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Abstract

The paper addresses the problem of complex regional economic growth by using

nonlinear Keynesian model with focusing on direct foreign investments e�ects. We

investigate the dynamics of the model for the broad range of parameters which, in

particular, contains the parameter values obtained recently by econometric analysis of

the data for economic growth in China. For the single-region model we give conditions

for which the dynamics of the model will be chaotic or regular. The parameters which

prevent the economic stagnation are indicated. Further, we consider the model for

two regions with a common trade as a coupling factor. The conditions are given for

the two trading systems to exhibit chaotic synchronization, in-phase and out-of-phase

behavior.

1 Introduction

Direct foreign investments and reform politics created rapid economic growth in China from

1988. In recent years the direct foreign investments (DFI), especially the joint ventures

and external demand through export did play an important role in the Chinese regional

development, cf. [1]. This article focuses on direct foreign investment as the driving force

in a growth process. The growth process is here modelled in a multiplier-accelerator model.

A paradox of investment and growth was shown in a Keynesian model [1] with the origin

in a declining marginal propensity to consume at increasing income. Alternatively this

e�ect could be created by declining propensity to invest at decreasing capital labor ratio

as widely discussed in literature.

Often alternative models can not be distinguished from each other in real life due to limited

amount of data. The true model therefore only can be located within a range of parameter

values and model speci�cations. This aspect is crucial in dynamic model building.

Parameter values for the model are estimated by the analysis of statistical data, cf. Sec. 2.

In Sec. 3 we develop the single region model. Analysis of the model in Sec. 4 shows

that di�erent kinds of behavior of income level may be realised including instant growth,

periodic or chaotic oscillations. The �critical� parameters which may alter the behavior of

the model is shown to relate to the investment characteristics which essentially depend on

the propensity of investors to response to �uctuations of the income level.

In Sec. 5 we introduce a two region model which accounts for the interaction between

regions through a common trade. We indicate parameter regions where model exhibits

synchronous chaotic or periodic behaviors, i.e. describes the phenomenon of equalizing of

the regional economical growth even when initial regional investments are unequal [1].
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2 Data and notations

The data used in this analysis are the regional data published by the China Statistical

Yearbook (1989-1997). The data for gross domestic product (GDP) and GDP per capita

measured in yuan are adjusted for in�ation and are expressed in 1990 price de�ated by

consumer price indices for China. The data for �direct foreign investment and other foreign

investment� (DFI) measured in US dollars are de�ated by the US consumer price index in

order to make DFI an index for the (real) in�ow of world market investment goods. Both

de�ators are published by the IMF: �International Financial Statistics Yearbook, 1997�.

The following notations are used for the development of data and model parameters esti-

mation:

GDP � Gross Domestic Product for the region, measured in yuan;

POP � Population of the region;

DFI � Direct Foreign Investment and other foreign investment in the region measured in

dollars;

DFLUS � De�ator � consumer price index for USA;

DFL � De�ator � consumer price index for China;

FGDP=GDP/DFL � �xed price GDP of the region;

FDFI=DFI/DFLUS � �xed price DFI in the region;

FPCY=FGDP/POP=Yt � �xed price per capita income of the region at time t;

FDPIPC=FDFI/POP=DFIt � �xed price per capita in the region at time t.

3 Individual region model

The model for income development in regions can be formed as a Keynesian model which

includes direct foreign investments and a regional trade [1]. In this section we start with

the model for an individual region which does not include the regional trade. We assume

the consumption Ct at time t to be the following function of income

Ct = �0 + ~�Yt = �0 + (�1 � �2Yt�1)Yt; (1)

where �0; �1, and �2 are constant parameters. The econometric data analysis [1] brings

us to the following estimations for the parameters: �0 � 11, �1 � 0:99, and �2 � 8 � 10�7

with corresponding relative errors less than 10%. Figure 1 illustrates the equilibrium value

of consumption versus income. It is nearlylinear for small Y and has a saturation point at

Y � = �1=2�2 which approximately admits the value 6 � 106 for the assumed parameters.

Small nonzero value of consuming at Y = 0 can be maintained from gifts and stocks.

We assume that in the absence of the regional trade the income is formed mostly by
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Figure 1: Dependence of consumption

Ceq on income equilibrium value Yeq.

