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Abstract

In this paper we prove an existence result for Leray-Lions quasilinear el-

liptic operator with discontinuous coe�cients. The idea of the proof is based

on compactness results for sequences of solutions to regularized problems ob-

tained via the Compensated Compactness, Young measures, and Set�Valued

Analysis tools.

1 Introduction

Recall the Leray-Lions operator in the form

divA(x; u;ru) +B(x; u;ru)

where functions A : 
�R�R
m ! R

m and B : 
�R�R
m ! R satisfy the classical

assumptions:

� the growth conditions:

jA(x; s; �)j � C1(k(x) + jsjp�1 + j�jp�1);

jB(x; s; �)j � C2(k(x) + jsjp�1 + j�jp�1);

� the monotonicity condition:

(A(x; s; �1)� A(x; s; �2)) � (�1 � �2) > 0

for all �1 6= �2;

� the coercivity conditions:

A(x; s; �) � � � c1j�j
p;

B(x; s; �) � s � c2jsj
p:

for almost all x in an open subset 
 � R
m and for all s 2 R, � 2 R

m . The constants

C1, C2, c1, c2 are strictly positive, and k 2 Lp
0

(
). The other classical assumption

is that A and B are Carathéodory functions (i.e. measurable with respect to the

�rst variable and continuous with respect to the second and third). Under these

hypotheses the operator is a bounded continuous pseudomonotone operator of Leray-

Lions type from W 1;p
0 (
) into its dual W�1;p0

(
). (see [3], [5], [12], [10], [13]).
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In this paper we consider the equation

divA(x;ru) +B(x; u;ru) = f

and we relax the assumption on the continuity of A in the second and B in the second

and third variable. Instead, we assume that the functions A : 
 � R
m �! R

m and

B : 
� R � R
m �! R are Lebesgue measurable and such that:

1. there exist �nitely many open sets Ul such that

i) R
m =

S
k

l=1 Ul and Ui \ Ul = ; for i 6= l,

ii) AjUl
(x; �) is continuous for l = 1 : : : k,

iii) there exists continuous extention Al(x; �) of AjUl
(x; �) onto Ul.

2. divA(x;ru) = f � B(x; u;ru) 2 W�1;p0

(
),

3. B(x; �; �) is Borel measurable and convolution B with a standard Friedrich's

molli�er '" gives a smooth function.

4. jA(x; �)j � C1(k(x) + j�jp�1);

5. (A(x; �1)� A(x; �2)) � (�1 � �2) > 0 for all �1 6= �2;

6. A(x; �) � � � c1j�j
p.

7. jB(x; s; �)j � C2(k(x) + jsjp�1 + j�jp�1),

The assumption B(x; s; �) � s � c2jsj
p is not necessary if we assume that 
 is a

bounded set and one can use a Poincaré inequality. The above assumptions are

valid throughout the paper and we will not write them in formulations of theorems.

Given functions A and B, we extend their graphs (i.e. we close the graphs and

make a set of values in each point convex; this procedure give an unique extension)

to obtain multifunctions A and B. Our main result is the following

Theorem 1.1. Assume 
 to be an open set with j
j < +1, and f 2 W�1;p0

(
).

Then there exist a function u 2 W 1;p
0 (
) and measurable selections eA(x) 2 A(x;ru(x)),eB(x) 2 B(x; u;ru(x)) such thatZ




eA(x)r'(x)dx +

Z



eB(x)'(x)dx =

Z



f(x)'(x)dx

for all ' 2 C1

0 .

Malý and Ziemer [7] consider a regularity theory for quasilinear elliptic operators

with discontinuous coe�cients. They assume that A(�; s; �), B(�; s; �) are Lebesgue

measurable and A(x; �; �), B(x; �; �) are Borel measurable. However, to solve the

existence problem, they need to assume that A and B are Carathéodory functions
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(see p. 162, and p. 253). It is natural to ask if the assumption can be relaxed. It

was one of motivations to this work.

