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Abstract

We prove a priori estimates in L2(0,7; W12(Q)) and L>®(Qr), existence
and uniqueness of solutions to Cauchy—Neumann problems for parabolic equa-
tions

&g”—ﬁ;%ﬂmmeJf&i¥5}+d%%%@=0’ (0.1)

(t,z) € Qr = (0,T) x Q C R"*!, where p(u) = 8%511) > 0 and the function v
is defined by the nonlocal expression

v@@Z—Awahwww%f@de (0.2)

instead of solving an elliptic boundary problem as in the corresponding local
case. Such problems arise as mathematical models of various diffusion-drift
processes driven by gradients of local particle concentrations and nonlocal
interaction potentials. An example is the transport of electrons in semicon-
ductors, where u has to be interpreted as chemical and v as electro—statical
potential.

1 Introduction

We prove a priori estimates, existence and uniqueness of weak solutions to initial—-
boundary value problems of the form

5 (e M) et -0 con 1

1=

ote) = - [ Kl@)louttn) ~ feo)l dy o)e@n (12

O(u — v)

o(u) ;b (t,x, T> cos(v,zi) =0, (t,z) el =(0,T)x8Q,  (1.3)

u(0,z) = h(z), z€Q, (1.4)

where o(u) = fou p(s) ds, p >0, Qis abounded open set in R* and Q7 = (0,7) x 2,
T > 0. In the case of smooth boundary 0f2 of the set 2, v is the outer unit normal
on 9N and (v, z;) is the angle between v and the z;—axis.
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In the physical motivation and derivation (cf. [1, 6]) of systems like (1.1) — (1.3) the
'free energy’

= [{aGm @) +e [ K P - selayyds, ) = [ spts)ds

plays an important role. Here ¢ = o(u) can be seen as particle concentration and the
respective terms model local and nonlocal particle interaction. Then, provided the
reaction term a vanishes, the system (1.1) — (1.4) describes the mass conservating
evolution of ¢ from the initial value ¢y = o(h) towards critical points or even mini-
mizers of F' under diffusion and drift forces, caused by the local and the global term
in F', respectively. Moreover, the functional F' will be also the key for our mathe-
matical analysis of the system (cf. Theorem 1). In particular, in the case that: the
kernel K is symmetrical, the vector field {b;(¢,z,-)} € (R* — R™) is monotone and
bi(t,z,0) = a =0, we find for solutions u,v of (1.1) — (1.3)

dF(c) o (u) u—v) o(u —v)
o= [ s Z” ) oa, #50

that means, F' is Lyapunov functional in that case.

Problems of the form (1.1) — (1.4) arise as nonlocal mathematical models of vari-
ous applied problems, for instance reaction—drift—diffusion processes of electrically
charged species, phase transition processes and transport processes in porous me-
dia. The investigation of nonlinear nonlocal problems has received much attention
in last years. In the papers [6, 7, 11, 12] nonlocal models of phase separation were
formulated and studied.

Corresponding local problems were studied by many authors (cf. [4, 5]). See also
the papers [2], [3, 16], where degenerate parabolic equations were studied. Most
strong results for local drift—diffusion type problems have been recently proved in
[10]. Such local problems result from (1.1) — (1.4) by replacing the integral equation
(1.2) by an elliptic differential equation like

_Zax,{ 6xz]+0’() flt,z), tz)€eQr, (1.5)

completed by some boundary condition for the function v.

We consider problem (1.1) — (1.4) under standard conditions for the functions b; and
some conditions for the function a to be formulated in Section 2. Our main specific
assumption concerning the equation (1.1) reads:

p1) p € (R — R') with p(u) > 0, u € R!, is continuous and has a piecewise

continuous derivative p’ such that Z (( )) is nonincreasing on R!.

This condition seems natural in view of properties of probability particle distribution
functions arising in mathematical physics. So in the semiconductor theory [1, 4]
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relevant examples for functions p satisfying condition p;) are given by o = F, 1,
p =o' = F,, where F, denotes the Fermi integral

1 > s7 ds
Fylu) = L(y+1) /0 1+ exp(s — u) 7>t (1.6)

Another example comes from phase separation problems [6, 7], where the Fermi
function

1 oo 1
Cremsca) A=W = e

o(u) =

, (1.7)

plays a role corresponding to that of F, ;.

Our main assumption on the kernel K (z,y) is

K1) the function K(z,y) is defined for z,y € Q, K(z,y) = K(y,z) and K(-,y) €
Wh(Q) for almost every y € € such that

K( K(
esssup/ {|K(x Y) |—|—‘87xy)‘}dy—|—esssup/ ‘8 z,9) ‘d <sx. (18)
Q

e yeQ

Remark that condition K;) implies (cf. Lemma 1 below) properties as assumed in
[6, 7] for integral operators generated by kernels K(z,y) = K(|z — y|)-

Remark also that kernels |z — y[>™, log D corresponding to Newton potentials
and fundamental solutions of equatlon (1.5) with bounded measurable function x
satisfy condition K7) [14]. The Green function for equation (1.5) satisfies condition
K) in the cases of Dirichlet or Neumann boundary conditions for sufficient smooth
90 and k. Conditions on k guarantying condition K7) for the Green function can
be formulated also in terms of smallness of the number

ess sup k() [ess 1nf k(z)] ™t —
e
We formulate our assumptions and main results in Section 2. First a priori estimates
for the solution (u, v) are given in Section 3. In that Section we prove also regularity
properties of the function v, important for further considerations. An estimate of u
in L>(Qr) is given in Section 4. Sections 5 and 6 are devoted to proofs of existence
and uniqueness of solutions to problem (1.1) — (1.4) respectively.
We are planning in forthcoming papers to apply our approach to systems of equations
describing reaction—drift—diffusion processes in isothermal and non—isothermal cases.

2 Formulation of assumptions and main results

Let Q be a bounded open set in R* and Q7 = (0,7) x Q, T > 0. We assume that
n > 2. For n < 2 it is necessary to make simple changes in our conditions that are
connected with Sobolev’s embedding theorem.

We assume following condition on the set €2:
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) Q is such that the embeddings Wh(Q) ¢ L#1(Q), W'(Q) c L*(Q) hold
for p > n.

