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Abstract

We consider stability of solutions to optimization problems with probabilistic

constraints under perturbations of all constraint data (probability level, prob-

ability measure, deterministic constraints, random set mapping). Constraint

quali�cations ensuring stability are derived for each of the single parameters.

Examples illustrating the necessity of the stated conditions as well as the lim-

itations of the given results are provided.

1 Introduction

A fairly general shape of chance constraint programs is

(P ) minfg(x)jx 2 X; �(H(x)) � pg;

where g : Rm ! R is a continuous objective function, X � R
m is a closed subset

of deterministic constraints, and the inequality de�nes a probabilistic constraint

with H : Rm
� R

s being a multifunction with closed graph, � is a probability

measure on Rs and p 2 (0; 1) is some probability level. In the simplest case of linear

chance constraints, g is linear, X is a polyhedron and H(x) = fz 2 R
s jAx � zg,

where A is a matrix of order (s;m) and the inequality sign has to be understood

component-wise.

Since the data of optimization problems are typically uncertain or approximated by

other data which are easier to handle, the question of stability of solutions arises

naturally. Concerning (P ), the �rst idea is to investigate solutions under perturba-

tions of the right hand side p of the inequality. This re�ects the modeling degree

of freedom when choosing a probability at which the constraint system is supposed

to be valid. Furthermore, the probability measure � is unknown in general and has

to be approximated, for instance, by empirical measures. This motivates to extend

the perturbation analysis to �. Stability of solutions of (P ) with respect to p and

� is well understood now but shall be brie�y reviewed in this paper for the sake of

being selfcontained. Apart from these two constraint parameters, also approxima-

tions of the deterministic constraint X and of the random set mapping H in (P )
may be of interest. The aim of this paper is to identify constraint quali�cations

for stability under partial perturbations of the single constraint parameters in (P ).
Due to the increasing complexity of how these parameters in�uence each other, the

resulting constraint quali�cations become more and more restrictive when passing

from p over � to X and H. Part of the result relate to convex data in (P ) or even
in the perturbations of (P ). Special emphasis is put on a series of counter-examples

highlighting the necessity and limitations of the obtained conditions.
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2 Notation and basic assumptions

2.1 Stability concepts

For a multifunction M : Z � Y between metric spaces, we denote by GphM ,

domM and M�1 its graph, domain and inverse, respectively. At some x 2 Z, M

will be called closed if (xn; yn)! (x; y) along with yn 2M(xn) imply y 2M(x). M
is upper (lower) semicontinuous at x, if for all open V �M(x) (with V \M(x) 6= ;)
there exists some open W 3 x such that V �M(x0) (V \M(x0) 6= ;) for all x0 2 W .

Clearly, GphM is closed if and only if M is closed at all x 2 X. M will be called

metrically regular at some (�x; �y) 2 GphM , if there exists some L > 0 such that

d(x;M�1(y)) � Ld(y;M(x)) for all (x; y) in some neighbourhood of (�x; �y).

For a sequence An � Z, the upper (lower) set limit in the sense of Painlevé-

Kuratowski is de�ned as

Limsup
n

(Liminf
n

)An = fx 2 Zj liminf
n

(limsup
n

) (d(x;An) = 0g:

In case that Limsup
n

An = Liminf
n

An =: A, we write An ! A. For multifunctions

M : Z � Y , corresponding upper and lower limits evaluated at some �x are de�ned

as

Limsup
x!�x

M(x) = fy 2 Y j 9(xn; yn) 2 GphM : (xn; yn)! (�x; y)g;

Liminf
x!�x

M(x) = fy 2 Y j 8xn ! �x 9 yn ! y : yn 2M(xn) for n � n0g:

From the de�nitions it follows that M is closed (lower semicontinuous) at �x if and

only if

Limsup
x!�x

M(x) �M(�x) (M(�x) � Liminf
x!�x

M(x)):

In case that both relations hold true, we write M(�x) = Lim
x!�x

M(x). Finally, for a

sequence of multifunctionsMn : Z � Y , we introduce the following upper and lower

limits evaluated at some x:�
Limsup

n

Mn

�
(x) =

[
xn !x

Limsup
n

Mn(xn)

�
Liminf

n

Mn

�
(x) =

\
xn !x

Liminf
n

Mn(xn);

We note that

�
Limsup

n

Mn

�
(x) coincides with the so-called graphical outer limit

of Mn evaluated at x ([9], p.166) whereas
�
Liminf

n

Mn

�
(x) di�ers from the corre-

sponding graphical inner limit in that it uses intersection in place of union.
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2.2 Data spaces and metrics

The constraint data of our problem (P ) are given by (�; H; X; p). According to the
assumptions above, we introduce the following data space

D = P(Rs)�M(Rm ;Rs)� F(Rm)� (0; 1);

where P(Rs) is the set of Borel probability measures on R
s , M(Rm ;Rs) is the

set of multifunctions from R
m to R

s having closed graph and F(Rm) denotes the
hyperspace of closed subsets of Rm . The perturbations (�;G; Y; q) of the original data
(�; H; X; p) are supposed to belong to the same data space. Each of the factors of D
can be endowed with a suitable metric. For F(Rm) we take the so-called integrated

set distance ([9], p. 139) between closed subsets A and B:

Æ(A;B) :=

Z
1

0

Æ�(A;B)e��d�;

where Æ�(A;B) := max
x2B(0;�)

jd(x;A)� d(x;B)j denotes the �� Hausdor� distance.

