri h3j

+

�
@uj

@x1
+ x3

@rj

@x1

�
h1i +

�
@uj

@x2
+ x3

@rj

@x2

�
h2i + rj h3i

#

�
"�

@�i

@x1
+ x3

@�i

@x1

�
h1j +

�
@�i

@x2
+ x3

@�i

@x2

�
h2j + �i h3j

+

�
@�j

@x1
+ x3

@�j

@x1

�
h1i +

�
@�j

@x2
+ x3

@�j

@x2

�
h2i + rj h3i

#
j detJ(�xj d�x

=

Z



3X
l=1

fl(�l + x3 �l) j detJ(�x)j d�x+

Z
�1

3X
l=1

3X
i;j=1

gl(�l + x3 �l) j detJ(�x)j

�
q
�i(�x) gij(�x) �j(�x) d� ; 8 (��; ��) 2 V (!)2 : (5.11)

Here, �f(�x) = f̂(F �x) ; �g(�x) = ĝ(F �x) ; �x 2 
 , we use the assumed form (5.3) of

the displacement, and �� 2 V (!) ; �� 2 V (!) are arbitrary test functions. The

coe�cients gij are obtained by

�
gij(�x)

�
i;j=1;3

= J(�x)�1
h
J(�x)T

i
�1

; (5.12)

and (�i(�x))i=1;3 is the unit outside normal to �1 at �x 2 �1 .

The coercivity of B on V (!)� V (!) was proved by Sprekels and Tiba [16], for "

small enough. This gives the existence and the uniqueness of the solution (�u; �r) 2
V (!)� V (!) to (5.11).

For given �f and �g (de�ned in a su�ciently large ball in IR3 ), we consider the
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following general shape optimization problem associated with (5.11):

Min
p

(
�(p) = j

�
�y(x1; x2) ; p(x1; x2)

�)
(P)

with �y(x1; x2) = (�u(x1; x2); �r(x1; x2)) 2 V (!)2 given by (2.11), and subject to the

�control� constraint p 2 K � C2(�!) , closed and bounded. Notice that (5.9) should

be included in the de�nition of K . The mapping j : V (!)2 � C2(!)! IR satis�es

certain regularity properties to be described later. One classical example is the

quadratic case

2j(�y; p) = ju1j2V (!) + ju2j2V (!) + ju3j2V (!) : (5.13)

Then (P) aims at �nding the shape of the shell (the surface S ) that minimizes the

displacement of the middle surface under the prescribed body forces and tractions.

Concerning the constraints to which the shell itself may be submitted and which

are abstractly written as p 2 K , there is a large variety of examples. We just list

several:

0 � p(x1; x2) ; 8 (x1; x2) 2 ! (5.14)

(pointwise constraints), Z
!

p(x1; x2) dx1 dx2 � c (5.15)

(integral constraints). A special integral constraint is to prescribe limits for the area

of S : Z
!

q
1 + p21 + p22 � � : (5.16)

Although all the examples (5.13)�(5.16) have a convex nature, the shape optimiza-

tion problem (P) is strongly nonconvex, since the dependence p 7! �y is nonlinear.

(P) is a control-into-coe�cients problem.

6 Existence of optimal shells

We prove �rst the following continuous dependence result:

Theorem 6.1 Assume that pn : �! ! IR and pn ! p in C2(�!) . If �yn = (�un; �rn)
and �y = (�u; �r) are the solutions of (5:11) corresponding to pn ; p , then �yn ! �y
strongly in V (!)2 , for su�ciently small " > 0 .

Proof. Relations (5.1), (5.2), (5.5), (5.8) give (with obvious notations)

�nn ! �n in C1(�!)3 ; (6.1)

Fn = ��n + x3 �nn ! F = �� + x3 �n in C1(�
)3 ; (6.2)

Jn ! J in C(�
)9 ; (6.3)

det Jn ! det J in C(�
) : (6.4)
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Notice that

J(�x) =

2
4 1 0 n1

0 1 n2
p1 p2 n3

3
5
2
4 1 + x3

@n1
@x1

x3
@n1
@x2

0

x3
@n2
@x1

1 + x3
@n2
@x2

0

0 0 1

3
5 = S R =: S(I + x3M)

(6.5)

(new matrix notations).