In view of the proof of a priori estimates for solutions of problem (1.1) — (1.4) we
need restrictions on growth and on degeneration of the function p as v — Zo0.
From condition p;) the existence of

ar = lim p(u) (2.1)

u—+o00

follows. For nonconstant functions p(u) at least one of the limits a_, a is zero
[8]. Studying the problem (1.1) — (1.4) we have to distinguish the cases of zero or
non-zero values of ay.. Therefore we shall consider two cases:

a;)) a_=0,a, #0, a) a_ =a;, =0.

Note that examples for a;) and a3) are given by (1.6) and (1.7), respectively. Our
additional restrictions on the function p are following:

p2) if condition a;) holds, then a positive constant p; exists such that

2
n—1

(W +1) <pu) <p(uw+1), u>0 0<v< , (2.2)

p3) there exists a positive constant p, such that

10'(w)| < p2 p(u) (2.3)

for u < 0 in the case of condition a;) and Vu € R! if condition as) holds.
Let the coefficients a ,b; from (1.1) satisfy the assumptions:

i) a(t,z,v,u), bi(t,z,§), i = 1,...,n, are measurable with respect to ¢,z for
every u,v € R!, £ € R® and continuous with respect to u,v € R!, £ € R", for
almost every (¢,z) € Qr; b;i(t,z,0)=0,i=1,...,n;

ii) there exist positive constants v,v such that ¥V ¢',¢” € R* and (¢,2) € Qr

n

> [bilt,z,€) = bt 2, €M)](& — &) > €' = €"P,

i=1
it 2, )] <we(l€] +1), i=1,....m;

n+2

iii) there exist nonnegative functions oy € L'(Qr), o € LP*(Qr), p1 > "2, such

that for arbitrary (¢,z) € Qr, v,u € R!
a(t,z,v,u)u > vy e(u)|ul™ — va|v|™ — oy (¢, ),

at, 7, v, u)| < vae(w)ul + o)™ + alt,z)

where m = ﬁ—; under condition ay) and m = 2 under condition as), here (u)

is a nonnegative function bounded on R! .
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We assume also an additional condition on the kernel K(z,y):

K)) if condition «y) is satisfied, then
//ny Yg(y)dz dy >0, Vge L*(Q).

Remark 1 In relevant applications the kernel K models nonlocal particle interac-
tion. Positive sign of K as assumed in condition Ks), corresponds to repulsive
interaction between particles and implies, roughly speaking, global existence of so-
lutions, whereas negative sign models attraction forces and may be cause blow of
solutions (cf. [5]). However, under condition o) assumed in the papers [6, 7] p
turns out to be bounded, so global existence can be proved without condition Kj).

We consider problem (1.2) — (1.4) with f, h such that

fec(o1,L7@), A ermo W@, (2.4
h(z) € L®(Q) (2.5)

and py > n + % in the case of condition a;) and ps > n under condition as).

Definition 1 A pair of functions (u,v), u,v € L*(0,T; W"2(Q)), is called solution
of problem (1.1) — (1.4), if following conditions are satisfied:

9o (u)

ot

exists in the sense of distributions,

8u ov
/ / 8x 3x‘ ] dz dt < oo, (2.6)

0
ot

ii) Yo € C*®(Qp) and almost every 7 € (0,T), Q, = (0,7) x Q,
/ < 60_(u), ©>dt +
0

+/T / { ZXZ;P(U) bi(?ﬁ,x,z;,%) g;ol —l—a(t,:z:,v,u)(p} dr dt =0,
(2.8)

i) the derivative

o(u) € C([0,T], L*(2)), e L?(0,T; (W (Q)]) ; (2.7)

equality (1.2) is satisfied for almost all (t,z) € Qr ;

iii) Vo € C®(Qr), satisfying o(T,x) = 0 for z € Q,

T 9o(u) Dy B
/0 <7,g0>dt —i—/QT/[U(u)—U(h)}dedt—O. (2.9)



Remark 2 Let (u,v) be a solution of problem (1.1) - (1.4). Since the space C®(Qr)
is dense in the weighted space L*(0,T; W'2(Q, p(u)), the integral identity (2.8) holds
for all ¢ € L*(0,T;W'2(Q)) such that

Jop J 052l

Remark 3 Lemma 1 below guarantees that the right hand side of equality (1.2) is
well-defined under our conditions on the functions o and f.

In what follows we shall understand as known parameters all numbers from the
conditions 1), iii), K1), norms of functions f, h, a1, a in respective spaces, numbers
that depend only on Q,T,n, the numbers py, p2, p3 = max{p(u) : |u| < my} and
ps = min{p(u) : |u| < mg}, where

mo = (@) | + 1. (2.10)

Further we shall denote by c; constants depending only on known parameters.

Theorem 1 Let the conditions i) — i), K1), K3),p1),0), (2.4), (2.5) be satisfied.
Then there exists a constant M, depending only on known parameters, such that
each solution (u,v) of problem (1.1) — (1.4) satisfies

g i [ ol

where

} dtdr <M,  (2.11)

A(u) = /Ou sp(s)ds. (2.12)

Theorem 2 Let the assumptions of Theorem 1 and condition py) be satisfied. Then
there exists a constant Ms, depending only on known parameters, such that each
solution (u,v) of problem (1.1) — (1.4) satisfies

/ / 8u ov
83:

oz
Theorem 3 Let the assumptions of Theorem 2 be satisfied. Then there exist con-
stants Ms, ps depending only on known parameters such that ps > n and each solu-
tion (u,v) of problem (1.1) — (1.4) satisfies

] dzdt < M. (2.13)

< M;. (2.14)

v
]|z (@r) + Ha_ L (Qr,L¥3(2)

T 1 LP3+2(Qr) H %

In order to prove a priori estimates for u(¢,z) we need an additional condition with
respect to the function a. In view of our uniqueness result we assume a stronger
condition than needed here:



a) the function ﬁ a(t,z,v,u) is nondecreasing with respect to u € R', for arbi-
trary (t,z) € Qr ,v € R,

Theorem 4 Let the conditions i) — iii), p1) — p3), K1), K2), a), 0), (2.4), (2.5) be
satisfied. Then there exists a constant M,, depending only on known parameters,
such that each solution (u,v) of problem (1.1) — (1.4) satisfies

esssup {|u(t,z)|: (¢, z) € Qr} < My. (2.15)

Theorem 5 Let the conditions of Theorem 4 be satisfied. Then the initial-boundary
value problem (1.1) — (1.4) has at least one solution in the sense of Definition 1.