It is known that Æ metrizes the Painlevé-Kuratowski set convergence introduced

above, i.e., An ! A if and only if Æ(An; A) ! 0. Applying the same idea to graphs

of multifunctions, one may de�ne �(G; ~G) := Æ(GphG;Gph ~G) as a distance on

M(Rm ;Rs). Then, obviously, Gn ! G in the sense of �(Gn; G) ! 0, if and only if

GphGn ! GphG in the sense of Painlevé-Kuratowski set convergence. Finally, on

P(Rs) we use the so-called B- discrepancy

�B(�; ~�) := sup
B2B

j�(B)� ~�(B)j ; B = fz + R
s

�
jz 2 R

sg [ fH(x)jx 2 Xg; (1)

where X and H refer to the original data of problem (P ). The �rst constituent of
the collection B makes �B a metric on P(Rs), while the second one is required for a

suitable stability analysis.

Speci�c attention will be paid to convex-like problems. For this purpose, we intro-

duce the subspace of convex problem data

Dc = Pc(Rs)�Mc(Rm ;Rs)� F c(Rm)� (0; 1);

where Mc(Rm ;Rs) is the set of multifunctions from R
m to R

s having closed and

convex graph and F c(Rm) denotes the hyperspace of closed and convex subsets of

R
m . By Pc(Rs) we refer to the set of so-called r� concave probability measures for

some r < 0 ([8]) which are de�ned as to satisfy the inequality

�r(�B1 + (1� �)B2) � ��r(B1) + (1� �)�r(B2) (2)

for all Borel measurable convex subsets B1; B2 of Rs and all � 2 [0; 1] such that

�B1 + (1 � �)B2 is again Borel measurable and convex. Many of the prominent

multivariate distributions (e.g. normal, Dirichlet, Student and Pareto distribution

as well as uniform distribution on bounded convex sets) belong to the class Pc(Rs)
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(cf. [8]). If (�;H;X; p) 2 Dc, then the function �r Æ H (with r < 0 from (2) is

convex and, in particular, the constraint set in problem (P ) is convex (after raising

the inequality to the negative power r).

With problem (P ) we associate the constraint set mapping � : D� R
m , the solution

set mapping 	 : D � R
m as well as the optimal value function ' : D ! �R , all of

them depending on the problem data (�;G; Y; q) which are considered as parameters:

� (�;G; Y; q) : = fx 2 Y; �(G(x)) � qg

' (�;G; Y; q) : = inffg(x)jx 2 � (�;G; Y; q)g

	(�;G; Y; q) : = fx 2 � (�;G; Y; q) jg(x) = ' (�;G; Y; q)g:

By adding a left upper index '�', 'H', 'X' or 'p', we refer to the respective partial

mappings, when all parameters except the indexed one are �xed as the original

data, e.g. X	(Y ) = 	 (�;H; Y; p) ;H �(G) = � (�;G;X; p) etc. For some open

subset Q � R
m , de�ne the localized mappings

'Q (�;G; Y; q) : = inffg(x)jx 2 � (�;G; Y; q) \ clQg

	Q (�;G; Y; q) : = fx 2 � (�;G; Y; q) \ clQjg(x) = 'Q (�;G; Y; q)g:

The localized partial mappings are obtained by prepending the corresponding index

to � in these de�nitions, e.g., p'Q(q) = inffg(x)jx 2 p� (q) \ clQg.

3 Partial Stability of Solutions and Optimal Values

In this section, we study the stability of solutions and optimal values to problem

(P ) with respect to single data parameters. As a basic preparatory result we need

the closedness of all partial constraint mappings.

Proposition 1 The partial constraint set mappings p�; ��; X�; H� are closed at

their respective original data points p; �; X and H.

Proof. Closedness of p� and �� follows from the upper semicontinuity of the

mapping �(H(�)) and from the de�nition of the discrepancy in (1) (cf. [10], Prop.

3.1). For closedness of X� let (Xn; xn) ! (X; x) such that xn 2
X�(Xn). Then,

xn 2 Xn and �(H(xn)) � p. It follows that x 2 Limsup
n

Xn = X (by Xn ! X)

and �(H(x)) � limsup
n

�(H(xn)) � p again by upper semicontinuity of �(H(�)).

This means x 2 X�(X), and, hence, closedness of X� at X. To check H�, let
(Hn; xn) ! (H; x) such that xn 2

H�(Hn). Then, xn 2 X and �(Hn(xn)) � p.

Closedness of X implies that x 2 X. Furthermore, equation (9) from the appendix

yields

Limsup
n

Hn(xn) �

�
Limsup

n

Hn

�
(x) = H(x):
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Then, equation (6) from the appendix provides the desired relation

�(H(x)) � limsup
n

�(Hn(xn)) � p;

whence the closedness of H� at H.

3.1 Stability with respect to the probability level

The dependence of solutions and optimal values on perturbations of the probability

level is the simplest one among all data variations considered here, and the following

stability results are readily derived from classical facts of parametric optimization

(cf. [1], Th. 4.2.1, Th. 4.2.2, [4], Th. 1, Th. 2 and [5], Th. 2.2) upon noting

that the partial constraint set mapping p� is closed at p according to Proposition

1. We emphasize that all assumptions made to obtain stability exclusively refer to

the original data (�;H;X; p) of problem (P ).

Theorem 2 Assume that

1. (p�)�1 is metrically regular at all (�x; p) with �x 2 	(�;H;X; p) (solution set for

the original data of (P )).

Then, p	 is closed at p and p' is upper semicontinuous at p.

2. In addition, 	(�;H;X; p) is bounded, i.e., 	(�;H;X; p) � Q for some bounded

open Q � R
m .

Then, p	Q is upper semicontinuous at p, and p'Q is continuous at p.

