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Abstract

Self-pulsations in Phase Controlled Mode Beating lasers (PhaseCOMB)

are very attractive for all-optical clock recovery at ultra-high bit rates. In

this paper we apply the comprehensive simulation tool LDSL that has been

developed by us for studying the self-pulsation features of PhaseCOMB lasers

considering the e�ects of spontaneous emission noise, longitudinal spatial hole

burning, and gain dispersion. In particular the importance of mode control

for adjusting the PhaseCOMB operating conditions is pointed out. The sim-

ulation results are con�rmed by measurements on fabricated devices.

1 Introduction

The dramatic growth of internet tra�c pushes the interest in high speed all-optical

signal processing. One key function is 3R-regeneration (reampli�cation, retiming,

reshaping) [1]. Realizations of this function up to 80 GHz using self-pulsating lasers

for clock extraction have been reported (e.g., [2]). To achieve such very high frequen-

cies, which considerably exceed the relaxation oscillation frequency, a new operation

principle has to be used.

Figure 1: Sketch of a PhaseCOMB

laser and of its operation principle.

The exploited self-pulsations by Phase Controlled Mode Beating (PhaseCOMB) are

based on three-section lasers comprising two DFB sections, detuned by about the

stop band width, and an integrated phase tuning section. The two adjacent inner

DFB modes are selected for lasing via the phase tuning section (Fig. 1). Beating of

the two coupled modes leads to the wanted self-pulsation with a frequency deter-

mined by the spectral separation of the lasing modes. This basic operation principle

of the PhaseCOMB has been con�rmed already in [3] by numerical simulation in

comparison with �rst fabricated devices.

The present paper reports on modelling calculations having accompanied the further

development of these devices. A central question of this work is the proper selection

of the two beating modes. In this context, we focus our presentation on the role
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of e�ects which were not considered in [3]. These e�ects are spontaneous emission

noise, longitudinal spatial hole burning (LSHB), and gain dispersion.

The paper is organized as follows. In the next section we brie�y review the model

equations for multisection DFB PhaseCOMB laser with incorporation of the new

e�ects. The speci�c in�uences of noise and LSHB are evaluated in Sections 3 and

4, respectively. Comparison with measurements is given in Section 5 for a selected

device. Section 6 investigates how to improve the mode control by utilizing the gain

dispersion. The paper ends with a conclusion.

2 Traveling wave model

Our previous analysis of PhaseCOMB lasers [3] is based on the traveling wave model

of Ref. [4]. For the present investigation, our software tool LDSL (Longitudinal

Dynamics in Semiconductor Lasers) is extended to incorporate additionally spon-

taneous emission noise, nonlinear gain saturation, gain dispersion, and longitudinal

spatial hole burning (LSHB). In the following, we describe brie�y, how these e�ects

are contained in the equations underlying the present version of LDSL.

The optical �eld E(z; t) = (E+(z; t); E�(z; t)) is represented by the slowly varying

amplitudes of the optical �elds traveling forward (+) and backward (-) along the

longitudinal axis of the device (z 2 [0; L]). They are governed by the well-known

traveling wave equations (TWE)

�ing
c
@tE

� =
�
�i@z � �

�
E� � �E� + F�

sp; (1)

with the boundary conditions E+(0; t) = E�(L; t) = 0 at the anti-re�ection (AR)

coated facets. By proper normalization, jE(z; t)j2 = jE+j2 + jE�j2 is a local photon
density (local power at z divided by the global constant �h!0vgAAZ). ng = c=vg and �

describe the group velocity and the linear propagation properties of the fundamental

transverse mode of the internal waveguide at a central wavelength �0, respectively.

The counterpropagating waves are mutually coupled with strength �. The quantities

F�

sp represent the spontaneous emission contributions to be described in Section 3.

The parameter models for the active and passive sections are di�erent. In the passive

middle section, � and F�

sp disappear and the propagation parameter is a constant

that we express by the round trip phase shift ' over the sectional length Lp and an

optical loss coe�cient � as

� = � '

2Lp

� i
�

2
(passive section): (2)

In the active DFB sections, the model for the propagation parameter is

� = Æ � i
�

2
+ (i+ �H)

g

2
+ iD (active sections): (3)
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The constant Æ = �� � 2�ng=�20 is determined by the static wavelength detuning

� of the stop band center from the central wavelength �0. �H is the linewidth en-

hancement factor. The contribution D incorporates dispersion e�ects to be speci�ed

in section 6. The spectral gain maximum is assumed to depend on carrier density n

and photon density jEj2 according to

g(n; "jEj2) = g0(n� ntr)

1 + "jEj2 (4)

with the gain slope g0. A linear relation between g and n is su�cient, because we

consider bulk active zones and n covers only a limited range in a PhaseCOMB laser.