Similarly, we have

Jn = SnRn = Sn(I + x3Mn) : (6.6)

A simple calculus gives

S�1n =
1p

1 + (pn1 )
2 + (pn2 )

2

2
4 nn3 � nn2 p

n
2 nn1 p

n
2 �nn1

nn2 p
n
1 nn3 � nn1 p

n
1 �nn2

�pn1 �pn2 1

3
5

�! 1p
1 + p21 + p22

2
4 n3 � n2 p2 n1 p2 �n1

n2 p1 n3 � n1 p1 �n2
�p1 �p2 1

3
5 = S�1 ;

strongly in C1(�!) . Moreover,

R�1n = (I + x3Mn)
�1 = I � x3Mn + x23M

2
n � x33M

3
n + : : : (6.7)

for " small. Clearly, we have

Mn =

2
666664

@nn1
@x1

@nn1
@x2

0

@nn2
@x1

@nn2
@x2

0

0 0 0

3
777775 �! M =

2
666664

@n1

@x1

@n1

@x2
0

@n2

@x1

@n2

@x2
0

0 0 0

3
777775 (6.8)

in C(�!) . Relations (6.7) and (6.8) show (by a passage to the limit in the in�nite

sum, n!1 ) that R�1n ! R�1 in C(�
) , for " small.

Then, (6.6) and the above argument give

J�1n �! J�1 in C(�
)9 : (6.9)

In particular, we have that:

hnij(�x) �! hij(�x) in C(�
) ; 8 i; j = 1; 3 ; (6.10)

gijn (�x) �! gij(�x) in C(�
) ; 8 i; j = 1; 3 ; (6.11)

according to (5.10), (5.12), (6.3) and (6.4).

Let Bn denote the bilinear form B from (5.11), with coe�cients hnij ; det Jn . We

show that it has a coercivity constant independent of n 2 IN , for " > 0 small

enough (again independently of n ).
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Proposition 6.2 Assume that K is bounded in C2(�!) and that " < "(K) and

Æ << " are given positive numbers. There are c = c(K) > 0 and m = m(K) > 0
such that

Bp(û; û) � c
h
"j�uj2V (!) + "3j�rj2V (!)

i
� m

Æ

h
j�rj2L2(!)3 + j�uj2L2(!)3

i
; (6.12)

for any p 2 K and any û 2 H1(
̂)3 given by (5:3).

The constant "(K) > 0 depends on ci > 0 , i = 1; 2 , de�ned in (6.23) and in Lemma

6.3. It should be small enough such that (5.8) is ful�lled, which is possible due to

the boundedness of K in C2(�!) . The precise signi�cance of "(K) ; c(K) ; m(K) is
indicated in the proof.

The notation Bp( � ; � ) signi�es the bilinear functional (5.11) associated to some

p 2 K . We prove Proposition 6.2 only for the case �u; �r 2 H1
0 (!)

3 = V (!) , in order

to avoid more technical arguments related to the extension of û to H1
0 (IR)

3 .

Proof. We consider the mapping �w 2 H1(
)3 , given by

�w(x1; x2; x3) = �u(x1; x2) + x3 �r(x1; x2) ; (6.13)

such that û(x̂) = �w(F�1x̂) ; x̂ 2 
̂ ; �x = F�1x̂ 2 
 . Denote by

S+ = [" ; "+ Æ] � �! ; S� = [�"� Æ ; �"] � �! : (6.14)

We extend �w to 
 [ S+ [ S� by ~wj
 = �w and:

~w(�x) = Æ�1

(h
("+ Æ)� x3

i
�u(x1; x2) + " ("+ Æ � x3) �r(x1; x2)

)
(6.15)

for �x 2 S+ ,

~w(�x) = Æ�1

(
("+ Æ + x3) �u(x1; x2)� " ("+ Æ + x3) �r(x1; x2)

)
(6.16)

for �x 2 S� .
Then, we may extend ~w by 0 to IR3 as �u; �r 2 H1

0 (!)
3 . In the general case of a

partially clamped shell, one has to use an extension procedure around ! � IR2 , too

(for instance the Calderon extension, Adams [1], since @! is assumed Lipschitzian).

