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Abstract

The transmission properties of microwave and optical structures can be de-

scribed in terms of their scattering matrix using a three-dimensional boundary

value problem for Maxwell's equations. The computational domain is trun-

cated by electric or magnetic walls, open structures are treated using the Per-

fectly Matched Layer (PML) Absorbing Boundary Condition. The boundary

value problem is solved by a �nite-volume scheme. This results in a two-step

procedure: an eigenvalue problem for general complex matrices and the solu-

tion of a large-scale system of linear equations with inde�nite symmetric com-

plex matrices. The modes of smallest attenuation are located in a longsome

region bounded by two parabolas, and are found solving a sequence of eigen-

value problems of modi�ed matrices. To reduce the execution times a coarse

and a �ne grid, and two levels of parallelization can be used. For the com-

putation of the discrete grid equations, advanced preconditioning techniques

are applied to reduce the dimension and the number of iterations solving the

large-scale systems of linear algebraic equations. These matrix problems need

to be solved repeatedly for di�erent right-hand sides, but with the same co-

e�cient matrix. The used block quasi-minimal residual algorithm is a block

Krylov subspace iterative method that incorporates de�ation to delete linearly

and almost linearly dependent vectors in the block Krylov sequences. Special

attention is paid to the PML which causes signi�cantly increased number of

iterations within Krylov subspace methods.
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1 Introduction

The �elds of applications include mobile communications, radio links, automobile

radar systems, optical communications, and material processing. The commercial

applications of microwave circuits cover the frequency range between 1 GHz and

about 100 GHz; special applications in radioastronomy use even higher frequencies

up to 1 THz. For optoelectronic devices frequencies about several hundred THz are

common.

The subject under investigation are passive structures of arbitrary geometry. They

are connected to the remaining circuit by transmission lines. Ports p (see Fig. 1)

are de�ned on the transmission lines outer terminations. In order to characterize

their electrical behavior the transmission lines are assumed to be in�nitely long and

longitudinally homogeneous. Short parts of the transmission lines and the passive

structure form the so-called discontinuity. This structure has to be surrounded with

an enclosure.
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Figure 1: Structure under investigation

The scattering matrix describes the structure in terms of wave modes on the trans-

mission line sections at the ports. One can extract this matrix from the orthogonal

decomposition of the electric �eld at two neighboring cross-sectional planes on each

transmission line for a number of linearly independent excitations.

A three-dimensional boundary value problem can be formulated using the integral

form of Maxwell's equations in the frequency domain in order to compute the electro-

magnetic �eld [1] and subsequently the scattering matrix. For numerical treatment,

the computational domain has to be truncated by electric or magnetic walls or by

a so-called Absorbing Boundary Condition (ABC) simulating open space. Among

the ABC's, the Perfectly Matched Layer (PML) [12] technique represents the most

powerful formulation. At the ports the transverse electric �eld is given by superpos-

ing transmission line modes. The transverse electric mode �elds are the solutions of

an eigenvalue problem for the transmission lines [2].

Maxwell's equations are discretized with staggered nonequidistant rectangular grids,

using the Finite Integration Technique (FIT) [19], [1], [7], that transforms the con-

tinuous Maxwell equations into a set of discrete Maxwellian grid equations.

Assuming longitudinal homogeneity for the transmission line structure gives an

eigenvalue problem for the computation of the transverse electric mode �elds.

Only a few modes of smallest attenuation are able to propagate and have to be taken

into consideration. Using a conformal mapping between the plane of propagation

constants and the plane of eigenvalues the task is to compute all eigenmodes in a

region, bounded by two parabolas. The region is covered by a number of overlapping

circles. The eigenmodes in these circles are found solving a sequence of eigenvalue

problems of modi�ed matrices with the aid of the invert mode of the Arnoldi iteration

[10], [16] using shifts.

The PML in�uences the mode spectrum. Modes that are related to the PML bound-

ary can be detected, using the power part criterion given with [18].

The integral over the power density vector, required for the calculation of the scatter-
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ing matrix, of the power part criterion, and for the orthogonalization of eigenvectors,

is computed for the used staggered grids.

In the case of multiple eigenvalues the eigenfunctions are orthogonalized according

to the orthogonality relation for the scattering matrix using the algorithm of Gram-

Schmidt [17].