Taking into account a nonlinear saturation coe�cient " is also new compared to [3, 4],

however, it is only of marginal in�uence and we shall not discuss it furthermore.

The evolution of the carrier densities in active sections is described by the rate

equation

@tn = I � R(n)� c

ng
<e[E�(g + 2D)E]: (5)

R(n) = An+Bn2 +Cn3 is the usual polynomial recombination law. In contrast to

our former model [4, 3], the stimulated recombination (last term) is not averaged

over one section. Hence, we allow now for densities varying also with z (spatial hole

burning). In this context, the injection rate I becomes inhomogeneous, too, as will

be speci�ed in section 4.

The calculations to be presented base on the parameter values collected in Table 1,

deviations will be noted. It is the parameter set of Ref. [3] supplemented by ad-

ditional parameters needed in the extended model. Note that g0; "; and �g already

incorporate the transverse con�nement factor �.

3 Spontaneous Emission Noise and Jitter

Spontaneous emission is described by the Langevin forces F�

sp in the TWE (1) with

the correlation functions

hF+�
sp (z; t)F+

sp(z
0; t0)i = hF��

sp (z; t)F�

sp(z
0; t0)i = Æ(z � z0) Æ(t� t0)

ng

c
�spR: (6)

All other correlation functions as well as the expectation values of F�

sp vanish. �sp is

the relative portion of spontaneous recombination emitted into the guided wave. The

recombination rate R is taken here at the transparency concentration, for simplicity.

The stochastics of these quantities is realized in the numerics by appropriately using

the random number generator. A typical example for a calculated SP is given in

Fig. 2a. The pulse shape is nearly sinusoidal, only weakly perturbed by noise and

exhibits a good extinction. The pulses emitted from the two facets di�er slightly

and are shifted relative to each other by nearly half a period.
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Table 1: Parameter values
explanation values unit

length of DFB sections 250 �m

LP length of phase section 400 �m

ng group velocity index 3:4
� DFB coupling coe�cients 130 cm�1

�1 grating detuning DFB1 +1:0 nm

�2 grating detuning DFB2 �3:4 nm

� DFB internal absorption 25 cm�1

�P phase section absorption 20 cm�1

�H Henry factor �4
g0 di�erential gain 7 10�17 cm2

ntr transparency carrier density 1 1018 cm�3

" gain compression factor 3 10�18 cm3

A recombination coe�cient 3 108 s�1

B recombination coe�cient 1 10�10 cm3/s

C recombination coe�cient 1 10�28 cm6/s

�sp spontaneous emission factor 10�4

AAZ cross section of active zones 4:5 10�9cm2

I current injection, DFB section 90 mA

U 0

F
di�erential Fermi voltage 5 10�20V/cm3

Rs series resistivity 10 

�0 central wavelength 1570 nm

�g Lorentzian gain amplitude 10 cm�1

�G gain peak detuning 0 nm

2�G FWHM of gain curve 90 nm

Although the spontaneous emission is only a small perturbation it has remarkable

qualitative consequences. Without spontaneous emission, self-pulsations are peri-

odic oscillations of the output intensity. Taking the randomness of the spontaneous

emission into account, any periodicity in the strong sense is lost. Short term inten-

sity �uctuations appear as well as a long term random drift of the pulse positions

relative to the 'average period' causing e.g. unwanted jitter within the sequence of

pulses.

For the application as optical clock, all noise phenomena should be kept small. In

order to compare di�erent designs and points of operation, we evaluate the accord-

ing quality of calculated self-pulsations by the mean frequency f and a rms-jitter

parameter J , determined in the following way.

First, we look for the mean period T of the self-pulsations. To estimate T , we locate

the times tiup when the increasing i-th pulse slope crosses the mean output power

value. A straight line through these points (least square �t) gives a best estimate

of the mean period T and of the mean frequency f = 1=T .

By sampling the pulses with period T , the eye and pulse drift diagrams shown in
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Figure 2: Characterisation of a typ-

ical calculated self-pulsation (phase

shift ' = 0:6).
a) Part of the pulse train. Full: front

facet (DFB1). Dotted: back facet

(DFB2).

b) Eye diagram and power distribu-

tion histogram.

c) Temporal positions of the up and

down half-heights along a 30 ns pulse

train, exhibiting a maximum jitter of

about 1.5 ps.