The other motivation comes from physical applications: let consider the free energy

function of the form

E(x; u;ru)

with standard polynomial growth and coercivity condition, strictly convex in the

last variable but which is only di�erentiable in the sens of Clarke with respect to

the second and third variable. Then Euler-Lagrange equations are of Leray-Lions

type but with discontinuous coe�cients. Similar motivation one can �nd in the

hemivariational inequalities (see [11], [9]).

The main idea of the proof is based on the application of Young measures in a

nonstandard setting, forced by the discontinuity of A, combined with the �biting�

div�curl lemma from Zhang [14]. We really need the �biting� version, as the term

A(x;ru) � ru is only L1 under our growth conditions.

Steps of the proof are as follows:

1. We regularize functions A and B by convolution with the function '" and put

the term B" on the left side of the equation.

2. Using Biting div-curl lemma, and characterization by Young measures we prove

a compactness result for a sequence of regularized solutions in W 1;q
0 (
) for all

q < p.

3. At the end we use Convegence Theorem from the theory of the Set-Valued

Analysis to obtain an existence of weak solutions.

Remark 1. Using similar methods as in [3] and [5] one can show the strong con-

vergence of gradients in the space Lp(
).

Remark 2. In [6] there are considered generalizations of the p�Laplacian in the

form

divf(ajrujp�2 + bjrujq�2)rug

where a; b > 0 and p; q 2 (1;+1). Our arguments, combined with some more

general characterization of Young measures (see [4]) allow us to consider the case

p 2 [1;+1), q 2 (1;+1).

2 Tools

In the following theorems the notation is slightly di�erent from that of [14], [1] and

[8]. We use it to facilitate the reading ot the proof of Theorem 1.1.
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Theorem 2.1 (Biting div�curl lemma). Let 
 be an open set of Rm and (zj),

(Aj) be sequences in Lp(
;Rm) and Lp
0

(
;Rm) respectively, such that

zj * z in Lp(
;Rm)

Aj * eA in Lp
0

(
;Rm)

curlzj is bounded in Lp(
;Rm)

divAj is compact in W�1;p0

(
))

Then there exist subsequences, still denoted (zj), (Aj) and a nonincreasing sequence

of measurable sets (Ek), Ek � 
 with jEkj ! 0, such that

zj �Aj * z � eA in L1(
nEk) for k = 1; 2; : : ::

The next theorem is a slight modi�cation of the Fundamental Theorem on Young

measures (see e.g. [8] Th.3.1).

Theorem 2.2. Assume 
 � R
m to be an open set of a �nite measure and let

zj : 
 �! R
m be a sequence of measurable functions. Denote �j;l

x
= (Æzj(x) � '

j)
jUl
.

Then there exists a subsequence still denoted by zj and a family of weak-* measurable

maps �l : 
 *M(Ul) such that

1. �x =
P

l
�l
x
� 0, and

k�xkM(Rm) =
X
l

Z
Ul

d�l
x
� 1

for a.e. x 2 
;

2. �j;l
�

* �l in L1
w
(
;M(Ul));

3. If for some p > 0 there exist constant C such that for all j:
R


jzjjp � C, then

k�xkM(Rm) = 1;

4. If 3. holds and a set E � 
 is measurable, F 2 L1(
; C0(Ul)), and for every

l the family f
R
Ul
F (�)d�j;l

x
(�)g is relatively weakly compact in L1(E), then

Z
Ul

F (�)d�j;l
x
(�)*

Z
Ul

F (�)d�l
x
(�) in L1(E);

5. If 4. holds and F 2 L1(
; C0(Rm) thenZ
Rm

F (�)dÆzj(x)(�)*

Z
Rm

F (�)d�x(�) in L1(E);

i.e. �x is a usual Young measure generated by a sequence zj(x);
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6. If �x = Æz(x) a.e. in 
 then zj(x)! z(x) a.e. in 
.

