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A New Approach to the Single Point Catalytic 
Super-Brownian Motion 

Klaus Fleischmann1 and Jean-Frarn;ois Le Gal12 
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2 Universite Paris VI 

Ja.nua.ry 23, 1994 

Abstract 
A new approach is provided to the (critical continuous) super-Brownian 
motion X in R with a single point-catalyst De as branching rate. We 
start from a superprocess U with constant branching rate and spatial 
motion given by the stable subordinator with index 1/2. We prove 
that the total occupation time measure f0

00 ds Us of U is distributed 
as the occupation density measure Ac of X at the catalyst c. This 
result is a superprocess analogue of the classical fact that the set of 
zeros of a linear Brownian motion is the range of a stable subordinator 
with index 1/2. We then show that the value Xt of the process X at 
time t is determined from the measure Ac by an explicit representation 
formula. On a heuristic level, this formula says that a mass Ac(ds) of 
"particles" leaves the catalyst at times and then evolves according to 
the Ito measure of Brownian excursions. This representation formula 
has important applications. First of all, with probability one, the den-
sity field x of X satisfies the heat equation outside of c with the noisy 
boundary condition at c given by the singularly continuous random 
measure Ac. In particular, x is C00 outside the catalyst. This prop-
erty is in sharp contrast to the constant branching rate case. Another 
consequence is that the total mass Xt(R) is always strictly positive 
but dies out in probability as t -+ oo. As a final application a new 
derivation of the singularity of the measure Ac is provided. 
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1 Int_roduction and Main Results 

1.1 Basic Model and Motivation 

The (critical continuous) single point catalytic super-Brownian motion Xt, 
t ~ 0 on the real line R has been introduced by Dawson and Fleischmann 
[4] (see also [3]). Intuitively, the process X describes the evolution of a large 
population of small branching particles on the real line, in the case when the 
branching phenomenon occurs only at a fixed point c E R called the catalyst. 
When particles are away from c, they move according to independent linear 
Brownian motions. On the other hand, when the particles arrive at c, they 
are subject to a critical branching mechanism, heuristically with an infinite 
branching rate (to compensate for the smallness of the "branching area"). 
In Dynkin's formulation [7], the local time at c of the Brownian particles 
governs the branching phenomenon. ' 

A rigorous description of X can be given in terms of Laplace function-
als. To this purpose, we denote by M f the set of all finite measures on 
R equipped with the topology of weak convergence, by C(R, R+) the set of 
all bounded nonnegative continuous functions on R, and by B(R, R+) the 
set of all bounded nonnegative Borel measurable functions on R. Once and 
for all we fix a constant f! > 0, representing a multiplicative weight of the 
branching intensity he at c. By definition, Xis the time-homogeneous con-
tinuous Markov process on M1 such that, for every µ E Mj, t > 0 and 
h E C(R,R+), 

E[ exp-< X,,h > I X 0 = µ] =exp- jµ(db) v(O,b), (1) 

where the function v( s, b ), s ~ 0, b E R is the unique nonnegative solution 
of the integral equation 

v(s, b) +I! ['"dr p( r - s, c - b) v2(r, c) = l{s«} jdy p(t - s, y - b) h(y). (2) 

Here p( s, b) denotes the Brownian transition density 

1 b2 
p(s,b):= ~exp--, 

v 27r s 2s 
s > O, b ER. (3) 

Formulas (1) and (2) can be extended to get the Laplace functionals 
associated with the finite-dimensional marginals of X. In fact, using the 
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Markov property, for 0 < t1 < t2 < ... < tn and h1, ... , hn E C(R, R+), 

E[ exp- t < x,,, h; > I Xo = µ] =exp -Jµ(db) v(O,b), (4) 
i=l 

where the function v( s, b ), s ~ 0, b E R is the unique nonnegative solution 
of 

v(s, b)+l' 100

dr p(r-s, c-b)v2(r, c) = t 1{,<t;} f da p(t;-s, a-b)h;( a). (5) 
s i=l 

For this formula, see Lemma 3.1.1 of [4), with a slightly different formulation, 
and Lemma 4.1 in Dynkin [7) (in a much more general setting). 

Let us note some important features of equation (5). For b =/= c, the 
function v( s, b ), s ~ ·o is given by an explicit formula in terms of v( s, c ), s ~ 0 
(this corresponds to the degenerate branching rate g be)· Then the function 
v( s, c ), s ~ 0 solves an integral equation for which the uniqueness of the 
nonnegative solution follows from an easy extension of the classical Gron wall 
lemma. 

Let Y denote the occupation time process related to X. That is, yt for 
t ~ 0 fixed is the random element in M f defined by 

< yt,h » := l'ds < X,,h >, h E C(R,R+)· 

It was proved in [4] that the measure yt has a density Yt(b), b ER where y 
can be chosen to be jointly continuous in (t, b ). For every b fixed, Yt(b) is a 
monotone increasing function of t and one can consider the associated mea-
sure Ab(dt) defined by Ab([u,v)) = Yv(b)-Yu(b). Henceforth Ab is called the 
occupation density measure at b. When b =/= c, the measure Ab is absolutely 
continuous with respect to Lebesgue measure. On the other hand, it was 
recently proved in [5] that Ac is singular, although its carrying dimension is 
one ([4]). 