We may assume that Fp , i.e. the transformation (5.1) associated to any p 2 K ,

is still one-to-one on 
 [ S+ [ S� , since " + Æ is �small� and K is bounded (see

(5.8)). We denote

�+
p := Fp(S

+) ; ��p := Fp(S
�) : (6.17)

Above, the index p 2 K puts into evidence the dependence on p of the geometrical

transformation and of the sets. We introduce the extension of û 2 H1(
̂p)
3 by

~u(x̂) = ~w
�
F�1p (x̂)

�
: (6.18)
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Clearly, it holds ~u 2 H1
0 (
̂p [ �+

p [ ��p ) .

As K is bounded in C2(�!) , there is a ball O in IR3 such that O � 
̂p [�+
p [��p ,

for any p 2 K . We may extend ~u by 0 to O so that ~u 2 H1
0 (O) . We have

Bp(û; û) + ~�

Z
�+
p [�

�

p

3X
i;j=1

���êij(~u)���2 dx̂ � ~�

Z
O

3X
i;j=1

���êij(~u)���2 dx̂

since ~� � 0 ; ~� � 0 . The Korn's inequality, applied to the last integral, gives that

Bp(û; û) � cj~uj2
H1
0
(O) � ~�

Z
�+
p [�

�

p

3X
i;j=1

���êij(~u)���2 dx̂

� cj~uj2
H1(
̂p)

� ~�

Z
�+
p [�

�

p

3X
i;j=1

���êij(~u)���2 dx̂ ; (6.19)

with c > 0 being independent of p 2 K .

We have to estimate the last term in (6.19). To this end, we computeZ
�+
p [�

�

p

����@~ui@x̂j

����
2

dx̂ =

Z
�+
p [�

�

p

��
@ ~wi
@x1

(�x(x̂)) ;

@ ~wi
@x2

(�x(x̂)) ;
@ ~wi
@x3

(�x(x̂))

�
;
�
d
p
1j(x̂) ; d

p
2j(x̂) ; d

p
3j(x̂)

��2

IR3

dx̂

=

Z
S+[S�

��
@ ~wi
@x1

;
@ ~wi
@x2

;
@ ~wi
@x3

�
;
�
h
p
1j ; h

p
2j ; h

p
3j

��2

IR3

j detJpjd�x ;

where (dpij)i;j=1;3 := DF�1p (x̂) ; (hpij)i;j=1;3 := J�1p (�x) , and where we have performed

a standard change of variables in the integral (see Sprekels and Tiba [16] for a

detailed calculation). Notice that the extension of h
p
ij to S+ [ S� is obvious by

(5.5).

As fdet Jpg ; fhpijg are bounded for p 2 K , we have to estimate the gradient of ~w
in L2(S+ [ S�) . We compute it in S+ , for example:

@ ~w

@x�
= Æ�1

h
("+ Æ � x3)

@�u

@x�
+ " ("+ Æ � x3)

@�r

@x�

i
; � = 1; 2 ; (6.20)

@ ~w

@x3
= � Æ�1(�u+ " �r) : (6.21)

Thus, we get ���� @ ~w

@x3

����
L2(S+[S�)3

�
p
2Æ�

1

2 j�ujL2(!)3 +
p
2" Æ�

1

2 j�rjL2(!)3 :
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For � = 1; 2 , we have:���� @ ~w

@x�

����
L2(S+[S�)3

�
p
2p
3
Æ
1

2

���� @�u@x�
����
L2(!)3

+

p
2p
3
" Æ

1

2

���� @�r@x�
����
L2(!)3

: (6.22)

Consequently, we can �nd some c1 > 0 , independent of p 2 K , such that

Bp(û; û) � cjûj2
H1(
̂p)

� c1

"
Æj�uj2V (!) + "2 Æj�rj2V (!) + Æ�1j�uj2L2(!)3 + "2 Æ�1j�rj2L2(!)3

#
:

(6.23)

Lemma 6.3 If 
̂p = Fp(
) , there are c2 > 0 ; c3 2 IR , independent of p 2 K ,

that

jûj2
H1(
̂p)

� c2

h
"j�uj2V (!) + "3j�rj2V (!)

i
�c3 "j�rj2L2(!)3 ; 8 û(x̂) = �w(F�1p x̂) 2 H1(
p) ;

for " � "0 and with "0 > 0 independent of p 2 K .