Theorem 6 Let the conditions of Theorem /J be satisfied and assume additionally
that the functions b;(t,z,€), p'(u), a(t,z,v,u) are locally Lipschitzian with respect
to &, u,v, respectively. Then the solution of problem (1.1) — (1.4) in the sense of
Definition 1 is unique.

Corollary 1 Let the conditions of Theorem 6 be satisfied and assume additionally
that the functions f(t,z), b;i(t,z,£), a(t,z,v,u) are Lipschitzian with respect to t.
Then the solution u of problem (1.1) — (1.4) is regular in the sense that

9
t st a—‘tb € L=(0,T; L3(Q)) N L2(0, T; W2(Q)).

Remark 4 Corollary 1 and Theorem 4 imply that t — ¢ a‘;(t") € L>(0,T; L*(Q)).
Consequently, (1.1) can be understand not only in the sense of distributions, but
even as an equation in L?(0,T; L*(f2)).

Proofs of the theorems 1, 2, 3 are given in Section 3, proofs of the theorems 4, 5, 6

are given in Sections 4, 5, 6, respectively.

3 Integral estimates of the solution

We start from auxiliary lemmas needed in the proofs of the Theorems 1- 6.
Let us define operators Ky, K; for g € L>*(Q2) by

Kugo) = [ IK@lowdy. Kige) = [ [0 g0y dy @)

Lemma 1 The operators Ky, K1 are well defined by (3.1) for g € LP(Q) ,p € [1, 00],
and they are bounded operators in following spaces

Ko:LP(Q) — Ln»(Q) for 1<p<n, (3.2)
K, :LP(Q) — LP(Q) for 1<p<oo. (3.3)



Proof. Firstly, we prove (3.3). For p =1 and p = oo (3.3) is a simple consequence
of (1.8). For 1 < p < oo we find for g € LP(Q) by Holder’s inequality

(
/|K19($)|p dﬂ?S/ /‘M“g(yﬂdy]pdxg
/ /‘8ny " |pdy /‘M(Iz dz]p_ldxﬁ%”/nlg(y)l”dy,

that is (3.3).
For proving (3.2) we use the embedding theorem for W11(Q) to infer from (1.8)

ess sup/ K (z, )71 dy < . (3.4)
zeQ JQ

Now by Holder’s inequality we have for 1 < p < n, g € L*(Q),
[ 1Ko 9(a) % do <
Q
n(p—1) n—p n—p P nn_—z
< [{ [ K@lF - (K= @] ™ ] - o) v} do <
o ‘Ja

< [{ [ e a} [ weoi o o)
. {/Q|g@|pdg}n% M@{/ﬂm(x”pdx}#

This inequality implies (3.2) and the proof of Lemma 1 is complete. [J

Lemma 2 Let the assumptions of Theorem 1 be satisfied. Then the estimate

T Oo(u
/0 < %,’U > dt < M;y (1 + ||o(u(T, x))||L1(Q) + ||0'(’u,)||L2(QT)) (3.5)

holds for each T € (0,T) with a constant My depending only on known parameters.

Proof. Let 7 € ( ) and define for 0 <6 < T — 7

/ / u(t+6,z))-v(t+6,z) —o(ut,z))v(t,z)] dr dt. (3.6)

By writing I(§) as difference of two integrals and changing the integration variable
in the first integral we get

_ / " /Q o (ult, 2))o(t, o) dz dt — /0 5 /Q o(ut,2))o(t, z) dz dt.  (3.7)

On the other hand we can rewrite /() as
1(0) = I,(6) + I2(9), (3.8)

8



where
L) = / / w(t +6,2)) — olult,2))]olt + 6,2) de dt
L(§) = / / v(t +6,z) — v(t, z)] dz dt.

Using (1.2) and setting v (¢, z) = [, K(z,y)o(u(t, y)) dy, we can rewrite I, as
/ / u(t+6,z)) — o(u(t,z))]v(t, z) dz dt +
+/0 /Q Ft+6,2) — f(t,2)]ui(t, z) da di —
_ /5/9 [F(t—6,2) — [(t,2)]s(t, 2) d di —

_ /TTM/Qf(t — 6, z)vi(t,z) dz dt + /j/ﬁf(t, z)v,(t,z) dr dt .

From (3.8) — (3.9), (2.4), (2.7) and Lemma 1 we see that dividing I(d) by ¢ and
passing to the limit § — + 0 gives

(3.9)

/QJ(U(T, z))v(r, z) doz — /Qa(h(x))v(o,x) dz = 2/0T < 82—(:),1) > dt +

—|—2/0T < %,vl > dt —/Qf(T,x)vl(T,:L') dz —I—/Qf(O,:z:)vl(O,:z:) dzx.

(3.10)

We shall estimate the summands in (3.10). In the case of condition a;) we have by
(2.3), (3.2) and condition K3)

/Qa(u(r,:z:))v(r,:z:)d:z::/Q{f(T,x)vl(T,x)—/QK(x,y)a(u(T,x))x

(3.11)
% o(u(r,y)) dy} do < /Qf(T, 2)oi(r,2) de < ¢ ||o(u(r, )|l

An analogous estimate is true under condition as), because of the boundedness of
the function o in that case. Further, using Lemma 1 we get

[ <o alzed [ [

Estimating the remaining summands in (3.10) and using (3.11), (3.12), we obtain
from (3.10) the desired estimate (3.5) and the proof of Lemma 2 is complete. [

81}1

1
+v1 dx dt} < o5 lo(W)lz2(0,. (3.12)

Proof of Theorem 1. Condition (2.6) and Remark 2 allow us to use the test
function ¢ = u — v in the integral identity (2.8). Then, evaluating the resulting



terms by conditions i), ii7) and Lemma 2, we obtain
/ BRLAO R / / Ou—v)
0 ot B
—I—/ /e(u)|u(t, z)|™ dz dt < cg {1 + |lo(u(r, )|l @) + (3.13)
+ lo(u)]lm(@.) +/ / [[v(t, z)|™ + a1 (t, 2) + ™ (t,z)] dz dt}.
Q-
We transform the first integral in (3.13) in following way

/OT Y /Q Au, (7, ) dz — /Q Ab() de (3.14)

with A(u) defined by (2.9). The proof of equality (3.14) is analogous to the proof of
Lemma 1 in [9].