A heuristic explanation can be given as follows. Mass arriving at c by 
the heat flow will "normally" be killed by the infinite branching rate, leading 
to a vanishing "density" dyt(c)/dt at c for Lebesgue almost all t. But again 
by this infinite rate, "occasionally" mass will be created at c. This density 
of mass at c will not occur at a fixed time, but nevertheless on a time set of 
"full dimension". 
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Our goal in this work is to provide a new approach to the process X. The 
motivation was to get a better understanding of the role of the occupation 
time measure _xc at the catalyst. We will present a self-contained construc-
tion of X, which makes it clear that _xc is the basic object in the model. 
Indeed, the process X is given in terms of .X c by a deterministic formula. 
Our construction will allow us to rederive several known properties of X, 
such as the existence of the .density field x of X and the singularity of the 
measure .X c. We will also obtain some interesting new properties concerning 
the smoothness of x and the long-time behavior of X. 

1.2 ·The Super-Stable Subordinator 

A key ingredient of our construction is the (critical continuous) superpro-
cess U with constant branching rate fl > 0 whose spatial motion is the 
(one-dimensional) stable subordinator with index 1/2. For convenience we 
call this process U the super-stable subordinator. Recall that the stable sub-
ordinator with index 1/2 is the Levy process on the real line whose transition 
probabilities are given by 

s s2 

q(s, b) := l{b>O} ~exp - 2b, 
v27rb3 

s > 0, b ER. (6) 

Notice that q( s, ·) can also be interpreted as the density function of the 
(first) hitting time of the point s by a linear Brownian motion started at the 
origin. 

The associated superprocess U with constant branching rate fl > 0 is 
by definition the Mrvalued time-homogeneous continuous Markov process 
characterized as follows. For v E M f, 0 < ti < ... < tn and hi, ... , hn E 
C(R,R+), 

n 

E [exp- 2= < U1;, h; > I U0 = v] =exp- jv(db) u(O,b) (7) 
i=l 

where u( t, b ), t ~ 0, b E R is the unique nonnegative solution to the integral 
equation 

u(s,b)+e ['°dr jdaq(r-s,a-b)u2(r,a) (8) 

= t 1{,<t;} f da q(t; - s, a - b) h;(a). 
t=l 
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Observe the analogy between equations (5) and (8): The Brownian transi-
tion density pis replaced by the stable transition density q, and the catalytic 
point measure g be( a) da is replaced by the measure g da corresponding to 
a constant branching rate g. Both formulas are special cases of a formula. 
valid for more general superprocesses (recall again Lemma 4.1 in Dynkin 
[7]). 

Consider the total occupation measure V := J0
00 ds Us of U. This is a 

random finite measure on R. The finiteness of V follows from the well-
known property that Us = 0 for s sufficiently large, a.s. Moreover, the total 
mass process Us(R), s 2:: 0 is a critical Feller diffusion (i.e. a zero-dimensional 
squared Bessel process). Hence its integral V(R) is a stable random variable 
with index 1/2. 

Later, we will always consider the situation when the initial value Uo = v 
of U is a (deterministic) measure supported on R+. Then Vis also supported 
on R+ and we will interpret it as a measure on R+. 

We will need the Laplace functional of V. Such functionals were first 
computed by Dawson [1] and Iscoe [9] in special cases and later generalized; 
see Dynkin [7] or Section 7.4 in Dawson [2]. Here, we may simply start 
from the Laplace functional (7) for the finite-dimensional marginals of U, 
take ti = i/k, hi = <.p/k, and, by a suitable passage to the limit, we arrive 
at the following result. Let g(b) denote the Green function of the stable 
subordinator with index 1/2: 

100 1 
g(b):= dtq(t,b)=l{b>O} ~· 

o v2~b 
(9) 

Then V has the following Laplace functional: For v E M f and <.p E C ( R, R+) 
with compact support, 

E [exp - < V, <.p > I U o = v] = exp - < v, w > (10) 

where w(b ), b E R is the unique nonnegative solution to the equation 

w(b) +I! f da g(a - b) w2(a) = f da g(a - b) cp( a). (11) 

The uniqueness of the solution to (11) is easily established using arguments 
similar to the classical Gronwall lemma. Formulas (10) and (11) can be 
extended to any <.p E B(R, R+) with compact support, via the monotone 
class theorem, and more generally, by a monotonicity argument, to any 

5 



nonnegative Borel measurable function <.p with compact support satisfying 
the following finiteness condition: 

sup f dag(a - b) 1.p(a) < oo. 
bER 

(12) 

It is again easy to verify that equation (11) still has a unique nonnegative 
solution under this more general assumption. 

1.3 Main Results 

We keep the notation introduced in the previous subsections. In addition 
from now on we fix a nonzero measureµ E M1 and assume that Xo = µ 
and U0 = vµ, where the measure vµ is defined by 

< vµ, cp > := jµ( db) fo00 

ds q(Jc - bl, s) cp(s), <.p E C(R, R+), (13) 

with the convention that J0
00ds q(O, s) 1.p(s) = 1.p(O) (that is q(O, ·) = 80). The 

measure v µ corresponds to the "law" of the hitting time of c by a Brownian 
motion "distributed" according to µ(db) at time 0. In particular, Vµ = 80 if 
µ = 8c. 

Theorem 1 (representation of Ac) Under the previous assumptions, the 
random measures V and Ac are identically distributed. In particular, the 
topological support of _xc is R+ a.s. 

The latter theorem is in a sense a superprocess analogue of the classical 
result saying that the local time measure at 0 of a linear Brownian motion 
is the occupation measure of a stable subordinator of index 1/2 ( equiva-
lently, the inverse local time at 0 of a linear Brownian motion is a stable 
subordinator of index 1/2, see e.g. [15], p. 223). 