Figs. 2b and 2c are obtained. The variance � of the distribution of half height points

is used to determine the rms-jitter parameter according to

J = �10 lg(2
p
2 ln 2�=T ): (7)

It is about 20 dB in the present example, corresponding to a half width of the tup
distribution of about 1% of the pulsation period, i.e., �300 fs. Note that the full

variation of tup(horizontal lines in Fig. 2c) is much bigger, about 1.4 ps in our case.

These values are acceptable for the application of the device as an optical clock.

The dependence of J on di�erent regimes of operations is given by the thin solid

lines in Fig. 6. For the 40 GHz and 80 GHz bands, we �nd always J � 20 dB. We

conclude that the jitter of SPs with frequencies in this range is reasonably low in

our devices and nearly independent of the point of operation.

Another consequence of noise is to drive weakly damped side modes as well as to

stimulate parasitic oscillations of the nonlinear system, e.g., relaxation oscillations.

Such e�ects in turn can degrade the jitter and extinction of the SP. To analyze

them, we calculate optical and RF spectra. Fig. 3 gives examples for the point of

operation of Fig. 2.

The optical spectrum in Fig. 3a is obtained from the Fast Fourier Transform of

E+(L; t) with 215 sampling points and averaged with a resolution of about 0.04 nm.

It shows the two lasing modes labeled +1 and -2, their four wave mixing products

(labeled 4wm), side modes labeled by -1, -2b, +2, and smaller resonances. Here

and in the following, the labels attribute peaks to DFB modes as already sketched
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in Fig. 1. The peak -2b corresponds to a hole-burning induced side mode to be

discussed in the next section. When switching o� spontaneous emission, the noise

�oor and the side modes disappear from the spectrum.
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Figure 3: Spectra of the operation point

of Fig. 2.

a) Optical spectrum. The main DFB

modes are labeled according to Fig. 1.

Label -2b indicates a LSHB enhanced

side mode according to Section 4,

Fig. 5b. By 4wm the four-wave mix-

ing products of the two beating modes

+1 and -2 are labeled.

b) RF spectrum. RO: damped re-

laxation oscillation, beating (+1,-2):

main self-pulsation, -2b: beating of the

corresponding side mode in the opti-

cal spectrum with the lasing modes,

-1 & +2: beating of opposite DFB

modes with lasing modes. The harmo-

nics belong to the main self-pulsation.

The presence of noise driven side modes can also be detected in the RF spectrum,

Fig. 3b. It has been calculated by fast Fourier transforming jE+(L; t)j2 using 215

sampling points within 22 ns. The result is averaged with a resolution of about

400 MHz and 800 spectra have been averaged for smoothing. Most prominent lines

are the beating self-pulsation and its harmonics. Without noise, only these lines

are present. Noise introduces a back ground between the lines with additional

side peaks on top. At low frequencies, the peak labeled RO is caused by noise

induced relaxation oscillations. They also cause lower-frequency satellites of the

most intense beating lines. The line pairs above 100 GHz correspond to the beating

of the two lasing modes with the side modes indicated by the labels. Due to the

limited range of detectable frequencies, they are not observable in experimental RF

spectra. However, they can act as perturbations in a communication system.

Summarizing this section, spontaneous emission noise is included into the modelling

and tools are developed for analyzing the impact on the jitter of self-pulsations. For

the present device a rms timing jitter of about 300 fs within a time interval of 30 ns

is calculated, only weakly depending on the point of operation. The e�ect of noise

on optical spectra and power rf spectra is investigated too. The noise enhances

unwanted DFB modes resulting in reduced side mode suppression in optical spectra

and it feeds relaxation oscillations in the laser leading to an increasing noise �oor in

the corresponding frequency range of the rf spectrum. Via both e�ects the timing

stability of the self-pulsation is degraded. Our modelling tool will be very helpful in

optimising the devices for low jitter.
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4 Spatial Hole Burning and Mode Control

Along a DFB laser, the photon density is not uniform but has a distinct maximum

in the interior of the device. The corresponding local peak of the stimulated recom-

bination causes a local decrease of the carrier density. This e�ect is usually called

longitudinal spatial hole burning (LSHB). An example of the LSHB in a Phase-

COMB laser is given in Fig. 4.