Proof. The proof of this Lemma is quite technical, and we quote Sprekels and

Tiba [16, Sect. 3] in this respect. It is possible to check that all the constants

appearing there may be chosen independently of p 2 K . We indicate here just a

precise quantitative argument which replaces the qualitative proof of Lemma 3.3 in

Sprekels and Tiba [16], in order to preserve the control of the constants. We have:

jûj2
H1(
̂p)

=

Z



3X
i;j=1

"�
@ui

@x1
+ x3

@ri

@x1

�
h
p
1j(�x) +

�
@ui

@x2
+ x3

@ri

@x2

�
h
p
2j(�x)

+ ri(�x) h
p
3j(�x)

#2
j detJp(�x)j d�x ; (6.24)

after the change of variables via Fp : 
! 
̂p .

We de�ne the quadratic form

Qp(�u; �r) = 2 "

Z
!

3X
i;j=1

�
@ui

@x1
h
p;0
1j +

@ui

@x2
h
p;0
2j + r1 h

p;0
3j

�2q
1 + p21 + p22 dx1 dx2

+
2 "3

3

Z
!

3X
i;j=1

�
@ri

@x1
h
p;0
1j +

@ri

@x2
h
p;0
2j

�2q
1 + p21 + p22 dx1 dx2 ; (6.25)

and we estimate it �rst. Here, (hp;0ij ) are the elements of the matrix S�1p (see (6.5),

(6.6)), that is, they constitute an approximation of (hpij) . Taking into account the
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structure of S�1p , we get

@ri

@x1
=

p1p
1 + p21 + p22

�
@ri

@x1
h
p;0
13 +

@ri

@x2
h
p;0
23

�

+
1p

1 + p21 + p22

�
@ri

@x1
h
p;0
11 +

@ri

@x2
h
p;0
21

�
; (6.26)

and similarly for @ri
@x2

; @ui
@x�

; i = 1; 3 ; � = 1; 2 .

Then, simple algebraic manipulations in (6.25), (6.26), involving the triangle in-

equality (and the fact that the coe�cients of the parentheses in the right-hand side

of (6.26) are less than one), put into evidence a constant, independent of p 2 K ,

such that:

Qp(�u; �r) � c
�
"j�uj2V (!) + "3j�rj2V (!) � "j�rj2L2(!)3

�
; c > 0 : (6.27)

Taking the di�erence between (6.24), (6.25), estimates similar to Sprekels and Tiba

[16, Sect. 3] show that it will be dominated by the right-hand side in (6.27), for "

small. This ends the proof of Lemma 6.3. 2

Combining it with (6.23), we get (6.12), for Æ << " , and the proof of Proposition

6.2 is �nished. 2

Proposition 6.4 Let ~K � K be a compact subset. There are "̂ > 0 ; such that for

" < "̂ , there is c" > 0 , independent of p 2 ~K ,

Bp(û; û) � c"

h
j�uj2V (!) + j�rj2V (!)

i
; û(x̂) = �w(F�1p (x̂)) 2 H1(
̂p) ; (6.28)

for any p 2 ~K .

Proof. We �x "̂ and " < "̂ ; Æ << " , such that (6.12) is valid.

Assume that (6.28) is false, i.e. there is no c" > 0 with the indicated property.

Therefore, for any a > 0 , there is pa 2 K and �ua ; �ra ; ûa(x̂) = �wa(F
�1
pa

(x̂)) , such
that

0 � Bpa(ûa; ûa) � a
h
j�uaj2V (!) + j�raj2V (!)

i
: (6.29)

In (6.29), we can assume that j(�ua; �ra)jV (!)2 = 1 , and, consequently, that Bpa(ûa; ûa)
! 0 for a ! 0 . Moreover, we can suppose that �ua ! û ; �ra ! r̂ , both weakly in

V (!) , and pa ! p̂ 2 ~K strongly in C2(�!) , due to the compactness of ~K . In particu-

lar, we get haij ! ĥij strongly in C(�
) , where (haij)i;j=1;3 = J�1pa ; (ĥij)i;j=1;3 = J�1p̂ .