It was proved in [4] that the point catalytic super-Brownian motion X 
lives on the set of all absolutely continuous measures, i.e. it can a.s. be 
represented as 

Xt( db) = Xt(b) db, t > 0. 

Moreover, the density field Xt(b) can be chosen to be jointly continuous on 
the set {t > O} x {b ::/= c}. We will now obtain a representation formula for 
Xt(b) in terms of _xc. To this purpose we need to introduce the transition 
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density p*( t, a, b) of Brownian motion killed at c. Obviously, p*( t, a, b) = 0 
if (a - c )(b - c) ::; 0, and the reflection principle gives 

p*(t,a,b)=p(t,b-a)-p(t,b+a-2c) if (a-c)(b-c)>O. (14) 

The announced representation formula now reads as follows: 

Theorem 2 (representation of the mass density field) With probabil-
ity one, the density field Xt(b) of X can be represented as 

x1(b)= jµ(da)p*(t,a,b)+ [>.C(ds)q(Jb-cJ,t-s), t>O,b;ioc. (15) 

In particular,. Xt(b) > 0 for every t > 0, b i= 0, a.s. 

Note that the deterministic first term of the right hand side of (15) 
vanishes whenµ = be (so that Vµ = bo). 

Let us briefly explain this representation formula. Clearly, the first term 
in the right hand side of (15) corresponds to the contribution of ( approxi-
mating) particles that have not yet reached the catalyst by time t. In other 
words, it comes from the heat flow with absorption at c. To understand the 
second term, notice that, for a fixed s > 0, the funct~on q(lbl,s), b E R 
is the density of the Brownian excursion at time s, under the Ito measure 
denoted by n( de): 

q(lbl,s) db= n{f(e) > s, e(s) E db} 
where £( e) is the duration of the excursion e and e( s) its location at time 
s (see e.g. [15], p. 456). This allows us to give the following intuitive in-
terpretation for the second term in the representation formula (15). The 
mass present at time s in the vicinity of the catalyst can be measured by 
Ac( ds). In terms of an approximating particle system, particles then move 
away from c according to Brownian excursions (recall that no branching is 
allowed outside of c). Such an excursion gives a contribution to Xt(b) if it 
has not yet returned to the catalyst and has position b at time t. 

We can combine Theorems 1 and 2 to get a complete construction of 
the process X. Indeed, starting from the total occupation measure V of the 
super-stable subordinator U, we define for every t > 0 

Zt(db):=(jµ(da)p*(t,a,b)+ f V(ds)q(jb-cj,t-s))db. (16) 
J[o,t) 

By our two theorems, the measure-valued process Z is then a single point 
catalytic super-Brownian motion started at µ, and the occupation density 
measure of Z at the catalyst is V. 
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1.4 Proof of the Main Results 

We will prove Theorems 1 and 2 simultaneously by checking that the process 
Z defined from V via formula (16) is a single point catalytic super-Brownian 
motion, and then that the occupation density mea.sure of Z at c is V( ds ). 
Since the density of the random measure Zt, as given in formula (16), is 
clearly a continuous function on { t > O} x {bf. c }, we will thus obtain that 
this function coincides with the density field of X, completing the proof of 
formula (15). 

We will make use of the following identities (recall the notations intro-
duced in (3,6,9,14)): For 0 ::; s < t and a, b E R, 

g ( t - s) = p( t - s' 0)' ( 1 7) 

p(t, b - _a)= p*(t, a, b) + l dr q(lc - al, r) p(t - r, b- c). (18) 

The first equality is trivial. Formula (18) is easy to prove by a probabilistic 
argument. Indeed, the function p(t, · - a), which is the density at time t of 
a linear Brownian motion B started at a, is the sum of two contributions: 
The first one coming from those paths that do not hit c by time t, and the 
second one from the remaining paths. To obtain the contribution of the 
latter, notice that q(jc - al,·) is the density function of the hitting time of 
c by B, and apply tpe strong Markov property at that hitting time. 

Note the special case of (18) when b = c: 

p(t,c-a)= ldrq(lc-al,r)p(t-r,O). (19) 

We will compute now the Laplace functionals of Z. Let 0 <ti < ... < tn 
and hi, ... ,hn E C(R,R+)· Then, by the definition (16) of Z, 

t < z,,,h; > = t f µ(da) !db p*(t;,a,b)h;(b) + < V,<p > 
i=i i=i 

with 

<p( s) := t l{oSs<ti} j db q(lb - cl, t; - s) h;(b ), 
i=i 

s 2: 0. (20) 

It is easily checked that <.p satisfies the finiteness condition (12). So we can 
use (10), (11) to calculate the Laplace functional of Z: 

n 

Eexp- L < Zti,hi > 
i=i 

(21) 
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=exp [ - t j µ(da) j dbp*(t;,a,b)h;(b) - < vµ,w >] 
i=l 

where, for s 2: 0, 

w(s) + (! ['" dr g(r - s) w2(r) = ['" dr g(r - s) cp(r). 

By the definition (20) of <.p and using the identities (17) and (19), we get 
that w satisfies the equation 

Comparing this with (5) in the special case b = c, we obtain w(s) = v(s, c) 
where vis the unique nonnegative solution of (5). We then use this integral 
equation and the definition (13) of vµ to get 

t f µ(db)[' ds q(lc - bl, s) f da p(t; - s, a - c) h;(a) 
i=l 0 

- (!!µ(db) 100 

ds q(lc- bl, s) J.00 

dr p(r - s, 0) v2(r, c). 