The presented method, developed initially for a reliable calculation of all complex

eigenvalues from microwave structure computations [9], is expanded to meet the

very special requirements of optoelectronic structure calculations. Relatively large

cross sections and highest frequencies yield increased dimensions and numbers of

eigenvalue problems. Using the results of a coarse grid calculation within the �nal

�ne grid calculation yields a remarkable reduced numerical e�ort. The use of two

levels of parallelization results in an additional speed up of computation time.

After solution of the eigenvalue problem all boundary conditions are known and

we can solve the boundary value problem to compute the three-dimensional elec-

tric �eld. The electromagnetic �elds are calculated by the solution of large-scale

systems of linear equations with inde�nite complex symmetric coe�cient matrices.

In general, these matrix problems have to be solved repeatedly for di�erent right-

hand sides, but with the same coe�cient matrix. The number of right-hand sides

depends on the number of ports and modes. The systems of linear equations are

solved using a block Krylov subspace iterative method. Independent set orderings,

Jacobi and SSOR preconditioning techniques are applied to reduce the dimension

and the number of iterations [15]. In comparison to the simple lossy case the num-

ber of iterations of Krylov subspace methods increases signi�cantly in the presence

of Perfectly Matched Layers. This growth is reduced by applying suitable grids

and PML properties. This criterion is based on the comparison between the power

concentration inside the PML region to the whole computational domain.

In general, the computation of the eigenvalue problem and of the system of linear

algebraic equations have to be done for several frequencies.

2 Scattering Matrix

The scattering matrix

S =

0
BB@

S11 S12 � � � S1ms

S21 S22 � � � S2ms

. . . . . . . . . . . . . . . . . . . . . . .

Sms1 Sms2 � � � Smsms

1
CCA = (S�;�); �; � = 1(1)ms; (1)

with ms =

pX
p=1

m(p); � = l +

p�1X
q=1

m(q); (2)
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describes the energy exchange and phase relation between all outgoing and all in-

coming modes. m(p) denotes the number of modes which have to be taken into

account at the port p. p is the number of ports. The modes on a port p are num-

bered with l. To simplify matters, the cross-sectional planes and ports coincide in

the structure under investigation (see Fig. 1). Generally, more than one port can

be de�ned on one cross-sectional plane.

The scattering matrix can be extracted from the orthogonal decomposition of the

electric �eld (see (3)) at a pair of neighboring cross-sectional planes zp and zp+�p

(see Fig. 1) on each waveguide for a number of linear independent excitations of the

transmission lines. The electric �elds at the cross-sectional planes zp and zp+�p are

the solutions of an eigenvalue (see section 5) and of a boundary value problem (see

section 3), respectively.

The transverse electric mode �elds ~Et;l(z) satisfy an orthogonality relationZ



( ~Et;l(z)� ~Ht;m(z)) � d~
 = �mÆl;m: (3)

Here ~Ht;m are the transverse magnetic mode �elds.

In the case of degenerate modes, i.e., the algebraic multiplicity of the corresponding

eigenvalues is greater than 1, we have to use �rst (3) in order to orthogonalize the

modes (see section 9).

We consider all exciting modes with amplitudes al in positive z-direction and all

outgoing modes with amplitudes bl in negative z-direction. The transverse mode

�eld at a cross-sectional plane z is given by

~Et(z) =

m(p)X
l=1

al ~Et;le
�|kz

l
z +

m(p)X
l=1

bl ~Et;le
+|kz

l
z =

m(p)X
l=1

wl(z) ~Et;l (4)

with

wl(z) = ale
�|kz

l
z + ble

+|kz
l
z = ~al(z) + ~bl(z); (5)

where kzl is the propagation constant. The application of (4) with (5) at a pair of

two neighboring cross-sectional planes zp and zp+�p gives because of ~H
(p+�p)
t;m = ~H

(p)
t;m:

1
�m

R



( ~E
(p)
t � ~H

(p)
t;m) � d~
 = ~a

(p)
m + ~b

(p)
m = w

(p)
m ;

1
�m

R



( ~E
(p+�p)
t � ~H

(p)
t;m) � d~
 = ~a

(p+�p)
m +~b

(p+�p)
m = w

(p+�p)
m

(6)

with
~E
(p)
t = ~Et(zp); ~E

(p+�p)
t = ~Et(zp+�p);

~H
(p)
t;m = ~Ht;m(zp); ~H

(p+�p)
t;m = ~Ht;m(zp+�p):

(7)
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We get ~E
(p)
t

solving eigenvalue problems for the transmission lines (see section 5).