It is simple to see, due to the uniform convergence of the coe�cients haij , that

Bpa(ûa; ûa) � Bp̂(ûa; ûa) ! 0 (6.30)

(see (5.11)). The weak lower semicontinuity in H1(!)3 � H1(!)3 of Bp̂( � ; � ) and

(6.29), (6.30) show that

0 � lim inf
a!0

Bpa(ûa; ûa) = lim inf
a!0

Bp̂(ûa; ûa) � Bp̂
�
(û ; r̂) ; (û ; r̂)

�
� 0 : (6.31)
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Clearly, (6.31) shows that Bp̂((û ; r̂) ; (û ; r̂)) = 0 , and the coercivity of Bp̂ gives

û = 0 ; r̂ = 0 , according to Sprekels and Tiba [16]. We conclude that �ua ! 0 ; �ra !
0 , both weakly in V (!) and strongly in L2(!)3 .

We combine (6.29) and (6.12) to obtain that

a � c
h
"j�uaj2V (!) + "2j�raj2V (!)

i
� m

Æ

h
j�raj2L2(!)3 + j�uaj2L2(!)3

i
� c "3 � m

Æ

h
j�raj2L2(!)3 + j�uaj2L2(!)3

i
:

Taking a! 0 , we get the contradiction

0 � c "3

which ends the proof. 2

Proof of Theorem 6.1 We notice that the assumptions of Proposition 6.4 are

ful�lled and that (6.28) is valid for fpng , for any n 2 IN . Then, if we �x (��; ��) =
�yn = (�un; �rn) in (5.11) with p = pn , we get immediately that f�yng is bounded

in V (!)2 . We may assume that �un ! �u ; �rn ! �r , both weakly in V (!) , on a

subsequence. Due to the uniform convergence of the coe�cients, one may pass to

the limit in (5.11) and see that �y = (�u; �r) is indeed the solution of (5.11) associated

to p . As the solution of (5.11) is unique, �y is the weak limit of the whole sequence.

Now, we have to show that the convergence is valid in the strong topology of V (!)2 .
We substract the equations corresponding to �yn ; �y , we intercalate advantageous

terms (see the last step in the proof of Theorem 3.1) and, �nally, we take test

functions of the form �yn� �y 2 V (!)2 . As the di�erence of the corresponding right-
hand sides converges to 0 (by the above weak convergence property), a detailed

calculus gives that

lim
n!1

Bp(�yn � �y; ; �yn � �y) = 0 : (6.32)

By (6.28), (6.32), the proof is �nished. 2

Corollary 6.5 If K � C2(�!) is compact and j : V (!)2 � C2(�!) ! R is lower

semicontinuous, then the shape optimization problem (P) admits at least one optimal

solution p 2 K .

7 Sensitivity analysis for shells

We investigate some di�erentiability properties of the mapping p 2 C2(�!) 7! �y 2
V (!)2 de�ned by (5.11). We consider p + � q ; � 2 IR+ , and q 2 C2(�!) , a small

perturbation of p 2 C2(�!) , and we denote by �y� = (�u�; �r�) 2 V (!)2 the correspond-

ing solution of (5.11). Similarly, we denote by �n� 2 C1( �w)3 ; F� 2 C1(�
)3 ; J� 2
C(�
)9 ; h�ij 2 C(�
) ; gij� 2 C(�
) ; B� , etc., all the quantities de�ned in Section 5,

starting from p� = p+ � q . We shall simply write B for Bp .

27



It is elementary, though tedious, to check that the below listed limits, and linear

and bounded operators, exist in the indicated spaces:

lim
�!0

�n� � �n

�
= ~n(q) ; ~n : C2(�!) ! C1(�!)3 ; (7.1)

lim
�!0

J� � J

�
= ~J(q) ; ~J : C2(�!) ! C(�
)9 ; (7.2)

lim
�!0

J�1� � J�1

�
= ~I(q) ; ~I : C2(�!) ! C(�
)9 ; (7.3)

lim
�!0

h�ij � hij

�
= ~hij(q) ; ~hij : C2(�!) ! C(�
) ; (7.4)

lim
�!0

det J� � det J

�
= D(q) ; D : C2(�!) ! C(�
) ; (7.5)

lim
�!0

g
ij
� � gij

�
= ~gij(q) ; ~gij : C2(�!) ! C(�
) : (7.6)

By Theorem 6.1, we also know that

�y� �! �y strongly in V (!)2 : (7.7)