Next we exploit (19) to arrive at 

t jµ( db)[' ds q(lc - bl,s) f da p(t; - s, a - c) h;(a) 
i=l 0 

- (! fµ(db) 100 

dr p(r,c-b)v2(r,c). 

Finally, using the identity (18) the exponent in the right hand side of (21) 
becomes 

t !µ(db) f da p*(t;, b,a) h;(a) + < vµ, w > 
i=l 

= jµ( db) t jda p(t;, b - a) h;(a) - (! jµ( db)1
00 

dr p(r,c - b )v2(r, c). 
i=l 0 

But by (5) withs= 0, this is nothing else than J µ(db) v(O,b). Inserting into 
(21) and comparing with ( 4 ), we g€t that Z has the same finite-dimensional 
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marginals as X. Hence [4] a version Z of Z must be a (continuous) single 
point catalytic super-Brownian motion. However, it is immediate on the 
defining formula (16) of Z that < Zt, <p > is a.s. continuous whenever <p E 
C ( R, R+) has a com pact support not containing c. For such functions <p we 
have thus < Zt, <p > = < Zt, <p > for every t ~ 0 a.s. Moreover, we know 
from [4] that Zt( { c}) = 0, for every t ~ 0, a.s. Since the same property 
holds for Z by definition, we conclude that Z and Z are indistinguishable, 
so that Z itself is a single point catalytic super-Brownian motion, what had 
to be proved. 

Next we want to calculate the occupation density measures related to Z. 
Set 

g*(t,a,b) := fo'ds p*(s,a,b), F(s) = f dr q(l, r). 

Observe that by the definition (16) of Z, for h E C(R,R+), 

l ds j z.(db) h(b) 

(22) 

=!db h(b)jµ( da) g*(t, a, b) +jdb h(b) f V( ds) r dr q(lb - cl, r - s). 
J[o,t) ls 

Using the scaling property K 2q( ]( s, K 2b) = q( s, b) of the stable subordinator 
and the definition (22) of F, we conclude that the measure J~ ds Zs has a 
density given by 

b ,_. jµ( da) g*(t, a, b) + Jo,tt( ds) F( (: ~ :)2 ), (23) 

Since F is a distribution function, by setting F( oo) = 1 we see that the 
previous formula defines a continuous function of b E R, which we can 
therefore identify with the (jointly continuous) occupation density field of Z 
(denoted again by y), taken at time t. Hence _xc([O,t)) = Yt(c) = V([O,t)) 
a.s., for every fixed t. But both functions are le~t-continuous in t, and we 
get _xc = V a.s., as wanted. 

We still have to prove the remaining assertions of Theorems 1 and 2. If 
µ is not concentrated at c, then by the definition (13) of the initial measure 
vµ, the topological support of Vµ is R+· On the other hand,µ= a 8c implies 
vµ = a 80. In both cases, the topological support of the total occupation 
measure Vis R+ by Theorem 1.5 of Perkins [13]. In particular, V([O,c]) > 0 
for every E > 0, a.s. Then Theorem 1 and the representation formula (15) 
show that Xt(b) > 0 for every t > 0, bf= c, a.s. D 
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Remark Let us briefly discuss the relationship between our approach and 
the results of [4]. Without any reference to [4], the previous proof shows 
that the process Z defined by (16) has the marginal distributions of the 
single point catalytic super-Brownian motion, as given in (4) and (5). We 
mainly needed to refer to (4] for the almost sure continuity of Z (a proof 
not depending on [4] would require some information on the local behavior 
of the random measure V). Our construction clearly gives the existence 
and joint continuity of the mass density field of Z on {t > O} x {b '/= c}. 
The joint continuity of the associated occupation density field on R+ x R 
also follows from the explicit formula (23), provided we know a priori that 
the random measure V has no atoms (this fact can be easily deduced from 
the second moment formulas for V, see (39) and ( 48) below). Finally, we 
can also remark that the Laplace functionals of the density field Xt(b) or 
the occupation density field Yt(b) follow immediately" from the expression of 
these quantities in terms of _xc and the formulas of§ 1.2. <> 

2 Some Applications 

In this section, we develop a few simple applications of our main results. 

2.1 Measurability of the Past with respect to the Present 

We will use Theorem 2 to obtain a somewhat surprising measurability prop-
erty of X. We assume that this process is defined on a probability space 
(!!, :F, P). 

Corollary -3 ("backward" measurability) Fix t ~ 0. Denote by a(Xt) 
the a-field generated by Xt, augmented by the :F-measurable sets of P-
probability zero. The random measure l[o,t)(s).Xc(ds) is a(Xt)-measurable. 
Consequently, (X8 , 0 S s S t) is a(Xt)-measurable. 