2
dr +

Remarking that condition p,) implies
7t o(w)]™ —cs < Au) < erf[o(u)]™ +es, (3.15)
using (3.14) and Lemma 1, we obtain from (3. 13)

/ T.’L‘ dx—i—// u—v
—I—s// (t,2))™ dz dt < co 1+// dxdt}

Now the estimate (2.11) follows from (3.15), (3.16) and Gronwall’s Lemma and the
proof of Theorem 1 is complete. [J

(3.16)

Proof of Theorem 2. The assertion of Theorem 2 follows simply under as).
Indeed in this case the functions p, o are bounded such that (2.4) and Lemma 1
imply & € C([0,T], L*(£2)). Hence (2.13) follows immediately from (2.11).
Let us now assume that condition aq) is satisfied. In this case we define

uy (t,z) = max{u(t,z),0}, Qz = {(t,z) € Qr: + u(t,z) > 0}. (3.17)
Theorem 1 implies

e%sm)Kﬂ1+wﬂhﬂrwdxﬁ+lé;/ﬁl+u@xﬂ7

te(0,7)

‘6(’“7_1}‘ dx dt < C10 -

(3.18)
Thus for proving the desired inequality (2.13), it suffices to show that

T

+1’ A>y+2,

:/QT/[l—l—qu(t,x)P S—Z‘qu dr, J(A):/QT/ui(t,x) do dt . (3.20)

We shall need the following assertions:

(3.19)

Define for g >

10



1) the estimate I(%) < ¢12 holds;

2) if for A >y +2, J(A) < e13 , then 1(q) < 14 with g = min{%, 21k

3) if for G € [-27,2], I(§) < 15 , then J(X) < ¢y, with X =G+ 7 + £(2 + 7).

To prove assertion 1) we apply (1.8), Theorem 1, Holder’s and Young’s inequalities:

I(%) g;f#*/T/[l—l—qu(t,x)]v/Q‘%Z’y)‘ X

x |o(ult,y)) — f(t,y)|7+ dy dz dt < (3.21)
2 24y
<ors [ [{1une) + 1)) dode,
Qr
where we used also (2.2) and the simple inequality
(3.22)

jo(u)] < e1s (L +u)™, s = max(u, 0).

Now (3.21), (3.18) and (2.4) imply assertion 1).
Assertion 2) follows from the next inequality that is obtained analogously to (3.21).

1@<t [ [ uea)” [ [P0 otult, ) - fe )l dy do de <

< ey o / / [t u(tz) + 1762} do dt < en.
T
(3.23)

Assertion 3) follows by Holder’s inequality and Sobolev’s embedding theorem. In-

deed, we get from (3.18)

S b

~ T
~ q 2+
J(q+~v+ -2+ S//1+ t, dr = X
(@+7+3@+m) 0 { A U+(~$)] v}
X {/ (14 (t,2)) T dx}T dt <
Q
~|Ou (@ 24y e
Scm/%/[uru(t,x)] ‘%‘ dzdt+c21{/QT/[1+u+(t,x)] dxdt} :
(3.24)
Since I(q) < ¢15 and (3.18) imply
(3.25)

%‘q dz dt S Coo ,
Ox

/Q;/[uru(zt,x)]7

11



we obtain assertion 3) from (3.24), (3.25) and (3.18).
Let us define sequences {¢;}, {\}, ¢ =1,..., N, such that

2
=T

Ai —y

PR v 1 <2, qv > 2. (3.26)

q;
7] )\iZQi+7+E(2+7)a Gi+1 =

This definition is justified by (2.2) and

q;

Gi+1 — q; = m

[2—7(n —1)] Zﬁp—'}/(n—l)] > 0.

Now, using the assertions 1) — 3), we get by iteration that I(qy) < co3 and hence
(3.19). This ends the proof of Theorem 2. [

Proof of Theorem 3. Analogously as in the proof of Theorem 2, we can restrict
us to the case of condition «;). We test the integral identity (2.8) with

o(t,z) = [o(uk(t,z)) — 0'0]+{1 + [o(ur(t, ) — 00]?}, (3.27)

where ug(t,z) = min{u(z,t),k}, k > my, mq is given by 2.10), o9 = o(my) and
r e ( — %, oo) is an arbitrary number.

Analogously to Lemma 1 in [9] we have

/T < ‘9"8—?),¢ S dt — / A (u(r, 2)) de | (3.28)
where
A (u) = /Uu p(s)[o(sk) — 00]+{1 + [o(sk) — 00} ds, s, = min{s, k}, (3.29)
and

AD () > 2711) (14 fo(u) — ooV ™ =1 for w>my. (3.30)

(r +

We write the derivative of ¢ in the form

B oy ) 2

~x(mo < u<k), (3.31)

where x(my < u < k) is the characteristic function of the set {(¢,z) € Qr : my <
u(t,r) < k} and the function ®((u) satisfies

Co3 z{l + [o(u) — OO]Q}T < <I>(T)(u) < coq(r+ 1){1 + [o(u) — 00]2}r (3.32)

12



with 7 = min(1 + 2r, 1). Using (3.28) — (3.32) and the conditions i), iii), we obtain

/{l—l- uk(T:L'))—a]} xm0<u)dx+

+/0 /QP (W) {1+ [o(us) — o0} - 8_Z 2

x(mo < u < k) dzdt <

Ov |2

r+172 [T r
< g { { . ] / / P> () {1+ [o(ur) — 00]*} | = (3.33)
r 0o Jo
r+1 m—1 m—1
X x(mp <u < k) dz dt—l——[l—l— [ul™ "+ | + alt, z)] %
r
r Q-
1
x {1+ [o(u) — 002} " x(mo < u) dz dt] }
We introduce the notations {u > 1} = {(¢,z) € Qr : u(t,z) > 1} and
I*(q) = ess sup / ol(u(t,z))dz + [ [ p*(u)o? ¥ ‘ ‘ dz dt
te(0,1) Jo {u >2}r}7 (3.34)
= 1+u (t,z)dedt, ¢>—=, A>y+2.
[ Jurwapdza, g2 8,
We shall need the following assertions:
1) I"($7%) < ess 5
2) lf J*()\) < 026, A > ’7+2 then [ ( ) < 027) q mln{ ’Y+1 )p2 2_:1 ('7+1 +1}

3) if I*(a S Cog for a> ii’y, then J* (}\) < Cog9 for )\ = (n+ 2)(1 +’)’)

Remarking that p?(u)o? 2(u) < ¢z p(u) foru > 1, g = ff, we obtain assertion 1)
immediately from the Theorems 1, 2.