H
(p)
t;m can be computed from the known electric �eld Et;m of mode m (see section 8).

The values of the weighted mode amplitude sums w
(p)
m are given (see the discussion

to follow). Thus, the normalization constant �m can be computed by evaluating the

orthogonality relation in the �rst equation of (6). ~E
(p+�p)
t is computed solving a

boundary value problem for the discontinuity (see section 3). Thus, the weighted

mode amplitude sums w
(p+�p)
m can be calculated by using the second equation of

(6).

The scattering matrix is de�ned with ~a
(p)
m and ~b

(p)
m . By eliminating ~a

(p+�p)
m and

~b
(p+�p)
m in (6) we obtain

~a
(p)
m = w

(p)
m e

+|k
(p)
zm

�zp�w(p+�p)
m

e
+|k

(p)
zm

�zp�e�|k
(p)
zm

�zp

;

~b
(p)
m = w

(p+�p)
m �w(p)

m e
�|k

(p)
zm

�zp

e
+|k

(p)
zm

�zp�e�|k
(p)
zm

�zp

:

(8)

By using (8) re�ection coe�cients

r(p)
m

=
~b
(p)
m

~a
(p)
m

=
e�|k

(p)
zm

�zp � w
(p+�p)
m

w
(p)
m

w
(p+�p)
m

w
(p)
m

� e+|k
(p)
zm

�zp

(9)

are computed for all modes � = 1(1)ms and all excitations � = 1(1)ms. The

excitations are given and can be described by the vectors

~�w� = ( �w1;�; : : : ; �w�;�; : : : ; �wms;�)
T ; � = 1(1)ms; (10)

with, for example

w(p)
m

= 1:0; m = 1(1)m(p); p = 1(1)p; (11)

�w�;� =

(
jw(p)

m j for 1 � � � ms + 1� �

�jw(p)
m j for ms + 2� � � � � ms

; � = m+

p�1X
q=1

m(q): (12)

This choice of ~�w� guarantees that the excitations are linearly independent. With

this choice of ~�w�;� the vectors ~�r�, ~�a� and ~�b� are built up analogously (see (8) and

(9)):

~�r� = (�r1;�; : : : ; �r�;�; : : : ; �rms;�)
T ; �r�;� = r

(p)
m ;

~�a� = (�a1;�; : : : ; �a�;�; : : : ; �ams;�)
T ; �a�;� = ~a

(p)
m ;

~�b� = (�b1;�; : : : ;�b�;�; : : : ; �bms;�)
T ; �b�;� = ~b

(p)
m :

(13)

That means, we have to solve ms boundary value problems with the boundary

condition

~Et;� =

msX
�=1

�w�;�
~E
(p)

t;l
; � = l +

p�1X
q=1

m(q); p = 1(1)p; � = 1(1)ms; (14)
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in order to compute w
(p+�p)
m and ~�r�.

The scattering matrix S (see (1)) is de�ned by

~�b� = S~�a�; � = 1(1)ms; (15)

or (see (13))

�b�;� =

msX
�=1

S�;� � �a�;� ; �; � = 1(1)ms: (16)

Because of (6) and (9) we have

�a�;�(1 + �r�;�) = �w�;�;
�b�;�(1 + �r�;�) = �r�;� �w�;�;

�; � = 1(1)ms: (17)

Multiplying Equation (16) with the product
Q

ms

�=1(1 + �r�;�) gives

�b�;�

msY
�=1

(1 + �r�;�) =

msX
�=1

S�;��a�;�

msY
�=1

(1 + �r�;�); �; � = 1(1)ms: (18)

Substitution of (17) into the relation (18) gives

R�;� =

msX
�=1

S�;�W�;� with W�;� = �w�;�

msY
�=1
�6=�

(1 + �r�;�); R�;� = �r�;�W�;� (19)

or written as matrix equation:

R = SW: (20)

That means, we have to solve ms linear algebraic equations in order to compute the

(ms)
2 coe�cients of S:

W T (S�;1; : : : ; S�;ms
)T = (R�;1; : : : ; R�;ms

)T ; � = 1(1)ms: (21)

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral

form of Maxwell's equations in the frequency domain in order to compute the elec-

tromagnetic �eld:I
@


~H � d~s =

Z



|![�] ~E � d~
;
I
[


([�] ~E) � d~
 = 0; (22)I
@


~E � d~s = �
Z



|![�] ~H � d~
;
I
[


([�] ~H) � d~
 = 0; (23)