Proof Clearly, the densities Xt(b ), b '/= c are a(Xt)-measurable. By the 
representation Theorem 2, this implies that, for every a > 0, 

1t 1t a a2 
_xc(ds)q(a,t-s)= _xc(ds) J exp- ( ) 

. 0 0 27r ( t - s )3 2 t - s 
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is measurable with respect to a(Xt)· Let 7J( ds) denote the image measure of 
l[o,t)(s) (t- s)-3 / 2>.c(ds) by the mappings r-+ (t- s)-1 . We get that 

J a2 
7J(dr) exp-2 r 

is a(Xt)-measurable for every a > 0. It follows that 7], hence l[o,t)( s) >.c( ds) 
is a(Xt)-measurable. Finally, if r belongs to [O, t], then by the representation 
formula (15), Xr is a measurable function of l[o,t)(s)>.c(ds), finishing the 
proof. D 

2.2 Smoothness of the Mass Density Field 

The next result shows that (outside the catalyst) Xt(b) is much smoother 
than in the constant branching rate case (recall that the one-dimensional 
super-Brownian motion density field is commonly believed to have a criti-
cal Holder index 1/2, with respect to regularity in the space variable; see 
Reimers [14] for a one-sided estimate). 

Corollary 4 (smoothness of the mass density field) With probability 
one, the density field Xt( b) is a C00 -function of ( t, b) on the set { t > 0, b -:j:. C} 
and satisfies the heat equation: 

8xt(b) _ ~82 xt(b) 
8t - 2 8b2 ' 

t > 0, b -=I c. (24) 

Proof By symmetry, we may restrict our attention to the domain D := 
{(t,b); t > 0, b > c}. We start from th.e representation formula (15) of x 
and first observe that the function 

b ,_, jµ( da) p*( t, a, b) 

is of class C00 on D and solves the heat equation in this domain. Therefore, 
we only need to consider the term 

Xt(b) := _f\c(ds)q(b- c,t- s), Jo · (t,b) ED. (25) 

Note that, for every choice of integers k,f ~ 0, the partial derivative 

ak+c 
qk,c(b, t) := Btkabc q(b, t) 
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can be written as a finite linear combination of terms of the type 

bi c 312-i exp (-b2 /2t) 

where i,j are nonnegative integers such that i::;; j +1. However bi r 3f 2-i = 
(b2 /t) 3f2+j b-3 - 2i+i where -3 - 2j + i ::;; -2 - j < 0. Hence, for k, £ ~ 0 
and £ > 0 fixed, 

sup lqk,i(b, t)I < oo. 
t>O, b'2::.e 

(26) 

We can then use this bound to verify by induction that the function Xt(b) 
defined in (25) is C00 in D and that 

()k+f. r 
()tk()bf. Xt(b) = Jo Ac( ds) qk,f.(b - c, t - s ). (27) 

In order to justify derivatives with respect to t, we also use the fact that, 
fort < t', 

t' 
t' ~ t 1 >.c( ds) qk,t(b - c, t' - s) ---+ 0 as t' - t ---+ 0. (28) 

Since q(b, t) satisfies the heat equation in { t > 0, b > O}, from (27) it 
follows readily that Xt ( b) solves the heat equation in D. D 

Remark The functipn Xt(b) solves the heat equation in D with the general-
ized boundary conditionsµ( db) on { t = O} and Ac( dt) on {b = c }. The latter 
condition should be understood as the a.s. statement 

limfdt<p(t)xt(b) = JAc(dt)cp(t), 
b-+c 

for every <p E C(R, R+) (this convergence follows easily from the joint con-
tinuity of the occupation density field Yt(b) on R+ x R). <> 

2.3 Asymptotic Behavior 

Recall that, for a~ 0, F( a) = J0adb q(l, b ), and for a, b E R set 

g*(a,b) := g*(oo,a,b) = fo 00 

dtp*(t,a,b) 

so that 
g*( a, b) = l{(a-c)(b-c)>O} 2(1a - cl/\ lb - cl). (29) 

The next result is a refinement of Theorem 1.3.2 in [4): 
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Corollary 5 (total occupation density) With probability one, for every 
bin R, 

Yt(b)-+ Yoo(b) := jµ(da)g*(a,b) + Ac(R+), 
t-oo 

where the random variable Ac(R+) has a stable distribution with index 1/2. 

Proof We simply pass to the limit as t ~ oo in the formula 

y,(b) = j µ( da) ~*(t, a, b) + Jo,t/'°( ds) F((: ~ :)2 ), 

(recall. (23)) using that F(t) j 1 as t ~ oo . In § 1.2 we have already noticed 
that Ac(R+), or equivalently V(R+), has a stable distribution with index 
1/2. D 

Now we want to sharpen the. local extinction Proposition 1.3.1 of [4]: 

Corollary 6 (total mass process) The total mass of X at time t is 

X,(R) = !µ( da) ( 1 - F( (a~ c)2 )) + fo\c( ds) J 7r (t 
2
_ s)" (30) 

This total mass is (strictly) positive for every t > 0 a.s. and converges to 0 
in probability as t ~ oo. 

Proof To get (30), integrate (15) with respect to db. The positivity of 
Xt(R) follows from that of Xt(b) (recall Theorem 2). Then, by dominated 
convergence, 

,!!_.~ jµ(da) ( 1 - F((a ~ c)2 )) = 0. 

To complete the proof, first notice that 

l t-1. fh 
lim Ac(ds) . ( ) = 0 a.s. 
t-oo 0 7r t - S 

because the measure Ac is finite. To calculate the first moment of the remain-
ing part of the integral we may replace Ac by V and get by the well-known 
superprocess first-moment formula, 

E t V(ds) = 
lt-1~ la t 100 

l{t-l<s<t} vµ(dr) dsg(s - r) Fs 
0 r t - S 

rvµ(dr) ( ds 
Jo . J(t-l)vr J27r (t - s)(s - r) · 
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But this obviously converges to 0 as t ---+ oo by dominated convergence. D 

3 Singularity of the Occupation Density 
Measure at the Catalyst 

3.1 Statement of the Result 

By Theorem 1 the topological support of the measure _Ac coincides a.s. with 
R+. We also already mentioned that Ac is a continuous measure. N onethe-
less, in the case when X 0 = be, Dawson, Fleischmann, Li and Mueller [5) 
have recently proved that ,xc is a.s. singular. We will propose an alternative 
approach to that result, which applies to the case of a general initial state 
µ E M f and also provides some additional information. 