To prove assertion 2) we start estimating the first integral on the right hand side of

(3.33) with r < min{ 2’\72 — 1, B — 235 —1}. Analogously to the inequality (3.21)
we have

/ /pz(u){l + [o(ug)
0 Q
< 031/ /[1 —I—uk(t, x)]2’7+2w(1+7)
Q+
<031%/ /1+uktx]27+2T1+7/‘any
(3.35)

u(t,y)) — f(t,y)* dy dz dt <
< cx / / (14 o(u(t,2)] + [£(6 )| Y7572 dar di <
Qr

y+1 2 tor42
< c3 {1+ [uy ()™ + | f(t,z)|}7 dz dt < cs.
Qr

)dz dt <

2
@‘ dz dt <

13



Let us now estimate the last integral in (3.33). Using Theorem 1, Lemma 1, Holder’s
inequality and supposing r such that

2+ ) <p 2+ D)(rt D) <X @+ R <X,
we obtain

/+ / [lul™ o™ + at, )] {1+ o/(us) — ouf2 }"** de dt <

< c3y { / /[1 + a2V Gt dr —|—/ /|a(u) — f(t, )P do dt +
QF Q-
+ |:/ /[]. + Uk](2T+1)(7+1)p’1 dx dt:| E} S C3y .
Qf
(3.36)

From (3.35), (3.36) we see that the left hand side in (3.33) is bounded by some
constant depending only on known parameters and independent of k,r, provided

J*(A) < c96 and r is defined by
1

. (A— 2y 2y
r:—mln{i,pg— y = —|—1}—1.
2 v+1 v+ 1" pi(y+1)

So we are able to pass to the limit & — +o00 in (3.33) to obtain I*(g) < co7. That
is assertion 2).

(3.37)

Assertion 3) follows from Holder’s inequality and Sobolev’s embedding theorem anal-
ogously to inequality (3.24).
Now we define numbers {g¢;},{\;}, i =1,..., N, such that

2+ 1

147~ n
A — 2y 27y Ai
i+1 = min  pa — , +1}, 3.38
dit { Lty P 15y s+ 1) (3:38)
< 2y _ 2y
gN-1 < P2 7+1;QN—p2 T+ 1
This definition is justified, since {g;} is increasing by
A — 2 2 2
W—i:—q— 7 > [y+2—-ny]>0,
v+1 n y+1 n(y+1) (3.39)
,7+1—qi:qi[7- —1]+1>1.
pi(y+1) P1 n

Note also that Ay > (n +2)(1 + 7).
So the assertions 1) — 3) imply I*(¢;) < c36, J*(N;) < ¢cg7 for i = 1,...,N. By
I*(qN) S C36, J*()\N) S C37 We have
_ 2y A
ess sup /[a(u(t,m))]p2 Hdr < esq, / /|a(u(t, (E))|%dfl¢dt§c;}7. (3.40)
tc(0,T) JQ Qr
Hence the conditions (2.4), ¢) and Lemma 1 imply (2.14) with p3 = min{p; —

%, % — 2} and the proof of Theorem 3 is complete. [
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4 Boundedness of the function u

Firstly we want to estimate u(¢, z) from above under condition ay).

Lemma 3 Let the conditions of Theorem 4 and o) be satisfied. Then there exists
a constant Mg depending only on known parameters such that

esssup {u(t,z) : (t,z) € Qr} < M. (4.1)

Proof. We apply (3.33) and estimate the integrals on the right hand side by Holder’s
inequality. Using the properties of the function «, (2.14), and (3.40), we get

/QT /pz(u){1 + [o(ug) — 00]2}‘%‘2x(m0 <u<k)dzdt+
T /QT / [ul™ "+ [v|™ " + alt, )] {1+ [o(us) — UO]Z}H%x(mO <) dedi <
< c39 { /QT / {1 + [o(ug) — 00]2}(r+1)5x(m0 < u) do dt}

Sl

(4.2)

n—|—2

with p < depending only on known parameters. (3.33), (4.2) imply for r > 1

/{l—l- uk(Tx))—ao]} xm0<u)dx+

+/ﬂ/pwHLﬂd@—aﬁ}
< ey r? 1+/T/{1+ lo(ux) — o)} Py m0<u)dxdt}

(4.3), Holder’s inequality and Sobolev’s embedding inequalities yield for r > 1

/ /{1+ o(ug) —a()]}TJrl x(my < u) drdt <
T

Sc41-/ /{l—l— (uk) — 09)? }T+ -x(mo < u) d:z:}
{ [+t - a7 ae}™ ar <

2
< cqoT%eSS Sup / {1 + [o(ug(t, z)) — o)? } x(moy < u) dg;}" (4.4)
o<t<T

<[, Jvoteao

+ {1 + [o(ur) — 00]+}T+1] dr dt <
_ 2 ;
ot [t
Qr
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—“‘ x(mo < u < k) dz dt < (4.3)

Sl

Siv
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The inequalities (4.4), (3.40) justify the application of Moser’s iteration process to
verify (4.1) and the proof of Lemma 3 is complete. [

For arbitrary £ € R and functions w on Q7 we define:
w® = w® (¢ z) = max{w(t, z), k}, w_ =w_(t,z) =min{w(t, z),0}. (4.5)

Lemma 4 Let the conditions of the Theorem 4 be satisfied. Then there exists a
constant M; depending only on known parameters such that for an arbitrary k € R

ou®) (t, )
ess sup |u (t,z)| de + ‘
t€(0,T") T

The proof of this lemma is analogous to the proof of Lemma 5 in [10].

Lemma 5 Let the conditions of Theorem 4 be satisfied. Then the estimate
ess inf {u(t,z): (t,z) € Qr} > —Ms (4.7)

holds with a positive constant Mg depending only on known parameters.

Proof. We test the integral identity (2.8) with

[o(u®) —a(—mg)]_ - [u® +me|", k< —mg, r>0.