Y � denotes an income level at the sat-

uration point.

consumption and direct foreign investments, cf. [1]:

Yt = Ct +DFIt: (2)

In order to take into account the adaption of DFI and its in�uence on the development of

the region, we use the standard Keynesian adjustment algorithm

DFIt = 01(Yt�1 � Yt�2) + 02(Yt�2 � Yt�3) + 0DFIt�1; (3)

where the constants 01;2 give the propensity of direct foreign investments to react on income

changes for two preceding periods (reaction coe�cients in the following). For simplicity,

we con�ne our analysis to the case of 02 = 0. Using empirical data, the coe�cients 0 and

01 are determined as 0:7 and 0:03, respectively, with relative errors 10%. In order to make

our model more economically consistent we additionally equip it with the �oorpreventing

DFI to be negative:

DFIt = maxf01(Yt�1 � Yt�2) + 0DFIt�1; 0g: (4)

Finally, the set of equations (1), (2), and (4) constitutes the closed dynamical model for the

description of the �uctuations of consumption level, income, and direct foreign investments.

An appropriate rescaling procedure y = Y
�
�2
�1

�
, c = C

�
�2
�2
1

�
, and x = DFI

�
�2
�2
1

�
brings

these equations to the form

ct = � + (1� yt�1)yt; (5)

�1yt = ct + xt; (6)

xt = max f0xt�1 + 1(yt�1 � yt�2); 0g; (7)

where � = �0�2=�
2
1 and 1 = 01=�1 are new parameters. With respect to the new coordi-

nates, the saturation point for consumption (cf. Fig. 1) corresponds to y� = 1=2.

In order to derive the explicit form of the mapping that describes the dynamics of our

system let us express xt in terms of yt�1 and yt�2 by combining (5) and (6), then substi-

tute the obtained expression for xt into equation (7). Finally, we obtain two-dimensional

piecewise-smooth map F : R2
+ ! R2

+:

F :

�
y

z

�
!

�
1

�+y
[�+maxf��0 + 0(� + z)y + 1(y � z); 0g]

y

�
(8)
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with four parameters �, �, 0, and 1. As we previously emphasized, we are interesting

in the dynamics of the model (8) with the parameters that are given by econometric

analysis in [1]. Numerical values for these parameters can be estimated as � = 0:9 � 10�5,

� = (1��1)=�1 = 0:01, 0 = 0:7, and 1 = 0:03. The admissible interval for the parameters

takes into account the relative error (about 10%) for their estimation. In fact, some results

of the present paper are more general and involve a more broad range of the parameter

values. A particular attention is paid to the role of the parameters 0 and 1, which we

call in the following as DFI adaption and reaction coe�cients, respectively.

Before proceeding to our main results, note that at a constant level of direct foreign in-

vestments, the dynamics of our model is described by only two equations (5) and (6). In

this case we obtain one-dimensional map f : R+ ! R+ given by

f : y ! f(y) =
� + �x

� + y
; (9)

where we denoted a constant DFI level as �x. This map has a unique �xed point

�y0 = �

�

2
+

s�
�

2

�2

+ � + �x; (10)

which is stable for all meaningful values of the parameters. In order to prove this let us

write the derivative f 0(�y0) in the form jf 0(�y0)j = 1=(1 + �(�; �; �x)), where � = (2(�=2)2 +

�
p

(�=2)2 + � + �x)=(�+�x). It is easy to note that � is positive for all positive �; �, and �x.

Hence, we have jf 0(�y0)j < 1 that implies the stability of the �xed point. We conclude that,

at a constant level of direct foreign investments and in the absence of a regional trade, our

model asymptotically displays the expected equilibrium behavior.

4 Dynamics of the two-dimensional model

In this section we describe the dynamics of map (8) for the regional income development.

Important features of this map are its noninvertibility and nondi�erentiability on some

curve in the phase space. Let us de�ne the following regions in the phase space:

�0 = f(y; z) : 0(� + z)y + 1(y � z) < �0g;

�1 = f(y; z) : 0(� + z)y + 1(y � z) > �0g:

Being con�ned to either of these regions, system (8) is di�erentiable while it losses di�er-

entiability on the boundary

@� = f(y; z) : 0(� + z)y + 1(y � z) = �0g;

between the regions �0 and �1, cf. Fig. 2. Note that the map is essentially one-dimensional

in the region �0 since the �rst equation in (8) does not involve the variable z in this case.
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Figure 2: Splitting of the phase

space of map (8) into regions �0

and �1. The �xed point M be-

longs to the boundary @�.