The idea of the proof is based on the fact that L1
w
(
;M(Ul)) is the dual space

to L1(
;C0(Ul)) and the proof is similar to that in [8], pp. 31�34. Passing from

the functions zj which take values in R
m to maps which take values in the space

of measures in R
m , we take instead of Æzj(x) measures of the form Æzj(x) � '

j, and

consider them on the sets Ul where the function A is continuous. The assertion 5.

comes from the fact: f
P

l
�j;l � Æzjg

�

* 0 in the space L1
w
(
;M(Ul)).

The following theorem is the special case of Convergence Theorem which is well

known in Set�Valued Analysis, (see e.g. [1]).

Theorem 2.3. Let 
 � R
m be an open set with �nite Lebesgue measure, A :

R
m �! 2R

m

be a nontrivial set�valued map, with a closed graph, and such that

for any � 2 Dom(A) = R
m , a set A(�) is bounded and convex. Let us consider

measurable functions zj : 
 �! R
m and Aj : Rm �! R

m single-valued function

such that

i) sup
y2Rm

dist[(y; Aj(y)); Graph(A)] �! 0, as j ! 0;

ii) the sequence fzjg converges almost everywhere to a function z;

iii) Aj(zj) 2 L1(
) and the sequence fAj(zj)g is convergent weakly in L1(
) to a

function eA 2 L1(
).

Then for almost every x 2 
 we have eA(x) 2 A(z(x)).

The following fact is well known in set�valued analysis (see [1]):

Lemma 2.4. Let A(x; �) is a maximal monotone extention of the function A(x; �)

satisfying the monotonicity condition 5. If eA1 2 A(x; �1) and eA2 2 A(x; �2) then

( eA1 � eA2) � (�1 � �2) > 0

for all �1 6= �2.

Notation 1. Throughout the paper by '" we will denote the standard Friedrich's

molli�er with respect to the variable � i.e. for a �xed radial (i.e. depending only

of j�j), nonnegative function ' 2 C1

0 (Bm) with
R
'(y)dy = 1, we have '"(�) :=

"�m'(�="). The symbol e'" will stand for the moli�re with respect to the variables

s and �.

3 Proof of the main result

Proof. Let A"(x; �) = ('"�A)(x; �) and B"(x; s; �) = (e'"�B)(x; s; �). These are well
de�ned, continuous regularizations of the functions A and B. The growth, coercivity
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and monotonicity conditions are preserved under the regularization. Thus, there

exists a weak solution u" to the problem

divA"(x;ru") +B"(x; u";ru") = f;

that is a function u" 2 W 1;p
0 (
) such thatZ




A"(x;ru"(x))r'(x)dx +

Z



B"(x; u"(x);ru"(x))'(x)dx =

=

Z



f(x)'(x)dx

for all ' 2 C1

0 .

The energy estimates and conditions on A and B yield ku"k
W

1;p
0

� C, where the

constant C does not depend on ". Thus ru" and A"(�;ru") are bounded sequences

in Lp(
;Rm) and Lp
0

(
;Rm) respectively, and up to subsequences we may assume

u" �! u in Lp(
;Rm)

u" �! u almost everywhere

ru" * ru in Lp(
;Rm)

and

A"(�;ru")* eA in Lp
0

(
;Rm)

B"(�; u";ru")* eB in Lp
0

(
;Rm):

In order to show that eA is a measurable selection from A and u is the desired weak

solution we use theorem 2.3 and thus we need to show that ru" �! ru almost

everywhere.

For almost every x 2 
 set �"
x
= Æfru"(x)g. Then of course

A"(x;ru"(x)) � ru"(x) =

Z
Rm

A"(x; �) � �d�"
x
(�):

Since A"(x; �) = (A � '")(x; �), one can express the last integral asZ
Rm

(A � '")(x; �) � �d�"
x
(�) =

=

Z
Rm

�
(A � '")(x; �) � � � ((A � Id(�)) � '

")(x; �)
�
d�"

x
(�)

+

Z
Rm

((A � Id(�)) � '
")(x; �)d�"

x
(�):

(3.1)

The �rst term of RHS can be written asZ
Rm

Z
Rm

A(x; �)(� � �)'"(� � �)d�d�"
x
(�);
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and then

j

Z
Rm

Z
Rm

A(x; �)(� � �)'"(� � �)d�d�"
x
(�)j �Z

Rm

Z
Rm

jA(x; �)jj� � �jj'"(� � �)jd�d�"
x
(�):

Using the fact that '" has a support in a ball of a radius ", and the growth conditions

of A we can estimate the last expression by

C"

Z
Rm

(j�j+ ")p�1d�"
x
(�)

and a convergence to zero follows from the uniformly boudedness of the p�th moment

of the measure �"
x
.