7 o)

Then, analogously to the proof of the inequality (4.32) in [10], we obtain

/| (1,2) +mo)_|"t! dz +
+ / )dz dt <
T (48)
< +1) // 6v Ou ? @2] (B <u< —mg) +
C44 T a,’p oz X u my
1+ alt,2)] - [[u® + mol_ | } dz dt.
Using Lemma 4 we have from (4.8)
/| (1,2 +m]|r+1d:1:—|—/ ) dz dt
(4.9)

< a5 (r + 172 /T/|[u +mo] ["a(t,z) da dt +1},

where a(t,z) = a(t,z) + |2|* + 1. The condition on a and Theorem 3 imply
& € LP(Qr) with p > %2,
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The inequality (4.9) allows to apply Moser’s iteration process for proving
[u®)(t, 2) +mo]_| < cus.

This implies (4.7) with Mg = mg + c4¢ and Lemma 5 is proved. [

Proof of Theorem 4. The assertion of Theorem 4 follows immediately from the
lemmas 3, 5 if condition «;) is satisfied. In the case of condition as) Lemma 5
yields a lower bound of u(t,z). The existence of an upper bound in that case can
be analogously shown. The proof of Theorem 4 is complete. [

5 Proof of the existence Theorem

Firstly we shall assume that condition «) is satisfied. In this case we regularize the
problem (1.1)-(1.4) by replacing p, a, o by p*,a*,c* in the following way: Let M, be
the constant from Theorem 4 and (t,z) € Qr, v € R, then

p*(u) = p(u), a*(t,z,v,u) = a(t, z,v,u), o*(u) = o(u), if u < My (5.1)
p*(u) = p(My)eM ™™, a*(t,z,v,u) = a(t,z,v, My)eM+

(5.2)
o*(u) = o(My) + p(My)[1 — ™), if u> M, .

We consider the regularized problem in Qr, i. e.,

80’*(U) B Xn: 0 {p*(u) b; (t, z, M) } + a*(t, z,v, u), (5-3)

ot — oz; p
vt @) = = /Q K(z,y)lo"(u(t,y)) — f(t,y)] dy, (5.4)
z::b (t,x, w) cos(v, ;) =0 (t,z) € (0,T) x 09, (5.5)
u(0,z) = h(z), z € Q. (5.6)

This problem satisfies all conditions of Section 2 with the same known parameters
as problem (1.1) — (1.4). Therefore each solution (u,v) of problem (5.3) — (5.6)
satisfies the priori estimate (2.15). So from (5.1) we see that a solution (u,v) of
problem (5.3) — (5.6) is automatically solution of problem (1.1) — (1.4). Therefore it
is sufficient to establish the existence of a solution of problem (5.3) — (5.6) in order
to prove Theorem 5.

Let X (k), k € [0,1], be the Banach space of functions such that

lu(t + 8, z) — u(t, z)|?
i = lelBsrameay + su [ f . dz dt < oo
0<5<% Qr—s

17



To study the solvability of problem (5.3) — (5.6) we introduce the operator A :
X(3) — X(3) transforming a function g € X(3) into the solution U = Ag of the
following problem in Qr

a“;(tU) _ 2:1: aii [ (e, W)} bt G U) =0,  (5.7)
- [ K )io*(att) - 7t dy (5.8)

;bi (t,x, W) cos(v,zi) =0, (t,z) € (0,T) x 99, (5.9)
U(0,z) = h(z), ze€. (5.10)

Taking into account the boundedness of the function o*, the assumptions (2.4), 0)
and Lemma 1 we have

/ 0G(t, z)
ess sup ‘

te(0,7)

dz +ess sup |G(t,z)| < cur, (5.11)
(t,z)eQr

with a constant cs7 depending only on known parameters and independent of g. In
order to guaranty the unique solvability of problem (5.7), (5.9)— (5.10) for given
function G satisfying (5.11), the Theorems 3, 4 in [9] can be adapted. Indeed, the
functions

oG (t
b:(t,$,§):bz(t,$,£— 8(x,x)>’ ’1/21,,7’1,

satisfy the inequalities

n

Z [b;(t’ Z, 5,) o b;(t’ Z, gu)] (gz’ o fz”) > V|§, o 5”|2’ (5'12)

=1
b (¢, z,€)| < val€] + B(¢, z) (5.13)

with B(t,z) = ve(1 + |2E|) € L*(0,T; L2(12)), which essentially coincide with
the conditions 4i), and #i*) ensuring in [9] existence and uniqueness in the case of
Dirichlet boundary conditions. But it is simple to check that the Theorems 3, 4 in
[9] are also true for Neumann boundary conditions.

The estimate (5.11) and adaptations of the Theorems 1, 2 from [9] imply
oG(t,
esssup {|U(t,)| : (t,) € Qr} < My, / /‘ z) Cardi<ny,  (5.14)

where U(t, z) is the solution of problem (5.7) — (5.10) and Mj is a constant depending
only on known parameters and independent of g.

Using the estimates (5.14), (5.11) we can show analogously to [13] that

_ 2
sup / / U+, x)é Ut z) dr dt < My, , (5.15)
Qr-s

T
0<6<T

18



with a constant M;j, depending only on known parameters and independent of g.

So the solution U of problem (5.7) — (5.10) belongs to the space X (1) and therefore
the operator A : X(3) — X(3) is well defined. From the definition of this operator
we see immediately that the solvability of problem (5.3) — (5.6) is equivalent to the
existence of a fixed point
1

Ag=g, ge X<§>. (5.16)
We shall prove the existence of a solution of (5.16) by using the Leray—Schauder
principle. The Leray—Schauder degree theory implies (cf. [13, 16]) that for the
solvability of the equation (5.16) it is sufficient to establish following statements:

1) there exists a family {Aq}, 0 € [0,1], of operators Ay : X(3) — X(3) such
that Ay = A, Ay = 0, Ay is completely continuous V8 € [0,1] and {Ay}
satisfies following continuity condition: for arbitrary sequences {6;}, {u;}
such that 6; — 6y, u; — uo we have Ag,u; — Agyuo, where — denotes strong
convergence in X ().

2) there exists a positive number R such that

Aﬂg 7é g for 0 € [Oa 1]) ||g||X(%) =R. (517)

We define Agg = Uy, where Uy is the solution of the problem

9o (Us) Xn: 0 {p*(Ug) b; (t,x, 8((]97;9G)>} *

+a*(t,z,G,Up) — (1 — 0)a*(t,z,G,0) =0, (t,z) € Qr,
- 0(Uy — 0G
S b (t,x, M) cos(v,z;) =0, (t,z) € (0,T) x 9, (5.19)
— ox
Ug(0,2) = Oh(z), z€Q. (5.20)

The unique solvability of this problem can be seen as that of (5.7) — (5.10). Hence
the operator Ag : X (1) — X(3) is well defined.