3. In addition, g (the objective in problem (P )) is locally Lipschitzian.

Then, p'Q is locally Lipschitzian at p.

4. In addition, g satis�es a k� th order growth condition on the set of global solu-

tions, i.e. (with �x from 1. and Q from 2.),

g(x) � g(�x) + dk(x;	(�;H;X; p)) 8x 2 Q \ �(�;H;X; p)

Then, p	Q is upper Hölder continuous at p with rate k�1,i.e.,

supfd(x;p	Q(p))jx 2
p	Q(q)g � L jq � pjk

�1

for some L > 0 and q close to p.

The inconvenient use of localizations (by means of Q) in the stability statements

2., 3. and 4. cannot be avoided in general. However, there are some special cases

where localizations are not necessary. For instance, if the set X of deterministic

constraints is compact, then assumption 2. of Theorem 2 is automatically ful�lled
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with Q := fxjd(x;X) < 1g. Then, p	Q = p	, p'Q = p' and all the results of

the Theorem maybe rephrased in terms of the unlocalized mappings p	 and p'.

Another instance of avoiding localizations is given in Proposition 3 below.

Re-inspection of Theorem 2 reveals that assumptions 1. and 4. are most di�cult to

verify. In [10] (Proof of Cor. 3.7) it was shown that for convex problem data (i.e.,

(�;H;X; p) 2 Dc) the metric regularity of (p�)�1 (equivalently formulated there as

a Lipschitzian property of p�) is implied by the Slater-type condition

there exists some x̂ 2 X such that �(H(x̂)) > p. (3)

For the nonconvex setting, a series of veri�able conditions was formulated in ([2]) in

the special case of H(x) = fz 2 R
s jz � h(x)g with continuous h : Rm ! R

s (chance

constraints with random right-hand side. To give a simpli�ed idea, assume that h

is locally Lipschitzian and � has a continuous density f�. Then, assumption 1. of

Theorem 2 will be satis�ed under the following two conditions:

� If �(H(�x)) = p, then there exists some z 2 h(�x) + bdRs

�
such that f�(z) > 0

('bd'=boundary).

� @a hy
�; hi (�x) \ �Na(X; �x) = ; 8y� 2 R

s

�
n f0g,

where in the second condition @a and Na refer to Mordukhovich's subdi�erential

and normal cone, respectively [7]. In case of di�erentiable h and of �x 2 intX, this

second condition simply reduces to the positive linear independence of the gradients

rhi(�x). The �rst condition is ful�lled, in particular, if f�(h(�x)) > 0, which is always
true for the multivariate normal distribution, for instance.

Concerning assumption 4. of Theorem 2, the quadratic growth condition for g

(k = 2) is closely related, for smooth data, to second order su�cient conditions.

For convex data in the setting of our problem (P ) veri�able conditions of quadratic
growth are given in [2], Th. 8. Finally, we formulate a stability result for convex

data avoiding any compactness or localization statements:

Proposition 3 In problem (P ), let (�;H;X; p) 2 Dc and g be convex. If the un-

perturbed solution set 	(�;H;X; p) is nonempty and bounded and if (3) is satis�ed,

then p	 is upper semicontinuous at p and p' is continuous at p.

Proof. The convexity assumption implies that the parametric constraint set p�(q)
is convex for all q. Also, one easily checks that metric regularity at all x 2 p�(p),
which was noted above to be implied by (3), guarantees the lower semicontinuity of
p� at p. Furthermore, we know that p� is closed at p according to Prop. 1. Now,

apply Theorem 11 (2.) with f := g; � := (0; 1); � := q; �0 := p; M := p�.
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3.2 Stability with respect to the probability measure

Stability of program (P ) with respect to variations of the probability measure �

may be partially reduced to the previously discussed case of stability with respect

to the scalar probability level p. The main observation in this context was made

in [10] (Proof of Th. 3.2) where (formulated in di�erent terms there) it was shown

that the metric regularity of (p�)�1 (see assumption 1. in Th. 2) is su�cient to

guarantee (local) lower semicontinuity of (��)�1 and thus to derive parallel results

to Theorem 2. More precisely, one has

Theorem 4 Assume that

1. (p�)�1 is metrically regular at all (�x; p) with �x 2 	(�;H;X; p) .

Then, �	 is closed at � and �' is upper semicontinuous at �.

2. In addition, 	(�;H;X; p) is bounded, i.e., 	(�;H;X; p) � Q for some bounded

open Q � R
m .

Then, �	Q is upper semicontinuous at � and �'Q is continuous at �.

3. In addition, g is locally Lipschitzian.

Then, there exists some bounded open set Q0 � 	(�;H;X; p) (smaller than Q), such

that �'Q0 is upper Lipschitzian at �, i.e., with some L; Æ > 0, one has

j�'Q0(�)� �'Q0(�)j � L�B(�; �) 8� 2 P(Rs); �B(�; �) < Æ:

4. In addition, g satis�es a k� th order growth condition on the set of global solutions

(see Th. 2).

Then, �	Q0 is upper Hölder continuous at � with rate 1=k, i.e., there are L; Æ > 0
such that for all � 2 P(Rs) with �B(�; �) < Æ

supfd(x;�	Q0(�))jx 2 �	Q0(�)g � L [�B(�; �)]
1=k

:

The �rst assertion of the Theorem relies on the local lower semicontinuity of (��)�1

as stated above and on standard arguments of parametric programming (cf. [1])

similar as in Theorem 2. 2. and 3. are shown in Theorem 3.2 of [10] while 4. results

from Theorem 2.2 in [5].