Behavior near the equilibrium point

The map F has a unique equilibrium point

M = (y0; z0); where y0 = z0 = �

�

2
+

s�
�

2

�2

+ �:

This point corresponds to zero value of direct foreign investments and a relatively low

value of income. It is of interest to study the stability of this state in order to provide

conditions for the system either to converge to the unpro�table equilibrium or to exhibit

some nontrivial behavior with nonzero DFI.

Note that M belongs to the curve @� for all values of parameters. Hence, any its neigh-

borhood UM can be splitted into two parts on which the map is smooth: U1 = UM \ �1

and U0 = UM \ �0. The fact that map (8) is not smooth at M does not allow us to

make conclusions about the stability of M using the linear theory, i.e. just evaluating

Jacobian. Instead, the nonlinear e�ects arising from the dynamical interplay between U0

and U1 should be taken into account.

Jacobi matrix restricted to the region U0 has the following form:

J0 =

�
��=(� + y)2 0

1 0

�
; (11)

The eigenvectors of this matrix evaluated atM have the form v1 = (�01; 1)
T and v2 = (0; 1)T .

�01 = ��=(� + y0)
2 and �02 = 0 are the corresponding eigenvalues. The eigenvectors v1 and

v2 de�ne local invariant manifolds near the equilibrium point M in U0, cf. Fig. 3. It can

be shown that for all positive � and � these manifolds are stable, i.e. j�01j < 1. The last

inequality follows from the following representation of j�01j:

j�01j =
�

(� + y0)2
=

�

� + �2

2
+ �

q�
�

2

�2
+ �

=
1

1 + �1(�; �)
;

where �1(�; �) =

�
�2

2
+ �

q�
�

2

�2
+ �

�
=� is positive for all positive � and �.
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Note that all points from the neighborhood U0 are mapped onto the local manifold of v1-

vector for one iteration because of the zero value of �02. Moreover, due to the negativeness

of �01, points eventually escape the region �0, cf. Fig. 3.

y

z

Π1

Π 0

v

v1

2

M

L L

L

L

L

2 1

3

4

Figure 3: Dynamics near equilib-

rium point M. v1 and v2 denote

vectors along the local invariant

manifolds restricted to �0. L1 �

L4 denote di�erent regions that

are used for the proof of Propo-

sition 1.

Now consider the region U1 = UM \ �1. The Jacobi matrix at the equilibrium point with

respect to the region U1 is

J1 =

�
��=(� + y0)

2 + 1=(� + y0) + 0 �0=(� + y0)
2
� 1=(� + y0)

1 0

�
:=

�
s1 s2
1 0

�
:

(12)

Because of the involved complexity, we do not give the explicit expression for the eigenvalues

of J1 here. Instead, we show the corresponding diagram for eigenvalues of J1 in Fig. 4.

The dashed area in the �gure corresponds to complex eigenvalues. The area where both

eigenvalues have their modulus less than one is shown in gray (below the line H).

It is evident that we may expect the loss of stability for the equilibrium point M in the

region, where Jacobian J1 has complex eigenvalues, cf. Fig. 4. In Appendix A we prove

Proposition 1 which gives analytical conditions for the stability of the equilibrium point.

In order to illustrate the obtained result, the numerical procedure was performed using

Proposition 1. The two-dimensional grid (2000x2000) for parameters 0 2 [0; 1] and 1 2

[0; 0:04] was introduced with �xed � = 8:98�10�6 and � = 0:0101. The numerical procedure

was applied with the use of Proposition 1 for each point of this grid to �nd the stability

of the �xed point for each parameter value. The �nal two-dimensional stability diagram

is shown in Fig. 5. We can observe that stability region for the point M (shown in black)

is not only those parameters for which Jacobian J1 has eigenvalues with modulus less

than one (the area below white line), but also some set from another region where the

linearized map restricted to region �1 is unstable. This phenomena appears due to the

nonsmoothness of the neighborhood of M and the balanced e�ect from the two regions of

smoothness: �0 and �1.
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Figure 4: Bifurcation diagram

for the equilibrium point with re-

spect to region U1.