µ

Figure 4: Axial distributions in a

PhaseCOMB laser with phase shift

'=2� = 0:6.
a) carrier densities.

b) wavelength shift of the Bragg res-

onance.

A quantitative description of LSHB requires to take into account the current self-

distribution (CSD): the injection current density becomes also inhomogeneous in

order to ensure a constant voltage along the electrical contact [5, 6, 7, 8]. To this

purpose, we use the model

I(z; t) = I

eV
� U 0

F

eV Rs

(n(z; t)� �n(t)) (8)

for the injection rate of Equ. (5). The �rst term determines the average injection

rate by the constant injection current I and the active volume V of the section.

The second term is the CSD contribution linearized with respect to the deviation of

the density from its spatial mean value �n(t) beneath a given electrical contact. The

derivative of the Fermi level separation U 0

F
and the series resistivity Rs are treated

as constant parameters.

4.1 Single section DFB laser

Let us �rst brie�y consider the simple case of a solitary DFB laser (with parameters

of the section DFB2). Of course, the impact of LSHB depends on the injection

level. The results of calculations drawn in Fig. 5 exhibit multiple qualitative changes

(bifurcations). Bifurcation A at 32 mA is the laser threshold. Below it, the carrier

density remains homogeneous. At threshold, the density dip in the device center

begins to appear. With raising injection, this dip deepens. This is accompanied by
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an increase of the densities at the facets, but the mean density (not plotted) remains

nearly constant. At the next bifurcation B at 75 mA, the symmetric solution looses

stability and two new solutions with asymmetric density pro�les (each one the mirror

of the other) become stable. This symmetry-asymmetry pitchfork bifurcation has

�rst been predicted by Schatz [9]. At the same time, the mean density of now

asymmetric distribution of carriers starts to grow much faster, what can be also

recognized from the growth of the density value in the center of section (see Fig. 5a).

At about 99 mA, the stationary laser state looses stability in the bifurcation C.

Beyond it, self-pulsations of about 1 GHz repetition rate appear. These LSHB self-

pulsations have been discovered by Lowery [10]. The currents for the bifurcations

B and C decrease with increasing Henry factor �H . Fig. 5 was calculated with

�H = �6. To avoid the unwanted e�ects above bifurcation B, the driving currents

should be limited to values below 100 mA.

+ 1

f r o n t

n
 (

5
x

r e a r
Figure 5: Dependence of e�ects of

LSHB in a single-section DFB laser

on injection current. Parameter as

DFB2 in Table 1 except �H = �6.
a) Full: maximum and minimum

output power within a simulation in-

terval of 20 ns at front and rear

facets. Dashed: carrier density at

the facets and in the center of the

device.

b) Examples for the optical spectra in

the di�erent current ranges. Dashed

lines show approximate location and

changes of the stop band.

However, even at small currents, LSHB has a considerable impact on optical spectra

as illustrated in Fig. 5b. First, due to signi�cant growth of the mean carrier density

after crossing bifurcation point B, the blue shift of the stopband can be observed

(see thin dashed lines in Fig. 5b). Next, the inhomogeneous carrier density causes a

corresponding longitudinal variation of the index of refraction. The Bragg resonance

of the grating thus has not the identical spectral position along the section (Fig. 4).

In our examples, it varies over nearly 2 nm, a considerable portion of the stop band.

The symmetry of the stop bands is therefore lost and the laser preferably operates

on the mode -1 on the short wavelength side of its stop band as it is shown in

Fig. 5b. For the type of operation sketched in Fig. 1, this e�ect of LSHB may

perturb, because we need one laser to operate on the long wavelength mode. With

increasing injection, mode -1 shifts into the stop band because it is located in the

center of the device where the Bragg resonance shows a redshift. At the same time, a

short wavelength side mode �1b grows up that pro�ts more from the facet regions.

Under some conditions, even both these modes can participate in the lasing. In
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the pulsation regime above bifurcation C, the spectra become broadened and clear

indication is given for the multimode nature of this pulsation, in concordance with

Ref. [10].

4.2 PhaseCOMB laser

Control of the two beating modes by the phase shift ' of the middle section is

essential for the proper operation of a PhaseCOMB laser. To study the impact of

LSHB on this e�ect, we compare in Fig. 6 the dependence of beating frequencies on

' calculated without and with LSHB.

π

Figure 6: Calculated beating frequen-

cies (thick) and jitter (thin solid

line) versus phase parameter '.

a) Without LSHB as in Ref. [3].

b) With LSHB. Black: parameter of

Table 1. Open circles: frequencies

calculated with changed parameters

�H = �6; � = 40 cm�1; L1 = L2 =
270�m.