In contrast to the previous section, the �rst three assumptions of Theorem 4 do

not guarantee the local Lipschitz property for �'Q0 (unlike p'Q in Th. 2) but

just the formulated weaker upper Lipschitz property. This is con�rmed by the

following counter-example even in case of convex-like original data ((�;H;X; p) 2
Dc; g convex):

Example 1 In problem (P ) let m = s = 1; p = 0:5; g(x) = x; X = R and H(x) =
(�1; x]. We de�ne the probability measure � along with two sequences of perturbed

7



probability measures �n; ~�n via the following distribution functions (recall that � 2
P(Rs) is uniquely de�ned by its distribution function F�(z) = �(H(z))):

F�(x) = maxf0;minfx+ 0:5; 1gg;

F�n(x) =

8>><
>>:

F�(x) x � 0
0:5 x 2 [0; n�1]
x+ 0:5� n�1 x 2 [n�1; n�1 + 0:5]
1 x � n�1 + 0:5

;

F~�n(x) =

8<
:

F�(x) x � �n�2

0:5 + (x� n�1)=(n+ 1) x 2 [�n�2; n�1]
F�n(x) x � n�1

Clearly, (�;H;X; p) 2 Dc (note that H has convex graph and that � 2 Pc(Rs) as

the uniform distribution over the interval [�0:5; 0:5]). The original and perturbed

constraint sets are given by

��(�) = fxjF�(x) � 0:5g = [0;1) = fxjF�n(x) � 0:5g = ��(�n) 8n 2 N ;
��( ~�n) = fxjF ~�n(x) � 0:5g = [n�1;1) 8n 2 N.

Consequently, �	(�) = f0g and, no matter how small the open neighbourhood Q0 of

0 is chosen (compare Theorem 4), one has �'Q0(�) = �'Q0(�n) = 0 and �'Q0(~�n) =
n�1 (for large n). Furthermore, due to �(H(1)) = F�(1) = 1 > p, condition (3) is

satis�ed, which guarantees assumption 1. in Theorem 4. Summarizing, assumptions

1.-3. of Theorem 4 are satis�ed. On the other hand, for the particular choice of the

mapping H in this example, the collection B in (1) reduces to its �rst part. As a

consequence, �B becomes the Kolmogorov distance

�B(�; �
0) = sup

z2Rs

���(z + R
s

�
)� � 0(z + R

s

�
)
�� = sup

z2Rs

jF�(z)� F�0(z)j :

For the data in this example, one easily checks that the maximum deviation between

F� and both of F ~�n and F�n is realized at z = n�1, whereas the maximum deviation

between F ~�n and F�n is realized at z = 0: Accordingly, one calculates

�B(�n; �) = �B(~�n; �) = n�1; �B(�n; ~�n) = [n(n + 1)]�1;

hence �n; ~�n ! � but j�'Q0(�n)�
�'Q0(~�n)j = n�1 = (n+1)�B(�n; ~�n). This means

that �'Q0 cannot be locally Lipschitzian at �, although it is upper Lipschitzian at �

according to Theorem 4.

A stability result for convex data, where localizations can be ignored similar to

Proposition 3, is (cf. [3], Th. 3.1):

Proposition 5 In problem (P ), let (�;H;X; p) 2 Dc and g be convex. If the un-

perturbed solution set 	(�;H;X; p) is nonempty and bounded and if condition (3)

is satis�ed, then, at �, �	 is upper semicontinuous and �' is upper Lipschitzian.
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Note that, although for the original probability measure we have the convexity re-

quirement � 2 Pc(Rs), the upper semicontinuity of �	 relates to arbitrary perturbed

probability measures � 2 P(Rs) here. This is important in practical applications,

where the original measure � is frequently known to be r� concave for some r < 0
whereas its approximations (based on empirical or Kernel estimates) de�nitly lack

this property.

3.3 Stability with respect to the deterministic constraint set

A stability analysis of problem (P ) with respect to variations of the deterministic

constraint set X turns out to be more restricted than in the previously discussed

cases. First of all, in contrast to the previous results, stability of the constraint set

mapping can no longer be reduced to stability with respect to perturbations of the

right-hand side . More precisely, the following example shows that metric regularity

of (p�)�1 does not imply closedness of X	 (whereas it implies closedness of p	 and
�	, see Theorems 4 and 2).

Example 2 In (P ) set m = s = 1; g(x) = x; X = f0; 1g; p = 0:5; � = uniform

distribution on [0; 1] and de�ne H via GphH = [0; 1]2. Clearly, the unique solution

of (P ) is given by 	(�;H;X; p) = X	(X) = f0g. Since p�(q) = f0; 1g for q

close to p (i.e., p� is locally constant), (p�)�1 must be metrically regular at (0; p),
hence assumption 1. of Theorems 2 and 4 is ful�lled. On the other hand, de�ning

Xn := f�n�1; 1g it is clear that Xn ! X and that X	(Xn) = X�(Xn) = f1g,
hence X	 is not closed at X (nor is X' upper semicontinuous at X).

The example suggests that it is di�cult to �nd veri�able conditions for stability

w.r.t. perturbations of X if X itself is an arbitrary closed set even if H and �

have convexity properties (H 2 Mc(Rm ;Rs); � 2 Pc(Rs)). A slight modi�cation

of the example (X := [0; 1] ;GphH := (f0g � [0; 1]) [ (f1g � [0; 1]) ; Xn := [n�1; 1])
shows that the convexity of GphH cannot be dispensed with either when expecting

stability w.r.t. X. Note, that in this modi�ed example X 2 F c(Rm); � 2 Pc(Rs)
and (p�)�1 is again metrically regular at (0; p). Furthermore, � has to satisfy a

convexity property as well, as is shown by the following example, where both X and

H do satisfy the convexity requirements.