Figure 5: Stability region for the

equilibrium point M (shown in

black).
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An interesting observation can be made from the above stability analysis: with increasing

of the reaction coe�cient 1 the dynamics of the system, in general, is ruled out from the

equilibrium state, but we still may enter regions where this state becomes stable.

Reaction coe�cient role in the nontrivial economic behavior

We shall observe from Fig. 5 that the threshold where the equilibrium point may loss its

stability (white line) depends mainly on the value of the reaction coe�cient 1. This fact

brings us to the conclusion that independently on the adaption coe�cient 0 the economic

stagnation expressed here as asymptoting to the equilibrium value with relatively small

level of income can be overcomed, in general, by increasing only the reaction coe�cient.

The observed phenomena can be explained in the following way: for a low level of DFI (it

may be assumed to be low for the initial time) the reaction component of DFI adjustment

procedure becomes dominant, i.e. the expectations for DFI for the next period are mostly

based on income changes: DFIt � 1(Yt�1 � Yt�2). We can therefore observe that in that

approximation e�ect of the adaption coe�cient 0 is not important. Instead, if reaction

expectations are not involved in the adjustment process (1 = 0) then the dynamics of the

system displays convergence to DFI = 0 provided 0 < 1.

It is worth to note that the above mentioned threshold depends on inner properties of the

system. In our case, these properties are determined by the parameters � and �.

Global behavior of the single region model

The analysis of the previous section was con�ned to the small neighborhood of the �xed

point which, being stable, causes the stagnation process. Now we consider global properties

of map (8). As we have mentioned before, we are particularly interesting in the in�uence of

direct foreign investments on the dynamics of the region. Therefore we will pay attention

mainly to the in�uence of 0 and 1 parameters. For this, we �x admissible values for

consumption characteristics � = 9 � 10�6 and � = 0:01 for the numerical simulations of the

present section.

Fig. 6 shows the bifurcation diagram for 0 = 0:7 with 1 varying from 0.01 to 0.04. The

path along which parameters are varied is shown also in Fig. 5. Figure 7 shows dependence

of maximal Lyapunov exponent of the corresponding invariant sets versus 1. Intervals

of chaotic behavior with positive Lyapunov exponent �max > 0 can be clearly observed.

Figure 8 illustrates the chaotic attractor that exists for 1 = 0:035.

As follows from the above analysis of the equilibrium, after the �rst stability loss (1 �

0:02), the coexistence of the stable equilibrium and a periodic solution may take place on

some countable number of parameter intervals. Figure 9 illustrates the basins of attraction

of two coexistent sets for the parameters from the largest of these intervals, cf. point P in

Fig. 5.

Let us now interpret obtained results from the economical point of view. For 0 < 1 and

8



Figure 6: Bifurcation diagram for sys-

tem (8). The parameters are 0 = 0:7,

� = 9 � 10�6, and � = 0:01.

Figure 7: Maximal lyapunov exponent versus

1 for 0 = 0:7.

Figure 8: Chaotic attractor for system

(8) which exists for 1 = 0:035.

Figure 9: Basins of coexistent stable

equilibrium pointM (shown as square)

and stable period-10 orbit (shown as

circles) with multipliers �1 = 0:35 and

�2 = 0. Black area corresponds to the

basin of the equilibrium. Parameters

are 0 = 0:7, 1 = 0:022.
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low values of reaction coe�cient 1, the equilibrium value of income is approached, where

direct foreign investments vanish and income approaches some small positive value. By

increasing the reaction coe�cient, the dynamics of the model becomes more rich. First,

the periodic changes of income with period 10 appear. At that time, it is still possible for

the model to approach zero DFI level provided initial conditions (initial value of income

Y0 and initial level of DFI) correspond to the black area in Fig. 9, or asymptote the more

�advanced� development situation that corresponds to periodic behavior. With further

increasing of 1 the system can exhibit chaotic behavior, cf. Figs. 6,8. In general, it is more

pro�tablefor the market, the dynamics of which is described by system (8), to be in the

regime with higher reaction coe�cient 1. This can be clearly seen from Fig. 10, where

we plot the averaged value of income < Y > versus 1. The averaging procedure involves

calculation of the income over 1000 points after skipping 104 iterations.

Figure 10: Averaged value of income

< Y > versus 1.