Recall that by Theorem 1 the random measures Ac and V are identically 
distributed provided that X and U are started with µ and v µ, respectively. 
We will now consider the super-stable subordinator U with a general initial 
state v E M1, and its total occupation measure V = J0

00 ds Us. 
Set h(E) := E log log~ and denote by h-m the associated Hausdorff mea-

sure. 

Theorem 7 (singularity of V) We can find two positive constants C, C' 
such that, with probability one, for the set 

·- { . . V ([b - E, b + E]) } 
H .- b E R, lim sup 1 1 ( / ) ?_ C 

clO € og og 1 € 

we have V(R\H) = 0 and h-m(H)::; C' V(R) < oo. 

Roughly speaking, the theorem states that for V-almost all b one can 
find a sequence En = En( b) ---+ 0 as n ---+ oo such that V has mass of order 
?_ En log log(l/ En) in the En-vicinity of b. In particular, the "upper density" 
of the measure V in these points must be +oo. 

Note that the bound h-m(H) ::; C'V(R) follows from the well-known 
density theorems of Rogers and Taylor [16] so that we only have to check 
that almost surely V is concentrated on H. 

3.2 Canonical Measures and Campbell Measure Formula 

Before proceeding to the proof of Theorem 7, we recall, in the special case of 
the process U, a few basic facts about canonical measures of superprocesses. 
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We refer to Section 4 in El Karoui and Roelly [8] (see also Dawson and 
Perkins [6] and Le Gall [10] for related results). 

We assume that the process U is the canonical process on the space 
n := C(R+, M1) of all continuous functions from R+ into M1. Denote by 
Pv the probability on f! under which U is a super-stable subordinator (with 
index 1/2) started at v E M1. We also set CJ := sup{s; Us -:f. O} which 
represents the extinction time of U. Then, for every b E R, the limit 

lim ! Pesb =: Qb (31) 
e!O [, 

exists in the following "weak" sense. Qb is a CJ-finite measure on n that does 
not charge the zero trajectory and satisfies: 

(i) Qb( CJ ;::: t) < oo for every t > 0, 

(ii) for every 0 < t1 < ... < tn, for every function <.p continuous and 
bounded on Mj such that c.p(O, ... , 0) = 0, 

lim ~ Eesb c.p(Ut1 , ••• , Utn) = Qb <.p(Ut1 , ••• , Utn)· 
e-i-0 [, 

The measures Qb are called the canonical measures of the super-stable 
subordinator U. Conversely, we can recover the laws Pv from the collection 
Qb in the following way. If N( dw) denotes a Poisson point measure on n 
with intensity J v( db) Qb( ·), then the process 

u, = j N(dw) u,(w), t "?. o 
has distribution Pv (see Theoreme 17 in [8]). In other words, the measures 
Qb describe the "cluster processes" of the infinitely divisible law Pv. Notice 
that V : = JN ( dw) V ( w) is the total occupation measure of U. 

We now observe that it is enough to check that the statement of Theorem 
7 holds a.e. under every measure Qb (by translation invariance it even suffices 
to consider Q0 ). Indeed, we can then apply this result to each atom in the 
(countable) support of N( dw) and easily conclude that the same property 
holds for the total occupation measure V of U. 

We need to derive a few properties of the canonical measures Qb. Using 
the classical first-moment formula for superprocesses and the connection 
between measures Pv and Qb, one immediately obtains the formula 

Qb < V,<p > = f dag(a - b)rp(a) (32) 
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for any nonnegative measurable function <.p on R. 
Another key ingredient is the Campbell measure formula we will now 

establish. On the Skorohod space V ([O, t], R+), let Pt( di) denote the law 
of the stable subordinator with index 1/2 started at b (and running on the 
time interval [O, t]). Let 0 denote the space of all point measures on Rx n 
(precisely, the set of all counting measures on R x n that are finite on sets 
of the type [O, t] x {a 2:: £}) and write (} for the generic element of 0. For 
f E V([O,t],R+), we let Pi(dfJ) denote the unique probability measure on 
0 under which 0( ds dw) is a Poisson point measure on R x n with intensity 

(33) 

The announced formula now reads as follows: 

Proposition 8 (Campbell measure formula) For b ER and every non-
negative measurable function ~ on R X M f, 

Formulas such as (34) are part of the folklore of the subject (see [11) 
for the case of super-Brownian motion and also [6), Section 4, and [10) for 
closely related facts). For the sake of completeness, we will provide a short 
proof. But first let us briefly give a heuristic interpretation of formula (34). 
The left-hand side of (34) describes the "law" of the pair (a, V) where V 
is the total occupation measure J0

00 dt Ut under the canonical measure Qb, 
and a is a point "chosen" according to V(da). In the right-hand side one 
selects "at random" a point t from R+, and considers the value f(t) at 
time t <:>fa stable subordinator with index 1/2 starting at b. Moreover, at 
Poissonian time points s along the path f ( s ), one starts "cluster processes" 
w "distributed" according to QJ(s)( dw ), and then one superimposes their 
total occupation measures V(w) to arrive at the quantity JB(dsdw)V(w). 
The formula (34) states that the pair (!(t), JB(dsdw) V(w)) constructed 
in this way has the same "law" as the previously defined pair (a, V). 