Example 3 In (P ) set m = s = 1; g(x) = x; X = [0; 1] ; p = 1=4; � = (Æ0 + Æ1) =2
(with Æx = Dirac measure on x 2 R ) and de�ne H via

GphH = convf(0; 0); (1; 0:5); (1; 1); (0; 0:5)g:

Then, X 2 F c(R); H 2 Mc(R;R) but � =2 Pc(R) (� is not r-concave for any

r < 0). Elementary calculation shows that X�(X) = f0; 1g and X	(X) = f0g.
With Xn := [n�1; 1], one has Xn ! X and X	(Xn) =

X�(Xn) = f1g, hence X	 is

not closed at X (nor is X' upper semicontinuous at X). On the other hand, (p�)�1

is metrically regular at (0; p) with the same reason as in Example 2.
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The following Theorem con�rms that the desired stability results - even w.r.t. non-

convex perturbations of X - are available in case that the original problem is a

completely convex one. This is parallel to the statement concerning � in Proposi-

tion 5. However, the constraint quali�cation (3) has to be strengthened.

Theorem 6 In problem (P ) assume that:

1. (�;H;X; p) 2 Dc.

2. � has a density.

3. There exists some x̂ 2 int domH \X with �(H(x̂)) > p:

Then, X	 is closed at X and X' is upper semicontinuous at X.

4. In addition, ; 6= 	(�;H;X; p) � Q for some bounded open Q � R
m .

Then, X	Q is upper semicontinuous at X and X'Q is continuous at X.

5. In addition, g is convex.

Then, the restrictions X	jF c(Rm) and X'jF c(Rm) of X	 and X' to convex pertur-

bations of X are upper semicontinuous and continuous, respectively, at X (without

localization).

Proof. First, we show that X� is lower semicontinuous at X. If it were not, then

there would exist a sequence F(Rm) 3 Xn ! X along with an open set V such that
X�(X) \ V 6= ;, but X�(Xn) \ V = ; for all n. Rephrasing the last relation, gives

x =2 Xn for all n and all x 2 V with �(H(x)) � p: (4)

Choose some x0 2 X�(X)\V . Assumption 1. implies �r(H(�)) to be convex, where
r < 0 refers to the modulus of r-concavity from � 2 Pc (see (2)). Consequently,

for x� := �x̂ + (1 � �)x0 and � 2 (0; 1], it holds that �(H(x�)) > p. Furthermore,

since x0 2 X�(X), we have x0 2 X and x0 2 domH (otherwise the contradiction

0 < p � �(H(x0)) = �(;) = 0). After �xing some small enough � > 0, one has

x� 2 int domH \ X \ V with �(H(x�)) > p by convexity of domH. Now, the

relation x� 2 int domH implies H to be lower semicontinuous at x� (cf. [9], Th.

5.9), so H(x�) � Liminf
n

H(xn) for any sequence xn ! x�. Now, (8) in Lemma

9 provides lim inf �(H(xn)) � �(H(x�)) > p. In other words, since xn ! x� was

arbitrary, one derives that �(H(x)) > p for all x in an open ball around x� with

some radius " > 0 chosen small enough such that the open ball is still contained in

V . But then, (4) leads to d(x�; Xn) � " > 0 contradicting x� 2 X and Xn ! X. So,
X� is lower semicontinuous at X: Now, in Theorem 11 in the appendix (statement

1.), put f := g; � := F(Rm); �0 := X; M := X� (note that M is closed at �0 by

Prop. 1) in order to verify the statement under assumption 3.

Next, select some x� 2 	(�;H;X; p) according to assumption 4. and let F(Rm) 3
Xn ! X be an arbitrary sequence. Due to x� 2 X�(X), the lower semicontinuity
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of X� at X guarantees the existence of a sequence xn ! x� with xn 2
X�(Xn)

and moreover, by assumption 4., with xn 2 Q. Denoting by MQ the constant

multifunction MQ(Y ) � clQ, it follows that

x� 2 	(�;H;X; p) \ Liminf
Y!X

�
X�(Y ) \MQ(Y )

�
:

Putting f := g; � := F(Rm); �0 := X; M := X�\MQ and noting thatM is closed

at �0, we deduce from Theorem 11 (statement 1.) the assertion under assumption

4. Finally, with f := g; � := F c(Rm); �0 := X; M := X�, the second statement in

Theorem 11 yields the last assertion of the Theorem.

The following lemma provides a constraint quali�cation alternative to 3. in Theorem

6 without requiring a density for the probability measure. Its application, however,

restricts to convex perturbations of X from the very beginning.

Lemma 7 In problem (P ) let (�;H;X; p) 2 Dc and assume that:

1. (�;H;X; p) 2 Dc.

2. There exists some x̂ 2 intX with �(H(x̂)) � p:

Then, X	jF c(Rm) is closed at X and X'jF c(Rm) is upper semicontinuous at X.

3. In addition, ; 6= 	(�;H;X; p) � Q for some bounded open Q � R
m .

Then, X	QjF
c(Rm) is upper semicontinuous at X and X'QjF

c(Rm) is continuous

at X.

4. In addition, g is convex.

Then, X	jF c(Rm) and X'jF c(Rm) are upper semicontinuous and continuous, re-

spectively, at X (without localization).