Without LSHB, the wanted DFB modes +1 and -2 are beating over nearly 90%

of a phase period. This range is splitted into two frequency plateaus, one with

frequencies between 30 GHz and 40 GHz, the other one at about 80 GHz. This

splitting is due to the superimposed FP-type mode comb of the internal resonator

formed by the phase section [3]. The third plateau in the phase range between 0.8

and 0.9 is connected with a wrong mode selection. In this small interval, both short

wavelength DFB modes are lasing. The according beating frequency of about 540

GHz corresponds to the assumed 4.4 nm grating detuning.

Now we turn to the cases with LSHB. We know from the single section laser that

LSHB prefers the short wavelength DFB mode. Thus, we can expect that the phase

range with the wrong mode selection will increase. Fig. 6b con�rms this speculation.

Nevertheless, for a laser with parameters of Table 1 there is still a comfortable

interval with the wanted mode selection. However, the extension of this interval

depends sensitively on the length of the sections, on �H and on the internal optical

losses �. To estimate possible consequences, we have repeated the calculations for

a slightly worse con�guration. In this case (open circles), the device operates in the

wrong mode constellation for all phase shifts and could not be used for applications
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at e.g. 40 GHz. We draw the conclusion that these parameters should be carefully

controled to ensure a proper operation of PhaseCOMB devices.

5 Comparison to Experiment

To verify the results obtained from modelling we fabricated devices with � = 130
cm�1 comparable to simulation. The phase section length is �xed to 300 �m whereas

the length for each DFB section can be de�ned individually by cleaving them in the

desired geometry. The gratings of the investigated lasers were detuned by 4.8 nm.

Each laser is AR coated on both facet with a residual power re�ectivity of 10�4.

As the control parameters - i.e. the currents - of a realized device require a large

number of measurements, we have automatized this work.

The measurement setup looks as follows. The light emitted from the device is

coupled into a tapered �ber and an isolator is used to suppress back-re�ections from

other optical devices. All three driving currents are computer controlled and at each

measurement point a full optical spectrum is recorded. To reduce the amount of

data we �rst focus on symmetrical pumping of the DFB currents in a range from

20 to 100 mA in steps of 5 mA. For each DFB current we vary the phase current

between 0 and 20 mA to see the in�uence of the phase on the coupling of both

DFBs. For a quick overview a grey scale intensity plot for a DFB current pair is

used (cf. Figs. 7b and 8b). A horizontal cut at a distinct phase current corresponds

to the respective optical spectrum. As the driving currents do not only in�uence the

optical intensity but also the emission wavelength due to thermal e�ects, we assess

its in�uence by repeating the described measurement for di�erent current weighting.
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Figure 7: Mode characteristics of de-

vice 1 measured at I1 = 85 mA and

I2 = 90 mA.

a) Optical spectrum at 16 mA phase

current.

b) Top view on the evolution of op-

tical spectra with phase current from

0 to 20 mA. Black: the two lasing

modes. Gray scaled: less intense

side modes.

To show the impact of high �L values we cleaved devices with a geometry of 270 �m,

300 �m and 270 �m for DFB1, phase and DFB2 section respectively. The overview

in Fig. 7 with pumping currents of 85 and 90 mA for DFB1 and DFB2 sections

respectively, illustrates the behavior already known from modelling. For the whole
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range of feedback phases we do not obtain the desired mode beating. Reason is the

stable emission of each individual section on its short wavelength mode due to the

excessive longitudinal spatial hole burning. This situation remains dominant for all

current combinations in the DFB sections.
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Figure 8: Mode characteristics of de-

vice 2.

a) and b) as in Fig. 7.

c) Beating frequencies versus phase

current as determined from the mea-

sured optical spectra.

Nevertheless, one can obtain good mode beating self-pulsations by two coupled

DFBs. The strategy has to be a reduction of the spatial hole burning, which im-

plies a �L as small as allowed by the other laser parameters. Fig. 8b shows the

measurements for a device with the same parameters as described above, the only

di�erence is a reduced DFB section length of 225 �m each. For the larger part of a

phase period we now �nd the desired emission of the adjacent modes of the DFBs.