We shall check firstly statement 2) formulated above. Let us assume that 6, g are
such that 6 € [0,1], g € X(3) and Agg = g. Then from (5.18) — (5.20), (5.8)
we see that the pair (U, G) is solution of a nonlocal nonlinear problem being anal-
ogous to problem (1.1) — (1.4). Consequently, by Theorem 2 there exists a con-
stant M;; depending only on known parameters and independent of # € [0, 1] such
that ||Upl[r2(0,m;w12(0)) < M. From the corresponding inequality (5.15) we have
||U9||X(%) < M, with a constant M;, depending only on known parameters and
independent of g(¢,z),0. Since the equality Agg = g implies ||g||X(%) < M5, the
desired relation (5.17) is fulfilled for R = M5 + 1.

Now we shall check statement 1) formulated above. The equalities A; = A and
Ap = 0 hold because of the unique solvability of problem (5.7), (5.10). Thus it
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remains to prove compactness and continuity of the operator A. To this aim we
prove the following lemma.

Lemma 6 Assume that the conditions of Theorem j are satisfied. Then the operator
A: X(3) = X(3) defined by the map g — U = Ag, where U is the solution of
problem (5.7)- (5.10), is completely continuous.

Proof. Firstly we remark that the operator A is bounded. This follows immediately
from (5.14), (5.15).

Next we prove auxiliary inequalities. Let for this purpose g; € X(%), i =1,2, and
set

Q
We put the test functions ; given by
1
Y1 = p*(Ul) [U*(Ul) - U*(UZ)]a Yo = Ul - U2;

into the integral identities corresponding to U;. Taking the difference of the two
resulting equalities, we get

(Ul) ot
" Z/ / > 8(Ula; Gl)) aii [p*(lUl) (o7(th) - “*(UZ))] N
o' (U2) bz, M)ai Uy~ Ua)} do di +
/T/ “(t, z, Gy, U1) o' (U (_Ula) (G2) _ a*(t,z, Gy, Us)(Uy — UQ)} dr dt=0.

(5.22)

We transform the first integral in (5.22) analogously to Lemma 2 in [9] to obtain

T oc* (U1) 1 " . 80*(U2) B
/{ SOyl ()] > - < —5 Ui —Up> bt =

Ui (r,z)
// [Ui(r, ) — s]p*(s) ds dx>c48/ \Uy(1, x) — Us(T, )|? dz.

U2 'rz Q
(5.23)

To estimate the second integral in (5.22), we note that by condition p;)

AT V) o ds - o)
e ) = @) = — [y ds = () - W0h), (524
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such that

>Z[ (10, A0 (10, 50| S ) - o)+
+Zb R | A e A

- Zb (t . aG1> 8812 _ (f;)('l(]llf)l) " (U) = o*(Us)].

(5.25)

Since the properties of the function p ensure that

(p)'(th)
p*(Us)

we get from (5.11), (5.25), (5.26) and condition i)

En: {p*(Ul) b; (t,x, W) 81 [p*(lUl) (o*(U7) — U*(Uz))] -

=1

‘p*(Ul) — P (Us) — ") — o (Uy)] ‘ <ew|Ui—Us,  (5.26)

(5.27)

oU, — G 0
- p*(UZ) b; (t,iE, %) 1. (Ul - UZ)} 2 Cs0

I(G1 — Gy) |2 oG
—C51{‘7( ! 2) +(1+‘ ! |U1 |}
Oox
Using condition iii) and (5.14), we can estimate the last integral in (5.22)

0" (Uh) —o*(Uz)
p*(U1)
S Cs2 |U1 — U2|[1 + O((t, l‘)] .

0
51

a*(t,x, Gl; Ul) a*(t,x, GZ; UQ)(UI - UZ) S

(5.28)

Finally, from (5.22), (5.23), (5.27) and (5.28) we see that

/|U1T£L' U27x|dx—|—//‘ Uz)

<o [, [{FS52 4 e 8G1]‘9U1 vl 62

d:c dt <

ox ox
+ [1+ a(t,z)]|Us — |} dz dt.
Now we are ready to return to the study of properties of the operator A. We
begin with the compactness. Let {g;} be a bounded sequence in X(3). Then

by the compactness of the embedding X(3) C L?*(Qr) we can assume that {g;}
converges strongly in L?>(Qr) to some function go. This and Lemma 1 imply the
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strong convergence o 2 @Gy in [L*(Qr)]", where G; is defined analogously
to (5.21). Using (5. 14) (5 15) W1th U; = Agj, we can assume that U; converges to

some Uy € X (3) weakly in L*(0,T; WI’Z(Q)) and strongly in L?(Qr) for an arbitrary

q < 00.

In order to prove strong convergence of {U;} in L*(0, T; W'%(Q)), we use (5.29) with

U, =U;, Uy =U;, G1 = Gj, G2 = G, and we obtain

U2
ess sup /|U T,T) ,-(T,x)|2da:—l—/ /‘M dz dt <
7€(0,T) Qr
2 0G; oU;
§C54/ / + [l—i— e J ] U = Uy + (5.30)
Or T Oz

+[1+ aft,z)] |U; - U]-|} dz dt.

Using already known convergence properties of the sequences {U;}, {G;} and (5.11),
we see that the right hand side of (5.30) tends to zero as 7,4 — oo. That means
compactness of the sequence {U;} in L*(0,T;W'%(Q)). The compactness of this
sequence in X (3) follows now from (5.30) and (5.15) with U, U;. So we have estab-
lished the compactness of the operator A.

Now we shall check its continuity. Let {g;} be a sequence converging strongly in
X(%) to go. Lemma 1 implies that 2G; — 2Gy in [L*(Qr)]". Using the com-
pactness of A we can assume that {U; = Ag;} converges strongly in X (3) to some
Uy € X(3). We have to show Uy = Ago. From the integral identity for U,

/OT<808( >dt—|—/7/ ZP ( 8(UaxG)>g::+

+a* (t,x, Gj, U]-)go} dedt=0, ¢e€ LZ(O,T; W1’2(Q))

(5.31)

we obtain the boundedness of the sequence {o*(U;)} in L?(0, T; [W'?(Q)]*). There-
fore we can assume that o*(U;) converges weakly in H'(0,T;[W"?(Q)]*) to some
functional hg. Using the strong convergence of {U,} to U, in L*(Qr), it is simple
to see that hg = o*(Uy).