Proof. All one has to show is lower semicontinuity of X�jF c(Rm) at X since the

rest of the argumentation is identical to that in the proof of Theorem 6. Now, viola-

tion of that lower semicontinuity amounts to the existence of a sequence F c(Rm) 3
Xn ! X along with an open set V such that (4) holds true. We proceed in an

analogous way as in the proof of Theorem 6 to �nd some x� 2 intX \ V with

�(H(x�)) � p on the basis of assumption 2. in this lemma. Now, the Xn being

convex (in contrast to Theorem 6), relation (7) in the appendix may be invoked to

show that x� 2 Xn for large enough n. This, however, is in contradiction to (4).

The next example illustrates why the constraint quali�cation 2. in Lemma 7 is not

su�cient in order to guarantee stability with respect to non-convex perturbations

of X:

Example 4 In (P ), let m = 2; s = 1; g(x; y) = �x;X = R
2 ; p = 0:5; � = uni-

form distribution on [0; 1] and de�ne H via GphH = [0; 1] � f0g � [0; 1]. Then,

11



(�;H;X; p) 2 Dc; X�(X) = [0; 1] � f0g; X	(X) = f(1; 0)g and X'(X) = �1.
Taking x̂ = (0; 0), all assumptions of Lemma 7 are satis�ed. However, with the

non-convex perturbations Xn := f(x; y) 2 R
2 jx � n jyjg one has Xn ! X and

X�(Xn) =
X	(Xn) = f(0; 0)g; X'(Xn) = 0, hence X	(Xn) fails to be closed at X

and X' fails to be upper semicontinuous at X.

Note, that in this example, the constraint quali�cation 2. of Lemma 7 is satis�ed

even with strict inequality and, furthermore, � has even a density. This underlines

the necessity of x̂ belonging to int domH (see constraint quali�cation 3. in Theorem

6), as soon as one is interested in stability w.r.t. non-convex perturbations of X

(note that int domH = ; in Example 4). Another example demonstrates why � has

to have a density in the context of Theorem 6.

Example 5 In (P ), let m = 2; s = 1; g(x; y) = �x;X = [0; 1] � f0g; p = 0:5; � =
Dirac measure on the point 1 2 R and de�ne H via

GphH = convf(0;�1; 0); (1;�1; 0); (1; 0; 1); (1; 1; 0); (0; 1; 0); 0; 0; 1)g:

One easily veri�es that � is r-concave for any r < 0, hence (�;H;X; p) 2 Dc.

Furthermore, X�(X) = [0; 1] � f0g; X	(X) = f(1; 0)g and X'(X) = �1. Taking

x̂ = (0:5; 0:5) 2 int domH, all assumptions of Theorem 6 except 2. are satis�ed.

Now, with Xn := convf(0; 0); (1; n�1)g, one has Xn ! X and X�(Xn) =
X	(Xn) =

f(0; 0)g; X'(Xn) = 0, hence X	(Xn) fails to be closed at X and X' fails to be upper

semicontinuous at X.

In the last example, the perturbations of X have even been convex, so the failure

of stability illustrates at the same time the necessity of x̂ belonging to intX in the

constraint quali�cation 2. of Lemma 7 (note that intX = ; in Example 5).

3.4 Stability with respect to the random set mapping

In contrast to the previous sections, for a stability analysis relating to the random

set mapping H, there is no chance to arrive at results for nonconvex perturbations

under reasonable assumptions. This will be seen in Example 9 below. Therefore,

the following theorem relates to the restrictions of the mappings 	 and ' to the

space Mc(Rm ;Rs) of multifunctions with closed and convex graph from the very

beginning.

Theorem 8 In problem (P ) assume the following conditions:

1. (�;H;X; p) 2 Dc.The solution set of (P ) is nonempty: 	(�;H;X; p) 6= ;.

2. � has a density.

3. There exists some x̂ 2 int domH \X with �(H(x̂)) > p.
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Then, at H, H	jMc(Rm ;Rs) is closed and H'jMc(Rm ;Rs) is upper semicontinuous.

4. In addition, ; 6= 	(�;H;X; p) � Q for some bounded open Q � R
m .

Then, at H, H	QjM
c(Rm ;Rs) is upper semicontinuous and H'QjM

c(Rm ;Rs) is

continuous.

5. In addition, g is convex.

Then, H	jMc(Rm ;Rs) and H'jMc(Rm ;Rs) are upper semicontinuous and contin-

uous, respectively, at H (without localization).

Proof. We just have to verify that H�jMc(Rm ;Rs) is lower semicontinuous at

H, since the rest of argumentation is completely analogous to the proof of Theorem

6 after having shown lower semicontinuity of the mapping X� there. For brevity,

we put H�� := H�jMc(Rm ;Rs). If H�� were not lower semicontinuous at H, then

there would exist a sequence Mc(Rm ;Rs) 3 Hn ! H and an open set V such that
H��(H) \ V 6= ;, but H��(Hn) \ V = ; 8n 2 N . Let x0 2 H��(H) \ V . Exactly in

the same way as in the proof of Theorem 6, one derives, for small enough � > 0, the
existence of some x� := �x̂+(1��)x0 with �(H(x�)) > p and x� 2 int domH\X\V .
If H�� violates lower semicontinuity at H, then

�(Hn(x�)) < p 8n 2 N : (5)

Now, (10) in Proposition 10 (see appendix) yields

H(x�) �
�
Liminf

n

Hn

�
(x�) � Liminf

n

Hn(x�);

and (8) in Lemma 9 (see appendix) gives with (5) the contradiction

�(H(x�)) � lim inf
n

�(Hn(x�)) � p.