Now, we subtract the equations for �y� and for �y , we divide by � , and we shall

prove that it is possible to take �! 0 . In the right-hand side, we have

lim
�!0

(Z



3X
l=1

fl(�l + x3 �l)
det J� � det J

�
d�x

+

Z
�1

3X
l=1

3X
i;j=1

gl(�l + x3 �l)
det J�

q
�i g

ij
� �j � det J

p
�i gij �j

�
d�

)

=
3X
l=1

Z



fl(�l + x3 �l)D(q) d�x

+
3X
l=1

3X
i;j=1

Z
�1

gl(�l + x3 �l)

"
D(q)

p
�i gij �j + det J

�i ~g
ij(q) �j

2
p
�i gij �j

#
d� : (7.8)

Here �v = (��; ��) 2 V (!)2 is an arbitrary test function.

As the computation of 1
�
[B� �B] is quite lengthy, we write in detail just the terms

from the bilinear functionals associated with the coe�cient 2 ~� , namely:

1

�

(Z



3X
i=1

"�@u�i
@x1

+ x3
@r�i
@x1

�
h�1i +

�@u�i
@x2

+ x3
@r�i
@x2

�
h�2i + r�i h

�
3i

#
"�@�i

@x1
+ x3

@�i

@x1

�
h�1i +

�@�i
@x2

+ x3
@�i

@x2

�
h�2i + �i h

�
3i

#
j det J�jd�x
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�
Z



"� @ui
@x1

+ x3
@ri

@x1

�
h1i +

� @ui
@x2

+ x3
@ri

@x2

�
h2i + rih3i

#
"�@�i

@x1
+ x3

@�i

@x1

�
h1i +

�@�i
@x2

+ x3
@�i

@x2

�
h2i + �ih3i

#
j detJ jd�x

)

=

Z



3X
i=1

"�
@
u�i �ui

�

@x1
+ x3

@
r�i �ri

�

@x1

�
h1i +

�
@
u�i �ui

�

@x2
+ x3

@
r�i �ri

�

@x2

�
h2i +

r�i � ri

�
h3i

#
"�@�i

@x1
+ x3

@�i

@x1

�
h1i +

�@�i
@x2

+ x3
@�i

@x2

�
h2i + �ih3i

#
j det J jd�x

+

Z



3X
i=1

"�@u�i
@x1

+ x3
@r�i

@x1

� h�1i det J� � h1i det J

�

+
�@u�i
@x2

+ x3
@r�i
@x2

� h�2i det J� � h2i det J

�
+ r�i

h�3i det J� � h3i det J

�

#
"�@�i

@x1
+ x3

@�i

@x1

�
h�1i +

�@�i
@x2

+ x3
@�i

@x2

�
h�2i + �ih

�
3i

#
d�x

+

Z



3X
i=1

"�@u�i
@x1

+ x3
@r�i
@x1

�
h1i +

�@u�i
@x2

+ x3
@r�i
@x2

�
h2i + r�i h3i

#
(7.9)

"�@�i
@x1

+ x3
@�i

@x1

�h�1i � h1i

�
+
�@�i
@x2

+ x3
@�i

@x2

�h�2i � h2i

�
+ �i

h�3i � h3i

�

#
j det J jd�x :

According to (7.4), (7.5) and (6.10) the last two integrals are of the form Z�(�y� ; �v) ;
and there is a constant independent of � > 0 such that the bilinear forms Z� satisfy:

jZ�(�y� ; �vj � Cj�y�jV (!)2 j�vjV (!)2 : (7.10)

Applying the same technique to all of the terms of B� � B , (7.8)�(7.10) give

B
� �y� � �y

�
; �v
�

= ~Z�(�y�; �v) ; 8 �v 2 V (!)2 ; (7.11)

where ~Z� is obtained by adding together all the terms from (7.8)�(7.10).

By �xing �v = �y���y

�
in (7.11), and taking into account (7.10) and (7.7), we see

that
n

�y���y

�

o
is bounded in V (!)2, due to Proposition 6.4. We may take a weakly

convergent subsequence,

�y� � �y

�
! ŷ weakly in V (!)2 ; (7.12)

and we can pass to the limit in (7.11). The obtained equation in variations has the

form:

B(ŷ; �v) = Z(�v) ; 8 �v 2 V (!)2 ; (7.13)
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where Z(�v) = lim�!0
~Z�(�y�; �v) and Z : V (!)2 ! IR is a linear bounded functional.