The case 0 � 1 as a model for �nite-time economic growth

In this section we show that for 0 � 1 map (8) may be considered as a model for �nite

time economic growth. In particular, system (8) with 0 = 1 is shown to be structurally

unstable and cannot be considered as a model describing long term behavior.

By substituting 0 = 1 into (8) it is possible to show that the system has the invariant set

f(y; z) : y = z � y0g (13)

which consists of equilibrium points. This fact implies that our system is structurally

unstable. Consider the stability properties of the equilibrium points (13). They all, except

M , belong to region �1 and, therefore, their stability can be determined by inspecting the

following eigenvalues of Jacobian J1:

�1 = 1; �2 =
1 � y

� + y
: (14)
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The �rst eigenvalue corresponds to the direction along the invariant set y = z and re�ects

the fact that there is no motion along this set. �2 corresponds to the transverse direction.

Therefore the transverse stability of an equilibrium takes place provided����1 � y

� + y

���� < 1:

This inequality holds for all y > y� = (1 � �)=2. Thus, we conclude that for su�ciently

large 1 (in fact, for 1 > 2y0 + �) all equilibria satisfying y > y� are transversely stable

and unstable otherwise.

For our analysis it is important to note that with increasing 1 the attracting set of all trans-

versely stable equilibria movestoward the higher values of income level. The considered

case provide us with the scenario when systems starting from di�erent initial conditions

(initial income level and direct foreign investments) will in general asymptote to di�erent

equilibrium levels. The larger initial income level or DFI system has the larger equilibrium

level of income it is going to achieve. Figure 11 shows characteristic behavior of orbits for

1 = 0:03 and 1 = 0:05.

Figure 11: Orbits for 0 = 1 and 1
as indicated in the �gure. The cor-

responding initial conditions are y10 =

0:002; z10 = 0:001 and y10 = 0:003; z10 =

0:001 for each value of parameter 1.

5 Two-region model

In practice, each economical region is interacting with other regions via common trade.

In this section we consider the model for two regions with common trade. Let EXRi,

i = 1; 2 be region's i export to another region. The external trade is here assumed as pure

DFI-driven. The regional trade is considered more important for the individual region than

the external trade. Although this is a simpli�cation, it is nevertheless to a great degree

supported by the data for Chinese economic growth, cf. [1]. Therefore the model admits

11



the form:

Y1;t = C1;t +DFI1;t + EXR1;t � EXR2;t; (15)

C1;t = �10 + (�11 � �12Y1;t�1)Y1;t; (16)

DFI1;t = 10DFI1;t + 11(Y1;t�1 � Y1;t�2); (17)

EXR1;t = Æ1Y2;t; (18)

Y2;t = C2;t +DFI2;t + EXR2;t � EXR1;t; (19)

C2;t = �20 + (�21 � �22Y2;t�1)Y2;t; (20)

DFI2;t = 20DFI2;t + 21(Y2;t�1 � Y2;t�2); (21)

EXR2;t = Æ2Y1;t: (22)

Similarly to the previous section, we additionally assume, thatDFIi;t turns to zero provided

the right hand side of (17) or, respectively, (21) is negative. The additional equations (18)

and (22) accounts for the export which is also included in equations (15) and (19).

Two identical regions with a common trade.

It is evident that being in the same law space (e.g. Chinese regions) the regions can be

assumed to have the similar consumption function and export propensity. Moreover, we

assume here that DFI adjustment process has the same form in both regions. Hence, we

put here �i0 = �0, �i1 = �1, �i2 = �2, i0 = 0, i1 = 01, and Æi = Æ0.

Excluding C1 and C2 from equations (15)-(16) and (19)-(20), the system achieves the

following form with respect to rescaled variables:

xt = �� + yt(� + yt�1) + Æ(yt � vt); (23)

xt = maxf0; 0xt�1 + 1(yt�1 � yt�2)g; (24)

ut = �� + vt(� + vt�1) + Æ(vt � yt); (25)

ut = maxf0; 0ut�1 + 1(vt�1 � vt�2)g; (26)

where Æ = Æ0=�1, (x; y) are rescaled variables for DFI and income of the �rst region and

(u; v) of the second.