Proof It is enough to consider the case ~(y, V) = <.p(y) exp - < V, 'ljJ > 
where both <.p and 'ljJ are nonnegative continuous functions on R with compact 
support. Using the Poisson exponential formula, the right-hand side of (34) 
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can then be written as 

[" dt f Pt(df) ip(f(t)) exp-2g l ds QJ(s) ( 1- exp - < V, ,P >) 
=Eb f"' dt ip(6) exp -2g l ds w((s) =: U(b) (35) 

where w(a) := Qa(l - exp-< V,'lj; >)and the process (~s, s ~ 0) is a 
stable subordinator with index 1/2 that starts at b under the probability 
measure Pb. 

On the other hand, the left-hand side of ( 34) is 

u(b) := Qb < V, <p > exp - < V, 'lj; > . 

For A E [O, 1] and b. ER, set 

W>.(b) := Qb ( 1 - exp - < V, A<p + 'lj; >). (36) 

Then W>.(b) ::; Qb < V, A<p + 'lj; > and the first- moment formula (32) shows 
that the functions w >. are uniformly bounded over R. Now recall the way the 
measures Pv can be reconstructed from the canonical measures Qb. Using 
the exponential formula for Poisson measures and comparing with formulas 
(10) and (11), we immediately get that W>. is the unique nonnegative solution 
of 

W>.(b) + l' f dag(a - b) w~(a) = f dag(a - b) (Aip + ,P)(a). (37) 

Moreover, by differentiating (36), 

d
d' W>.(b)I = Qb < V,<p > exp-< V,'lj; > = u(b). 
/\ >.=O+ 

The justification is easy thanks to the finiteness of first moments (32) and 
bounded convergence. We can then differentiate (37) with respect to A at 
.X = o+ to get 

u(b)+ 2g jda g(a - b) u(a) w(a) = jda g(a - b) ip(a). (38) 

The justification is again easy because both the functions w >. and their 
derivatives with respect to A E [O, 1] are uniformly bounded and vanish 
outside some common bounded region. A Gronwall lemma-type argument 
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shows that u is uniquely determined by equation (38) when w and <p are 
given. It is then a simple exercise to check that the function ("Feynman-
Kac solution") u of (35) solves (38). Hence u = u, which completes the 
proof. D 

We shall finally need the second-moment formula for the total occupation 
measure V under Qb : 

Qb < V, <p >2 = 2e jda rp(a) jda'rp(a') jdz g(z - b )g(a - z)g(a' - z) (39) 

for eve~y nonnegative measurable function <p on R. This formula can for 
instance be obtained by taking <I>(a, V) = c.p(a) < V,<p >in (34). 

3.3 Proof of the Singulari~y Theorem 

As already explained, the proof of Theorem 7 reduces to finding a constant 
C > 0 such that, Qo a.e., V(da) a.e., 

limsup V([a ~(';+cl) ~ C. 
dO c 

By Proposition 8, we see that this claim is in turn equivalent to checking 
that dt a.e., PJ( df) a.s., pf (dB) a.s., 

limsup 1 1
1 

( /) f O(dsdw)V(w)([!t-E,ft+c]) ~C. (40) 
e!O c og og 1 c J[o,t]xn 

where w~ now write ft = f(t) for convenience. We can in fact even verify 
the existence of a constant C such that ( 40) holds for all t > 0, PJ( df) 
a.s., pf (dB) a.s. We fix t > 0 and consider the unique integer N such that 
2-N ::; t < 2-N+l. For every integer n ~ N, we consider the following 
subset of V ([O, t], R): 

Hn := { f E V([O, t], R); fs E [ft-r2n+l, ft-2- 2n], Vs E [t-rn, t-rn-l]}. 

Next introduce the scaling transformation 

Note that r-1 Hn = Hn+l and that the law PJ of the stable subordinator 
with index 1/2 is invariant with respect to T. We can then apply Birkho:ff's 
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individual ergodic theorem, together with Blumenthal's zero-one law for the 
stable subordinator reversed at time t, to obtain PJ( df) a.s. 

1 m 
lim - ""°"" lHn (!) = Co > 0, m-+oo m ~ 

n=N 

( 41) 

where c0 = PJ(HN) does not depend on t, again by a scaling argument. 
We now fix f E V([O,t],R) such that (41) holds, and we will prove 

for this function f that ( 40) is true pf (dB) a.s. for a suitable constant C 
independent oft, f and B. 

For £ > 0 and 0 :::; r :::; u :::; t, set 

We[r,u] := [ . O(dsdw)V(w)([ft -£,ft+tJ). (42) 
J[r,u]xn 

Let£> 0 and n ~ N be such that 2-2n > 3£ and f E Hn. By the definition 
of the law pf, we have 

using the first-moment formula (32) together with the explicit expression 
(9) for the Green function g and also observing that r - ls ~ 2£ > n in 
the range of integration, by our assumption f E Hn. More precisely, the 
bound 2-2n-l :::; r - fs :::; 2-2n+2 for r E Ut - £,ft+ c:] leads to the following 
estimate 