The second term of RHS of (3.1) can be represent asZ
Rm

A(x; �) � �d�"
x
(�);

where the measure �"
x
= �"

x
�'" is absolutely continuous with respect to the Lebesgue

measure. Then Z
Rm

A"(x; �) � �d�"
x
(�) = C"+

Z
Rm

A(x; �) � �d�"
x
(�):

Let �";l
x

be a restriction of the measure �"
x
to the set Ul and the function Al be a

continuous extension of AjUl
onto Ul.

Theorem 2.1 implies

A"(x;ru"(x)) � ru"(x) * eA(x) � ru(x) in L1(
nEk) (3.2)

and thus the sequence
R
Rm
A(x; �)��d�"

x
(�) is relatively weakly compact in L1(
nEk).

Then Theorem 2.2 yields

A"(x;ru"(x)) � ru"(x) *
X
l

Z
Ul

Al(x; �) � �d�
l

x
(�) (3.3)

in L1(
nEk), where the Young measure �l is a weak�* limit of �";l in L1
w
(
;M(Ul))

and �x =
P

l
�l
x
is a probability measure for almost every x 2 
.

Therefore combining (3.2) and (3.3) we obtain

Z

nEk

eA(x) � ru(x) (x)dx =

=
X
l

Z

nEk

Z
Ul

Al(x; �) � �d�
l

x
(�) (x)dx: (3.4)
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for every  2 L1(
nEk)

Let now  be a nonnegative function from L1(
nEk). It follows from the mono-

tonicity condition on A that the term

X
l

Z

nEk

nZ
Ul

�
Al(x; �)� A(x;

Z
Rm

�d�x(�))
�

�
� �

Z
Rm

�d�x(�)
�
d�l

x
(�)
o
 (x)dx (3.5)

is nonnegative. We will show that in fact it is equal to zero.

After expanding the expression under the inner integral, using the formula (3.4) and

the fact �x is a probability measure, we obtain that (3.5) is equal to

Z

nEk

eA(x) � ru(x) (x)dx

�

Z

nEk

�X
l

Z
Ul

Al(x; �)d�
l

x
(�)
�
�

Z
Rm

�d�x(�) (x)dx

�

Z

nEk

A(x;

Z
Rm

�d�x(�))

Z
Rm

[� �

Z
Rm

�d�x(�)]d�
l

x
(�) (x)dx: (3.6)

The last term is equal to zero becauseZ
Rm

[� �

Z
Rm

�d�x(�)]d�
l

x
(�) = 0:

We can represent functions A"(�;ru") and ru" also by the Dirac measures �"
x
and

theorem 2.2 gives eA(x) =
X
l

Z
Ul

Al(x; �)d�
l

x
(�)

and

ru(x) =

Z
Rm

�d�x(�):

That however implies (3.6) is equal to zero.

Thus, for every lZ
Ul

h
Al(x; �)� A(x;

Z
Rm

�d�x(�))
i
�
h
� �

Z
Rm

�d�x(�)
i
d�l

x
(�) = 0

and from Lemma 2.4 it follows that

�x = Æfru(x)g;

and therefore ru" �! ru almost everywhere.
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Theorem 2.3 now gives eA is a selection from A, eB is a selection from B andZ



eA(x)r'(x)dx +

Z



eB(x)'(x)dx =

Z



f(x)'(x)dx

for all ' 2 C1

0 . Moreover, eA and eB are measurable as weak limits of measurable

functions A"(x;ru") and B"(x; u";ru").
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