System (23)-(26) implicitly determines the four-dimensional map which describes the eco-

nomical development of the regions. In a way similar to Sec. 3 we shall choose yt, vt,

zt = yt�1, and wt = vt�1 as independent variables. With respect to these variables xt and

ut can be uniquely de�ned as

xt = G(yt�1; zt�1; vt�1; wt�1);

ut = G(vt�1; wt�1; yt�1; zt�1);
(27)

where function G is determined as

G(y; z; v; w) = maxf0; 0(�� + y(� + z) + Æ(y � v)) + 1(y � z)g: (28)

12



By substituting (23) and (25) into (24) and (26) respectively, solving it with respect to y

and v, the explicit mapping admits the following form

F4 :

0
BB@
y

z

v

w

1
CCA!

0
BBBBBB@

Æ(G(v; w; y; z) + �) + (� + Æ + v)(G(y; z; v; w) + �)

�Æ2 + (� + Æ + y)(� + Æ + v)
y

Æ(G(y; z; v; w) + �) + (� + Æ + y)(G(v; w; y; z) + �)

�Æ2 + (� + Æ + y)(� + Æ + v)
v

1
CCCCCCA
; (29)

where function G is determined by (28).

General properties of the map F4.

The mapping (29) for the dynamics of two regions with a common trade can be written in

a general form as

F4 :

0
BB@
y

z

v

w

1
CCA!

0
BB@
F(y; z; v; w)

y

F(v; w; y; z)

v

1
CCA (30)

with some piecewise-smooth function F . It is obvious that without common trade between

regions, i.e. Æ = 0, system (29) is splitted into two independent 2-dimensional maps and

each of them has the form (8) and describes the dynamics of the isolated regions. Thus,

we obtain the following property of function F being evaluated at Æ = 0:

F(y; z; v; w)jÆ=0 = �F(y; z):

Hence, parameter Æ stands for the coupling between the regions which measures the propen-

sity of the regions to the competitive common trade.

System (29) has a symmetry with respect to changing of variables (y; z) onto (v; w). As

a result, there exists a two-dimensional invariant manifold SM : fy = v; z = wg which is

usually called synchronization manifold [2-3]. This hyperplane corresponds to identically

synchronized motions, i.e. when the development of both regions is identical. Synchroniza-

tion between two trading regions can be usually expected for strong coupling Æ. Since the

dynamics in the hyperplane is described also by 2-dimensional map (8) all the results of

previous section can be applied to the system (29) restricted to the synchronization mani-

fold. From the economical point of view the identically synchronized motions correspond

to the case when both regions starting from the same initial state (i.e. income level and

DFI) are developing identically due to the assumed similarity of consumption function and

DFI adjustment with the common trade being balanced: export equals to import.

Thus we may conclude that our system has a common feature of coupled symmetric systems

and methods of the synchronization theory [4-10] can be applied to its investigation. In

particular, in the following we give conditions for the synchronization of two interacting

regions.
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Figure 12: Asynchronous hyperchaotic attractor for parameter values 1 = 0:0258 and

Æ = 0:0005.

The system (29) is piecewise-smooth. The following constrains determine boundary be-

tween regions of smoothness in the phase space:

xex = 0(�� + y(� + z) + Æ(y � v)) + 1(y � z) = 0;

uex = 0(�� + v(� + w) + Æ(v � y)) + 1(v � w) = 0;
(31)

that correspond to the case when expected DFI (xex and uex are its rescaled counterparts)

for one of the regions given by (17) or (21) is zero.

The four regions where system (29) is smooth can be determined as follows:

�00 : xex < 0; uex < 0;

�01 : xex < 0; uex > 0;

�10 : xex > 0; uex < 0;

�11 : xex > 0; uex > 0:

(32)

Conditions for synchronization

The particularly interesting phenomena occur when the coupled systems are chaotic [4-

10]. In this case, because of the sensitive dependence on initial conditions systems will

be desynchronized for low values of coupling, For example, taking the parameter values

as the following 1 = 0:0258 and Æ = 0:0005, the asynchronous attractor exists as shown

in Fig. 12. The attractor is hyperchaotic because it has two positive Lyapunov exponents

[17-18].