C1 c::::; Efwe [t - rn' t - rn-l] :::; C1 c: (43) 

where c1 = 2-1/27r-1/2 (}, C1 = 2 'Tf'-1/2 fl· 
Keeping the same assumptions on c: ,n,f, we tUrn to the variance with 

respect to pf: 

t-2-n-1 

varp1 we [t - rn, t - rn-l] = 2(} [ ds QJ.s V2 ([ft - c:, ft+ c:J). 
lt-2-n 

By the second-moment formula (39) and (9), for fs E [ft-2-2n+i, ft-2- 2n], 
we have 
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= 2{} (27r )-3/21 da da' J,a/\a'--;:===d=z==== 
· [ft-e,ft+e]2 is y'(z-fs)(a-z)(a'-z) 

= 8{} (27r)-3/ 2 ;,ft+• ~ (,,/ft+£ - z - ,,/(!, - c) v z - z r. 
is V Z - fs 

Consider first the part of the integral corresponding to z ~ ft - 2c. On this 
set, z - ls ~ 2-2n-2 , and omitting the second square root, we get the upper 
bound 2n(3c )2 for this part of the integral. By a linear approximation, the 
other part can be estimated from above by 

€2 
J,

ft-2e dz 

is Jz-JsUt-€-z)" 

If z::; Us+ ft - 2c)/2 then ft - € - z ~ Ut - fs)/2 ~ 2-2n-1, whereas 

J,
(fs+it-2e)/2 d n, ::; 2Jut - ls)/2::; rn+l, 

is 

resulting into a term c22n+2 • In the remaining case z > Us + ft - 2c) /2 we 
use z - ls ~ Ut - fs)/2 - € ~ 2-2n-4 , whereas 

1ft-2e dz ft - fs 2-2n 
----=log · <log--, 

-Us+ft-2e)/2 ft - € - Z 2€ - € 

giving a term c22n+l log 2-;n. Putting all these terms together, we get 

Combining with the first-moment upper bound in ( 43) we conclude that 

(44) 

Clearly, the constants c2 and c3 do not depend on t,f ,£,n, under our as-
sumptions J E Hn, 2-2n > 3€. 

Next we use the elementary inequality 
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Then from the lower bound in ( 43) and ( 44) we obtain 

pf ( w.[t - rn, t - r-11;:: ~ c) ;:: :!J 1og 
2~

2

nf1. 
Now we specialize to € := 2-2m where m > n + 1, n > N and let the 
(measurable) subset A~ of 0 be defined by 

A~:= { W2-2m [t- rn, t - rn-1 ] 2 c~ r 2m }~ (45) 

Then our inequality gives 

· c2 ( 2-2n )-1 
pf (A:) 2 

4
;

3 
log 

2
_2m = c4 (m - n)-1 (46) 

where c4 := ci/(8c3log2) > 0. Recall that we only considered n such that 
f E Hn. Summing up over all these values of n yields 

(47) 

Now recall that by assumption f satisfies (41). Let c5 be any constant with 
0 < c5 < coc4. An elementary reasoning shows that there must exist a 
sequence mk j oo (depending on the fixed function f) such that 

I: pf (A~k) 2 c5 log mk 
{n; fEHn, N:Sn<mk-1} 

for every k. In fact, if we assume that there exist no such sequence mk, we 
easily arrive at a contradiction with (41) and (47). 

We have in particular 

which implies, using the independence of the events A~ (for m fixed), 

lim l:{n; fEHn, N:Sn<mk-1} 1 A:k = l 
k-+oo Ef l:{n; fEHn, N ~n<mk-1} l A:k 

in £ 2(Pf). By extracting a subsequence converging a.s., we get 
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pf a.s. From the definition ( 45) of the sets A~ and the additivity of We 
(recall ( 42)), we conclude 

pf a.s. Consequently, 

limsup 
1 jo(dsdw)V(w)([!t - r 2mk,ft + r 2mkJ) ?_ C 

k-+-oo 2-2mk log mk 

completing the proof of ( 40) and of Theorem 7. D 

3.4 Remarks 

1. As we already mentioned, the carrying dimension of _xc is 1 a.s. This 
result can be easily· recovered from the second moment formula (39), us-
ing essentially the same argument as in [4]. Formula (39) and some easy 
calculations imply that, for 0 < 8 < ]( and 0 < 'Y < 1, 

E f V(da)V(db) 
J[o,K]2 la - bl1 < oo. (48) 

Then, the classical connection between Hausdorff dimension and capacity 
shows that a.s. for a:q.y Borel set H supporting V( da) we have dimH = 1. <> 
2. Since the measure .X c is a.s. singular, 

li 
_xc([t-E:,t+c:]) 

m =0, 
e-+-0 E: 

dt a.e., a.s. 

The representation formula ( 15) and some easy estimates then give 

lim Xt(b) = 0, 
b-+-c 

dt a.e., a.s. (49) 

(compare with Theorem 1.2.3 of [4]). On the other hand, a minor modifica-
tion of the proof of Theorem 7 gives 

. _xc([t-E:,t-E:/2]) 
lim sup 1 1 ( / )- ?. C > 0, 

e-+-0 E: og og 1 E: Ac( dt) a.e., a.s. 

This result combined with the representation (15) shows that 

li Xt(b) C' m sup ?_ > 0, 
b-+-c log log ( 1/lb - cl) Ac( dt) a.e., a.s. 
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which is in contrast to ( 49). (Recall also the heuristic explanations given in 
§ 1.1.) 0 
3. The method of proof of Theorem 7 is inspired from Le Gall and Perkins 
[12]. The function h in Theorem 7 is however certainly not the best possible. 

0 
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