The following examples shall illustrate the (independent) necessity of the �rst three

assumptions in Theorem 8. Concerning the �rst assumption, slight modi�cations

of Example 2 (GphHn := [n�1; 1] � [0; 1] on the one and X := [0; 1] ;GphH :=
(f0g � [0; 1]) [ ([0:5; 1]� [0; 1]) ;GphHn := (f�n�1g � [0; 1]) [ ([0:5; 1]� [0; 1]) on
the other hand) con�rm that violating convexity of X or GphH (while satisfying

all the respectively remaining assumptions of Theorem 8) destroys stability. The

following example shows that the same holds true for the convexity assumption

� 2 Pc(Rs):

Example 6 In problem (P ) let m; s; p and g as in Example 2. We de�ne X =
[0; 3] ; GphH := convf(0; 0); (3; 2); (3; 3); (0; 1)g and � as the one-dimensional prob-

ability measure induced by the density

f(x) =

�
0:5 if x 2 [0; 1] [ [2; 3]
0 else

:

13



One easily calculates that H�(H) = f0; 3g and H	(H) = f0g. Now, all assumptions

of Theorem 8 are met with the exception that � fails to be r� concave for some r < 0.
De�ning

GphHn := convf(n�1; n�1); (3; 2); (3; 3); (n�1; 1 + n�1)g;

one veri�es that Hn ! H and H�(Hn) = f3g (e.g., �(Hn(n
�1)) = 0:5 � (1 �

n�1) < p), hence H	(Hn) = f3g and H	jMc(Rm ;Rs) cannot be closed at H and
H'jMc(Rm ;Rs) is not upper semicontinuous at H either.

The next example demonstrates that assumption 2. cannot be dispensed with:

Example 7 In problem (P ) let m; s; g;X; p be given as in Example 2, but now de�ne

H by GphH = [0; 1]2 and � as the Dirac measure on the point 1 2 R. Then, all

assumptions of Theorem 8 are met (for 3. take x̂ := 0:5) with the exception of

2. Furthermore, H�(H) = [0; 1], hence H	(H) = f0g. De�ning Hn via GphHn :=
convf(0; 0); (1; 0); (1; 1); (0; 1�n�1)g, one veri�es that Hn ! H and that �(Hn(1)) =
1 but �(Hn(x)) = 0 for all x 6= 1. As a consequence, one gets H�(Hn) =

H	(Hn) =
f1g, hence H	jMc(Rm ;Rs) is not closed at H. Similarly, H'jMc(Rm ;Rs) is not

upper semicontinuous at H.

Another example highlights the role of constraint quali�cation 3. At the same time

it (negatively) answers the question whether the alternative constraint quali�cation

2. of Lemma 7 could be su�cient in order to derive stability w.r.t. to convex

perturbations as it was the case for the deterministic constraint set in the previous

section. It turns out that even strengthening this constraint quali�cation towards

strict inequality and insisting on � having a density (which was not required in

Lemma 7) does not yield the desired result.

Example 8 In problem (P ) let m = 2; s = 1; g(x; y) = y; p = 3=4; X = R
2 ;GphH

= f0g � [0; 1]� [0; 1] and � = uniform distribution on [0; 1]. Then, all assumptions

of Theorem 8 are met except 3. since int domH = ;. One even has

�(H((0; 0))) = �([0; 1]) = 1 > p;

hence condition 2. of Lemma 7 is strictly satis�ed. On the other hand,

H�(H) = f0g � [0; 1] ;H 	(H) = f(0; 0)g;H '(H) = 0;

and, de�ning Hn via

GphHn := convf(0; 1; 0); (0; 1; 1); (n�1; 0; 0); (n�1; 0; 1=2);

(�n�1; 0; 1=2); (�n�1; 0; 1)g;

one gets Hn ! H, H'(Hn) = 0:5 and

H�(Hn) = convf(�(2n)�1; 1=2); ((2n)�1; 1=2); (0; 1)g;
H	(Hn) =

�
�(2n)�1; (2n)�1

�
� f1=2g:

Summarizing, no stability results for H	jMc(Rm ;Rs) and H'jMc(Rm ;Rs) are avail-
able at H.

14



Finally, motivated by Proposition 5 and Theorem 6, one might wonder if the as-

sumptions of Theorem 8 are su�cient in order to derive stability of the map-

pings H	 and H' themselves rather than of their restrictions H	jMc(Rm ;Rs) and
H'jMc(Rm ;Rs). The answer is negative:

Example 9 Let m; s; g; X and � be given as in Example 2, set p := 3=4 and de�ne

H by GphH = [0; 1]2. Then, (�;H;X; p) 2 Dc, � has a density and �(H(0:5)) > p

with 0:5 2 int domH\X. Clearly H�(H) = [0; 1] and H	(H) = f0g. Summarizing,

all assumptions of Theorem 8 are ful�lled. Now, de�ne the following closed subsets

of [0; 1]:

An :=
2n�1

�1[
i=0

�
2i

2n
;
2i + 1

2n

�
:

Then, An ! [0; 1] and �(An) = 0:5 (recall that, on the subsets of [0; 1], � is identical

to the Lebesgue measure). We set

GphHn := (f1g � [0; 1]) [ ([0; 1]� An) :

Thus, M(Rm ;Rs) 3 Hn ! H. Furthermore, �(Hn(1)) = 1, but �(Hn(x)) = 0:5
for x 2 [0; 1), so H�(Hn) = H	(Hn) = f1g. Consequently, due to the fact that

Hn =2 Mc(Rm ;Rs), H	 fails to be closed or upper semicontinuous at H and H' fails

to be upper semicontinuous at H. Of course, the corresponding properties do hold

for the restrictions H	jMc(Rm ;Rs) and H'jMc(Rm ;Rs) according to Theorem 8.