We recall here that identical chaotic synchronization takes place when the systems exhibit

asymptotically identical behavior, i.e. k(y; z)(t)� (v; w)(t)k ! 0 as t!1. Synchronous

motions approach asymptotically symmetrical synchronization manifold. The numerical

criteria for this kind of synchronization can be the negativeness of the largest transverse

Lyapunov exponent �? < 0, cf. [4-10]. We plot �? versus Æ in Fig. 13 for �xed 1 = 0:025,

0 = 0:7 which corresponds to an interval of chaotic behavior for the single system, cf.

Fig. 7. �jj denotes the largest Lyapunov exponent for the motion along the synchronization

manifold. We can observe that for Æ > 0:0015 the coupling make the two systems to be

synchronized.
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Figure 13: Largest Lyapunov exponents for the two coupled systems (29) versus Æ. �?
corresponds to the transverse direction and �jj to the direction along the synchronization

manifold.

Figure 14: In-phase and out-of-phase periodic cycles for 1 = 0:027 and Æ = 0:0005 (di�er-

ent symbols mark three di�erent orbits).

Another scenario for the synchronization gain in the considered system is connected with

the transition to periodic regimes. Even with the same coupling parameter Æ = 0:0005,

by increasing 1 we may force the systems to escape the interval of chaotic regime, cf.

Fig. 7. As a result, in-phase and out-of-phase stable periodic motions appear [19]. In

Fig. 14, the stable period-9 on the diagonal corresponds to in-phase synchronous motion.

The symmetrical cycles out of the diagonal represents the out-of-phase oscillations which

are illustrated in Fig. 15.

6 Conclusions

The proposed model for an individual region economic growth (8) and for two regions with

a common trade (29) in the form of two- and four-dimensional noninvertible piecewise-

smooth maps is shown to exhibit di�erent behaviors. We have found numerically the

interval of chaotic and periodic motions. We have obtained the conditions for stability loss

of the equilibrium point with nonsmooth neighborhood which corresponds to the zero level
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Figure 15: Out-of-phase motion. y1 is proportional to the income of the �rst region, y2 to

the second.

of foreign investments. Finally, the conditions for chaotic synchronization of two trading

identical regions are presented.

Being out of the scope of the present paper, the following related problems can be focused

in future investigations: the in�uence of the regions di�erence on their common dynamics,

the case of three and more spatially coupled systems, the e�ect of noise on the dynamics.
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Appendix A

In this Appendix we obtain analytical conditions for the stability of equilibrium point M .

First, observe that the eigenvalues of J1 evaluated at the �xed point are complex conjugated

provided

s21 + 4s2 =

�
��

(� + y0)2
+

1

� + y0
+ 0

�2

+ 4

�
�0

(� + y0)2
�

1

� + y0

�
< 0: (33)

The following notations are necessary:

 = �

�

(y0 + �)2
; �' =

21 � �20 + 10�

0yf + 1 + 0�
:

Proposition 1 Let the parameters of system (8) are positive, satisfy condition (33) and,

additionally,

0 < 1; � < �� + �2; (34)
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where � = min
n

1+�0

1�0
; 1
0

o
. Then there exists such integer k0 > 0 that the following

inequalities hold

'k > �' for all 0 < k < k0 and 'k0 � �';

where 'k are determined by the mapping

'k = s1 +
s2

'k�1

; '0 =  :

Here s1 and s2 are determined from (12). Let also �k0 be determined by the following rule:

�k = s1�k�1 + s2�k�2; �0 =  ; �1 = s1 + s2:

Then the equilibrium pointM of system (8) is stable if j�k0�k0j < 1 and unstable if j�k0�k0j >

1. Here

�k0 =

�
 ; if 'k0 � 0;

1; if 0 < 'k0 � �':

Note that Proposition 1 does not give us analytical expressions for the region of parameters

where the equilibrium is stable or unstable. Instead, for any �xed set of parameters we

may perform a procedure in a �nite number of steps (analytic or numeric) in order to

determine the stability of M .

Proof. For the proof, we use a coordinates system with the origin at the equilibrium point

M . The same letters (y; z) will be used to denote variables. De�ne the following regions

in the phase space, cf. Fig. 3:

L1 = f(y; z) 2 �1 : z > 0; y > 0g; L2 = f(y; z) 2 �1 : z < 0; y > 0g;

L3 = f(y; z) 2 �1 : z < 0; y < 0g; L4 = f(y; z) 2 �0 : z > 0; y > 0g.