Notice that (7.13) has a unique solution ŷ 2 V (!)2 , due to (6.28). We thus have

proved:

Proposition 7.1 The mapping p 2 C2(�!) 7! �y 2 V (!)2 given by (5.11) is Gâteaux

di�erentiable, and the directional derivative ŷ satis�es (7.13).

We introduce now the so-called adjoint system with unknowns �s = (�a ; �b) 2 V (!)2,

B(�s ; �v) = r1j(�y ; p)(�v) ; 8 �v 2 V (!)2 : (7.14)

The existence and the uniqueness of the solution to (7.14) is clear due to the prop-

erties of B . We have assumed that j is Fréchet di�erentiable on V (!)2 � C2(�!) ,
and r1j, r2j denote the partial di�erentials with respect to �y ; p .

Proposition 7.2 If j is Fréchet di�erentiable, then the directional derivative of the

cost functional � in the problem (P), at the point p 2 C2(�!) and in the direction

q 2 C2(�!) , is given by:

r�(p)q = r2j(�y ; p)q + Z(�s) : (7.15)

Proof.

lim
�!0

�(p+ �q)� �(p)

�
= r2j(�y ; p)q +r1j(�y ; p)ŷ ;

by the chain rule and Proposition 7.1. Moreover, by (7.14), (7.13), we have

r1j(�y ; p)ŷ = B(�s ; ŷ) = B(ŷ ; �s) = Z(�s) :

2

Remark. In order to compute (7.15) from p ; q 2 C2(�!) , one has to compute �y
by (5.11), �s by (7.14) and Z by (7.13). The computation of Z is standard (see

(7.9), (7.8)), but tedious and we do not detail it here.

Corollary 7.3 Assume that p� is a (local) optimal shape for (P), and �y� is the

associated deformation, and that all the above assumptions are ful�lled. Then

i) If K � C2(�!) is convex, we have

r2j(�y
� ; p�)q + Z(�s) � 0 ; 8 q 2 K � p� :

ii) If K is not convex, we have:

r2j(�y
� ; p�)q + Z(�s) � 0 ; 8 q 2 T (K ; p�) :
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Remark. Corollary 7.3 gives the standard optimality conditions for the problem

(P). The directional derivative obtained in Proposition 7.2 may be used, in principle,

in the numerical computations, as in the case of the curved rods. However, the

coercivity properties of the bilinear functional Bp are valid just for small thickness

" , and the coercivity constant depends in a very bad manner on " (see Proposition

6.2 or Sprekels and Tiba [16]). This shows that instabilities (the locking problem)

may appear in the numerical experiments and special numerical schemes are to be

used. The interested reader may consult Paumier and Chenais [7], Pitkäranta and

Leino [13], for a discussion on the approximation of the state equation (5.11).

8 Numerical experiments

In the papers of Ignat, Sprekels and Tiba [10], [11], many numerical examples con-

cerning the deformation of three-dimensional curved rods and the optimization of

planar arches are reported. Here, we concentrate on the problem discussed in �2-�4.

The �locking phenomenon� [7], [13] is avoided in our experiments by allowing the

thickness of the curved rod to be �larger� then the division that we consider for

the interval [0; L] L = 4�
p
2 . Namely, we have divided the interval [0; L] in 100

equal parts and we have taken the cross section of the curved rod to be always given

by a disk with radius R = 0:3 . For the integrals over the cross section, the usual

change of variables to polar coordinates leads to the integration over the rectangle

[0; R]� [0; 2�] which allows the use of simple numerical integration formulae corre-

sponding to the discrete grids. We have divided it into 8, respectively 80 parts, and

we have used Simpson's iterative formula.