4 Appendix

In this section we collect some known or easy to prove facts. The results of the

following lemma are based on [6] (for (6), see Th. 3, for (7) see Cor. 8, for (8) see

Lemma 1 and Proof of Th. 4).

Lemma 9 (Lucchetti,Salinetti,Wets) Let An(n 2 N); A � R
s be closed with

Limsup
n

An � A and � 2 P(Rs) a probability measure. Then, one has

limsup
n

�(An) � �(A): (6)

Conversely, assume that the An and A are closed and convex but Liminf
n

An � A.

Then,

intA � int
[
k2N

\
n�k

An (7)

If, in addition to the last assumptions, � has a density, then it holds that

liminf
n

�(An) � �(A): (8)
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Proposition 10 Let Gn(n 2 N); G : Rm
� R

s be multifunctions with closed graph

such that Gn ! G . Then one has

�
Limsup

n

Gn

�
(x) = G(x) for all x 2 R

m : (9)

If, in addition, the Gn and G have convex graph, then it holds that

�
Liminf

n

Gn

�
(x) � G(x) for all x 2 int domG (10)

and

int domG � int
[
k2N

\
n�k

domGn (11)

Proof. (9) follows immediately from the de�nitions. In order to verify (10),

let y 2 G(x) and a sequence xn ! x be arbitrarily given. We have to show the

existence of a sequence yn 2 Gn(xn) with yn ! y. To this aim, we verify the

following relation:

8m 2 N 9nm 2 N 8n � nm 9z
m

n
2 Gn(xn) \ B

0(y;m�1):

So, let m 2 N be arbitrary. By x 2 int domG and due to convexity of Gph G, G

is lower semicontinuous in x (cf. [9], Th. 5.9). Consequently, there is some Æ > 0,
such that G(w) \ B0(y; 2=m) 6= ; 8w 2 B0(x; Æ). We select points w1; :::; wN 2
B0(x; Æ) with x 2 int convfw1; :::; wNg as well as corresponding points �1; :::; �N

with �i 2 G(wi) \ B0(y; 2=m). By continuity, there is some � > 0, such that

x 2 int convfv1; :::; vNg for all (v1; :::; vN) with vi 2 B0(wi;�). In view of Gn ! G

and (wi; �i) 2 GphG, for each i 2 f1; :::; Ng there exists some ki 2 N , such that

GphGn \ [B0(wi;�)�B0(�i; 2=m)] 6= ; 8n � ki. Hence, there is some nm such

that for all n � nm we may �nd points (vi
n
; �i

n
) with �i

n
2 Gn(v

i

n
) \ B0(�i; 2=m)

and vi
n
2 B0(wi;�) for i = 1; :::; N . Thus, xn 2 convfv1

n
; :::; vN

n
g if n � nm.

Consequently, for such n there exist �1
n
; :::; �N

n
� 0 with �1

n
+ :::+ �N

n
= 1, such that

xn = �1
n
v1
n
+ ::: + �N

n
vN
n
. We set zm

n
:= �1

n
�1
n
+ ::: + �N

n
�N
n
. Since Gn has a convex

Graph, one arrives at zm
n
2 Hn(xn). Furthermore, with z� := �1

n
�1 + ::: + �N

n
�N it

holds that

kzm
n
� yk � kzm

n
� z�k+ kz� � yk �

NX
i=1

�i
n



�i
n
� �i



 + 2=m � m�1,

which proves the intermediary assertion above. In this assertion, one may as-

sume nm � nm+1 8m 2 N without loss of generality. Setting yn := zm
n
8n 2

fnm; :::; nm+1g 8m 2 N , it follows that yn 2 G(xn) and yn ! y, as was to be

shown.

Finally, let us prove (11). Since by closedness and convexity of GphG and GphGn,

the sets domG and domGn are closed and convex as well, it su�ces to verify,

according to (7), the relation Liminf
n

domGn � domG. To this aim, consider an
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arbitrary x 2 domG and correspondingly select some y 2 G(x). Then, assuming

without loss of generality, the distance on Rm+s to be based on the euclidean norm,

we get

d(x; domGn) = inffkx� x0k jx0 2 domGng

� inff

q
kx� x0k2 + ky � y0k2jx0 2 domGn; y

0 2 Gn(x)g

= d((x; y);GphGn)! 0;

where the last convergence relies on Gn ! G and (x; y) 2 GphG. Thus, x 2
Liminf

n

domGn, as was to be shown.

The following Theorem (cf. [1], Th. 4.2.1, Th. 4.2.2, Th. 4.3.3) collects some

classical results of parametric programming in a simpli�ed setting su�cient for our

purposes:

Theorem 11 In the parametric problem

(P�) minff(x)jx 2M(�)g (� 2 �);

let � be a metric space, M : �� R
n a multifunction which is closed at �0 2 � and

f : Rn ! R a continuous function. Denote by 	 : � � R
n and ' : � ! R the

solution set mapping and optimal value function, respectively, associated with (P�).
Then, the following statements hold true:

1. If M is lower semicontinuous at �0 or, alternatively, 	(�0)\Liminf
�!�0

M(�) 6= ;

is satis�ed, then ' is upper semicontinuous at �0 and 	 is closed at �0. If,

moreover, ; 6= 	(�) � K is ful�lled for some compact set K � R
n and all �

close to �0, then ' is continuous at �0 and 	 is upper semicontinuous at �0.

2. If f is convex, 	(�0) is nonempty and bounded and M(�) is convex for all

� 2 � as well as closed and lower semicontinuous at �0, then, at �0, the

solution set mapping 	 : � � R
n is upper semicontinuous and the optimal

value function ' : �! R is continuous.
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