Denote also �L as the line along the eigenvector v1 of the Jacobian (11), i.e. �L = f(y; z) :

y = �01zg. In the following we will use the linearized map FL in the neighborhood of M:

FL : FL(y; z) =

�
J0 � (y; z)

T ; if (y; z) 2 �0;

J1 � (y; z)
T ; if (y; z) 2 �1:

It is convenient to introduce a separate notation �L1 for the part of the line �L that belongs

to �1, i.e. �L1 = �L \ �1 In the following we split the proof into six parts.

1. All points from �0 are mapped into �L under the action of FL, i.e. FL(�0) � �L. This

can be shown by direct substitution: for any (y; z) 2 �0 we have (y1; z1)
T = J0(y; z)

T with

y1 = �01y and z1 = y. Hence, (y1; z1) 2 �L.

2. Let us show that FL(�L \ �0) � �L1. By virtue of 1, we have FL(�L \ �0) � �L. Next,

note that �01 < 0 for the considered parameter values. Therefore for any point (y; z) from
�L \ �0 holds y < 0, cf. Fig. 3. Its image (y1; z1) has z1 = y < 0 and, therefore, belongs to

�1.

As a consequence of 1 and 2 we state, that F 2
L(L4) � �L1 and FL(�0 n L4) � �L1.

3. Any point from L3 eventually escapes the region L3. This follows from the fact that our

system, restricted to L3 has form (y; z)T ! J1(y; z)
T , where the matrix J1 has complex
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ϕ

ϕ
k

k−1

Figure 16: One dimensional mapping for 'k.

conjugated eigenvalues due to (33). Hence, it exhibits rotation by some �xed angle (not

equal to � or 0) in polar coordinates centered at the equilibrium point.

4. FL(L2) � L1 [ �0. In order to show it, note that for (y; z) 2 L2 the inequality

y > 0 holds. Hence for the z-component of its image we also have z1 > 0. It implies

FL(L1) � L1 [ �0.

As a consequence of the above proved facts, we observe that all points from U1 will even-

tually enter the region �0. Then, taking into account 2, they further are mapped into
�L1. We can thus determine a one dimensional mapping on �L1: f : (�L1) ! (�L1). Let us

parametrize �L1 as follows: (�L1) = f(y; z) : z = �; y =  �; � < 0g. Here � = 0 corresponds

to the equilibrium point M .

5. It is evident that the stability properties of the zero �xed point � = 0 of the above

introduced one-dimensional map determine the stability of the equilibrium point M of

system (8), i.e. they are either both stable or unstable.

6. Inequalities (34) imply that �' > 0, s1 > 0, and s2 < 0. The proof is elementary.

7. Consider some point on �L1: y0 =  �, z0 = � where � < 0 is the parameter on �L1. Then

its k-th image is (yk; zk) = FL
k(y0; z0). It is easy to show by direct calculation that for the

mapping FL, restricted to �1, the ratio 'k = yk=zk is changed by the following rule

'k = s1 + s2='k�1: (35)

From part 6 of the proof it is known that the signs of s1 and s2 are �xed. The obtained

one-dimensional mapping for 'k is sketched in Fig. 16. The graph does not intersect the

diagonal because of (33). By inspecting the form of map (35), it easy to see that there

exists k0 such that for all 0 < k < k0:

'k =
yk

zk
> �' > 0; '0 =

y0

z0
=  < 0:

and 'k0 < �': This means that k0-th image of (y0; z0) will be in �0. (In fact, �' represents

the slope of @�). By induction principle we have yk = �k� and zk = yk�1 for all 0 < k < k0.
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Further, consider the case 'k0 > 0. Then (yk0; zk0) 2 L4. In virtue of part 2, we have

F 2
L(yk0; zk0) 2 �L1. Direct calculations lead to the following expression F 2

L(yk0; zk0) =

( 2�k0�;  �k0�). The obtained point on the line �L1 corresponds to following value of pa-

rameter on �L1: �1 =  �k0�. Thus the obtained 1-dimensional map on �L1 has the form

� !  �k0�. It is stable if and only if j �k0j < 1. In the similar way we can show that in

the case 'k0 < 0 the criterion for the stability of the constructed 1D map is j�k0j < 1.

To complete the proof we note that in virtue of part 5 the stability of the constructed 1D

map is equivalent to stability of the equilibrium point for system (8).
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