In general, as initial iteration to the optimization algorithm, we have considered the

spiral, lying on the cylinder x21 + x22 = 1 , given by:

 0(x3) =
�

4
;  0(x3) =

�

2
+

x3p
2
; x3 2 [0; L] : (8.1)

A simple calculus shows that the rod parametrization corresponding to (8.1) is

��(x3) =
�
cos

x3p
2
; sin

x3p
2
;
x3p
2

�
; x3 2 [0; L] : (8.2)

Deformations for this example of a curved rod, under the action of various body

forces, have been computed in Ignat, Sprekels and Tiba [11]. The Lamé constants

taken into account are � = 50 ; � = 100 . The solution of the state system (2.13)

in the Sobolev space H1
0 (0; L)

9 is approximated by linear splines from V 9
h , where

h > 0 is the division norm of [0; L] , and where

Vh = fvh 2 C[0; L] ; vh(0) = vh(L) = 0 ; vh is piecewise linear in [0; L]g : (8.3)

The same matrix governs both (2.13) and the adjoint system (4.20). We under-

line that �nding the matrix (which has to be recomputed in each optimization
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iteration) is the most time consuming step of the algorithm. This is due to the

three-dimensional character of the objects that we are studying. The model (2.13)

provides a dimension reduction up to O.D.E.'s, and this is re�ected in that the

coe�cients involve the computation of many integrals over the cross section. One

can compute the gradient of the cost functional, and use descent algorithms for the

optimization of the geometry of the 3D rods, as explained in Section 4. We have

used the Uzawa algorithm combined with the Armijo line search rule.

A �rst class of examples is obtained when the force �f = (0; 0; f3) with the variants:

f3(x3) =

8><
>:

10 ; x3 2
h
0;
L

2

i
;

�10 ; x3 2
iL
2
; L
i
;

(8.4)

f3(x3) � 10 in [0; L] ; (8.5)

f3(x3) =

8><
>:

10 ; x3 2
h
0;
L

2

i
;

0 ; x3 2
iL
2
; L
i
;

(8.6)

f3(x3) =

8><
>:

0 ; x3 2
h
0;
L

2

i
;

10 ; x3 2
iL
2
; L
i
:

(8.7)

The cost functional was � = 1
2
j�ij2L2(0;L) with i = 2; 3 (compare with (2.14)). We

have also imposed the constraint (2.15), with " = �
8
, to avoid the appearance of self

intersecting curves. We have neglected (2.11), but it may be checked a posteriori

that det J 6= 0 .

In all the cases (8.4)�(8.7), the vertical column, which corresponds to ' � 0 , was
the geometric solution of the given problem. Indeed, the vertical column is the most

resistant structure with respect to vertical forces as in (8.4)�(8.7). In this case also,

the lateral displacements �1 ; �2 are with several orders of magnitude smaller than

the vertical displacement.

Figure 1 shows the initial and the �nal geometries, obtained in one or two iterations.

In Figures 2�5, the values of �3 (in the �nal iteration) are shown and one can see

its dependence on the forces (8.4)�(8.7), respectively.

In another set of numerical tests, we have considered �f = 10�b (recall (2.3)). Again

the initial iteration was given by (8.1) (or (8.2)) or by some perturbation of it

'0(x3) =

8><
>:

�

4
+ 0; 1 ; x3 2

h
0;
L

2

i
;

�

4
� 0; 1 ; x3 2

iL
2
; L
i
;

(8.8)
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and the objective functional was the same as above.

Notice that, under our parametrization, it is very simple to change the initial iter-

ation, which is an important advantage in nonconvex optimization problems. The

main property of this choice of �f is that it acts always in the horizontal plane,

although in various directions. It is also very easy to be constructed, under our

approach. For the constraints, we have taken " = 0 in (2.15). This allows horizon-

tal curves as well, but self intersections may appear (which indeed was the case).

That is, in this set of experiments (2.11) is violated. In the examples that we have

computed, a clear decrease in the cost was observed and the tendency to produce an

horizontal curve as the solution. Although self intersections are present, horizontal

curves will deform just in the horizontal plane under the action of �f = 10�b . That
is, a mechanical interpretation is still possible (and due to this, it was necessary to

allow " = 0 in (2.15)).

An interesting feature of this type of experiments was that the optimal ' was

bang-bang. The �gures 6, 7 show this when the initial iteration was given by (8.8),

respectively (8.1). Figures 8 and 9 show the last two iterations of another example

with �rst iteration (8.1) and cost functional 1
2
(�2)

2
L2(0;L)

. As the optimal ' is very

close to �
2
, then the obtained (self intersecting) structure is almost horizontal. In

this example, the optimal values of �3 are very small too, which corresponds well

to the mechanical interpretation.

In general, one experiment took between two and three hours, on a powerful Compaq

GS80 workstation.
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