Now we are able to pass to the limit j — oo in (5.31) to get

[ <25z as [ [{Sr@n(on T 3

+ a*(t,x,GO,UO)go} dedt=0, p € LQ(O,T; Wl’Q(Q)), Uy(0,z) = h(z), T € 9.

Adapting the uniqueness result Theorem 4 from [9], we obtain from (5) U, = Agy
and this ends the proof of Lemma 6. [

End of the proof of Theorem 5. We have had reduced the solvability of problem
(1.1) — (1.4) to that of equation (5.16). The solvability of the last equation follows via
Leray—Schauders’s principle from the above formulated statements 1), 2), which are
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consequences of Lemma 6. Therefore the proof of Theorem 5 is complete provided
condition «y) is satisfied. In the case of condition ay) the same arguments can be
used. But it is not necessary to pass to the regularized problem (5.3) — (5.5) in that
case. [J

6 Proof of the Uniqueness Theorem

Assume by contradiction the existence of two solutions (u;,v;), j = 1,2, of prob-
lem (1.1) — (1.4) in the sense of Definition 1. We shall show that u;(t,z) =
us(t, ), v1(t, ) = va(t,z). By Theorem 2 — 4 we have

Ou,

Ov
lusll@n) + osl=an + | 52, +]52

< Miy; (6.1)

L*(Qr) L*(Qr)

with a constant M;3 depending only on known parameters. Let us now prove two
auxiliary estimates.
First auxiliary estimate: We have for almost all 7 € (0, 7))

U2
/|u17'x u27x|—|—/ /‘
<055/ / — v+ (6.2)

{ Ou. || Jus
or |l oz

dx dt <

+ 1+ a(t, x)] lug — u2|2} dz dt .

We shall obtain this estimate from the equality (5.22) with p(w;), o(w;), a(t, z, vi, u;),
u;, v; instead of p*(U;), o*(U;), a*(t, z, G;, U;), U;, G; respectively. Indeed, using (6.1)
the local Lipschitz conditions for p' resp. for a(¢,z, -, u), we get

olur) = p(ua) = 258 [o(ur) = o(w)] | < ess fur — wf? (6.3)

and

o(u1) — o(us)
p(u1)

o(u1) — o(us)
p(u1)

+ |a(t, z, v1,us) — a(t, z, v, uz)| - |ug — ug| <

S Cy7 { [1 + Ol(t,.’]?)] |U1 — U2|2 + |'U1 — ’Ug|2} .

‘a’(t7xalulalu’2) a(t,x,vg,u2)(u1 _UZ)‘ S

S |a(t,x,vl,u2)| ) ‘

~(m - )| + (6.4)

Now (6.2) follows by using (6.3) and (6.4) in the same way as (5.29) by using (5.23)
and (5.27).
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Second auxiliary inequality: We have for almost all 7 € (0,7)

/|u1 7,z) — uy(7, x) |2d:c+/ /|u1—u2| 8u1 8”2

Oz

<c58// ul_u? +‘M‘+ (6.5)

Oox
Ov; |2 Ovq |2
V5| 15
The proof of inequality (6.5) coincides with that of inequality (6.8) in [10]. That
proof is based on testing the integral identity (2.8) for u = u;,v = v; with the test
functions ¢; given by

1
pus)
where N = max {‘1% |s| < Mlg} and M3 is the constant from (6.1). Remark

that this proof is independent of the equation for the function wv.

]dmdt<

]|u1 —us]?+ [1+ a(t, z)]jus — u2|2} dz dt .

pr = [exp(No(u1)) —exp(No(uz))] , @2 = N[ui — us]y exp(No(us))]

We shall use also the estimate

/‘ (v, = v2) d:z:—l—/|vl—vg| dx<c59/|u1—u2| dzx (6.6)

following from Lemma 1 and (6.1).

Now we can turn to the proof of Theorem 6. Applying Cauchy’s inequality to the
term with [22| in (6.2), we obtain from (6.2), (6.5), (6. 6)

| (r.a) = wa(ra) P+
0
<060//1—|—atx+‘v1

From condition ii) and Theorem 3 we have
)>n2

Ovsy |2 ~ ~ .
2 € Lp(QT)) p = min (pla P 92 92

Estimating the integral on the right hand side of (6.7) by Holder’s inequality, we get

ox
[ +ll
1+Olt:L‘ +‘
< ¢g1 //|’LL1—U2|p d.’Edt};

Applying Holder’s and Young’s inequalities and the embedding V?(Q) — L
(cf. [13]), we can estimate the last integral in (6.8) as follows

{ / / luy — u2|251 dx clt}’7 < s{ sup / luy (0, ) — up(0, x)|? dz +
Q- Q

0<h< T
O(uy — 2 —t2)G 1)
+/ /‘M dxdt}—i—csgs nt2—pT / /|u1—u2| dz dt
Q- Oz
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“1 u2)|® e at <

802 (6.7)

] luy — us|* dz dt.

l—l—a(t,x)—l—‘%

] luy — ug|* dz dt <
(6.8)

2(n+2)

(@)

(6.9)




with an arbitrary positive number e. With a suitable £ (6.7) — (6.9) imply

/Q s (7, 2) — ua(r, )2 dz < cop /Q / () — up(t,2) 2 dz dt (6.10)

for all 7 € (0,7). Gronwall’s lemma and the last estimate yield u; = us. By (6.6)
this implies v; = v9 and the proof of Theorem 6 is complete. [

Proof of Corollary 1. With the solution u of (1.1)— (1.4) we define
ui(t,z) = u(t,z), wus(t,z)=u(t+0d,z), € (0,7 —t)
and test the integral identity (2.8) with the functions ¢;, i = 1,2, given by
t2

p1(t,x) = ) [0* (ur(t, 2))—0* (ua(t, @),  @2(t,z) = t*(ui(t, z)—us(t, z)) .

Then, arguing essentially as in the proof of (6.7) and (6.10), we obtain

us —
@ Q- oz

S 664/ / |’U,1 — ’U,g|2 dx dt.
Qr

Now dividing by 42, applying Gronwall’s lemma and taking the limit § — 0, the
corollary follows. [

2
dr dt <
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