Concentrating on one phase period arbitrarily picked from 6 to 17 mA three main

scenarios are found. Depending on the phase we can switch between 40 GHz and

80 GHz, and only for a small fraction of the phase period the hole burning mode of

the short wavelength DFB prevents pulsations. Fig. 8a shows an example for each

case. The lower diagram indicates the corresponding beating frequencies versus the

phase current. They compare fairly well with the calculated dependencies of Fig. 6.

6 Utilizing the Gain Dispersion

Let us discuss now a possible impact of gain dispersion on the mode selection in a

PhaseCOMB laser.
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The gain dispersion contribution D to the propagation constant � in Equ. (3) is a

linear operator determined by

DE�
def

=
�g

2
(E� � p�)

�i@tp� = �i�(E� � p�) + �!p� (9)

This oscillator model for the polarization corresponds to the Lorentzian-shape gain

dispersion [11]

G(�)
def

= g � �g
(�0 + �G � �)2

(�0 + �G � �)2 +�2
G

; (10)

where g is the maximum gain of Equ. (4), and

�G = ��!
�20
2�c

and �G = �
�20
2�c

;

denote the detuning between gain maximum and central wavelength �0 and the half

width at half maximum of the gain curve, respectively.

Up to here and in our previous simulations in [3], we were neglecting the e�ects of

gain dispersion at all, centering gain curve close to the modes +1 and -2 and assum-

ing very small gain curvature (thin �at curve in Fig. 9a) just to guarantee better

convergence of our numerical scheme. We argued this approach by the largeness of

the gain region, which usually is quite big (�50-100 nm), and the most important

resonance modes �1 and �2 are located only within small �5-10 nm interval, where

the gain level for all these modes can be approximately the same.
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Figure 9: Impact of gain dispersion

to the type of self-pulsations.

a): di�erent used gain curves and

corresponding re�ectivity spectra of

DFB sections.

b): frequencies of SP in Phase-

COMB laser at di�erent phases '

when gain peak is centered at +6
(black) and �6 nm (open circles).

Now we remember the message of paper [11]. There it has been demonstrated, that

small �1-3 cm�1 di�erences of gain level can cause the selection of another DFB

resonance mode. In order to check these suppositions for PhaseCOMB lasers, now
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we consider a more realistic stronger gain dispersion by setting �g = 150 cm�1. The

resulting changes are small as long as the stop bands are kept on top of the gain

curve. But even comparatively small gain detunings show a noticeable e�ect. To

be concrete, we compare the cases �G = �6 nm and �G = 6 nm, respectively (see

thick dashed and solid curves in Fig. 9a). These gain curves imply a �1-2 cm�1 gain

suppression of longer (shorter) DFB resonance modes with respect to corresponding

shorter (longer) DFB resonances, respectively.

This e�ect can be used to further counteract the LSHB-support of mode -1 by using

a gain peak on the longer wavelength side of the stop bands. To this purposes, we

apply the +6 nm shifted gain dispersion represented by thick solid line in Fig. 9a.

In this case, also mode +2 is additionally supported, but it is not a problem as long

as this mode keeps suppressed by LSHB. The results plotted in Fig. 9b as a thick

solid line show indeed the wanted mode selection for nearly all possible phase shifts.

On contrary, an opposite gain detuning (dotted dispersion curve in Fig. 9a) gives

a situation, where the mode -1 is supported by both LSHB and gain dispersion,

preventing the operation at the required modes (see Fig 9b). Nevertheless, even in

this case SP at � 30 or � 80 GHz frequencies still can be seen at properly selected

phase conditions.

As the consequence of the discussion above, we conclude, that operating the laser on

the short wavelength side of the gain maximum can counteract the LSHB induced

oscillation of the shortest wavelength mode -1.

7 Conclusion

In this paper the numerical simulation tool LDSL is extended and applied for study-

ing the quality of self-pulsations in PhaseCOMB lasers. In particular the impact

of two main perturbations in realistic devices is investigated: spontaneous emission

noise and longitudinal spatial hole burning. As expected, noise leads to jitter of

the self-pulsation. The calculated jitter is typically only a few percent of the pulse

period (some hundred fs), nearly independent of the point of operation. Spatial

hole burning turns out to be the more critical e�ect. It supports lasing on the

short wavelength stop band mode which can lead to loss of the operating conditions

needed for phase controlled mode beating pulsations. Short DFB lengths, low op-

tical losses, a low linewidth enhancement factor, and setting the DFB grating on

the short wavelength side of the gain maximum are measures to avoid this negative

e�ect. Simulation results are compared with and con�rmed by measurements on

fabricated devices.
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