~D = [�] ~E; ~B = [�] ~H; [�] = diag (�x; �y; �z) ; [�] = diag (�x; �y; �z) : (24)
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Here ~D and ~B are the electric and magnetic �ux density, respectively. In the left-

hand sides of formulae (22) and (23) 
 is an open surface surrounded by a closed

contour @
, while in the right-hand sides of (22) and (23) [
 is a closed surface

with an interior volume. The direction of the element d~s of the contour @
 is such

that when a right-handed screw is turned in that direction, it will advance in the

direction of the vector element d~
.

At the ports p the transverse electric �eld ~Et(zp) is given by superposing transmission

line modes ~Et;l(zp) (see (14)):

~Et(zp) =

m(p)X
l=1

wl(zp) ~Et;l(zp): (25)

The transverse electric mode �elds have to be computed solving an eigenvalue prob-

lem for the transmission lines (see section 5). All other parts of the surface of the

computation domain are assumed to be an electric or a magnetic wall:

~E � ~n = 0 or ~H � ~n = 0: (26)

In order to simulate open structures, the Perfectly Matched Layer absorbing bound-

ary condition is implemented, namely the uniaxial PML formulation according to

[12]. The PML region is �lled with an arti�cial material with complex anisotropic

material properties. A complex permittivity [�] and a complex permeability [�]
diagonal tensor are introduced, resulting in a re�ection free interface between the

computational area and the lossy PML region.

4 Grid Equations

Maxwell's equations are discretized using staggered nonequidistant rectangular grids.

Using the Finite Integration Technique (FIT) [19], [1], [7] with the lowest order in-

tegration formulae I
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (27)

Equations (22), (23) are transformed into a set of grid equations:

ATDs=�
~b = |!�0�0DA�

~e; BDA�
~e = 0; (28)

ADs~e = �|!DA�

~b; ~BDA�

~b = 0: (29)

The vectors ~e and ~b contain the components of the electric �eld intensity and the

magnetic �ux density of the elementary cells, respectively. The diagonal matrices

Ds=�, DA�
, Ds, and DA�

contain the information on cell dimension and material. A,

B, and ~B are sparse.
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By eliminating the components of the magnetic �ux density from the two equations

on the left-hand sides of (28) and (29), we get the system of linear algebraic equations

(ATDs=�D
�1
A�
ADs � k20DA�

)~e = 0; k0 = !
p
�0�0; (30)

which have to be solved using the boundary conditions (25) and (26), possibly

supplemented by PML. k0 is the wavenumber in vacuum.

5 Eigenvalue Problem

The �eld distribution at the ports is computed assuming longitudinal homogeneity

for the transmission line structure. Thus, any �eld can be expanded into a sum of

so-called modal �elds which vary exponentially in the longitudinal direction:

~E(x; y; z � 2h) = ~E(x; y; z)e�|kz2h: (31)

kz is the propagation constant. 2h is the length of an elementary cell in z-direction.

We consider the �eld components in three consecutive elementary cells. The elec-

tric �eld components of the vector ~e (see (30)) Exi;j;k+1
, Exi;j;k�1

, Eyi;j;k+1
, Eyi;j;k�1

,

Ezi;j;k�1
, Ezi+1;j;k�1

, and Ezi;j+1;k�1
are expressed by the values of cell k using ansatz

(31). The longitudinal electric �eld components Ez can be eliminated by means

of the electric-�eld divergence equation BDA�
~e = 0 (see (28)). Thus, we get an

eigenvalue problem for the transverse electric �eld ~e on the transmission line region:

C~e = ~e;  = e�|kz2h + e+|kz2h � 2 = �4 sin2(hkz): (32)

The sparse matrix C is in general nonsymmetric complex. The order of C is n =

2nxny�nb. nxny is the number of elementary cells at the port. The size nb depends

on the number of cells with perfectly conducting material. The relation between the

propagation constants kz and the eigenvalues  is nonlinear, and can be expressed

as

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (33)

We are interested only in a few modes with the smallest attenuation. These are the

modes with the smallest magnitude of imaginary part, but possibly with large real

part of their propagation constant. The computation of all eigenvalues in order to

�nd a few propagation constants must be avoided for the high-dimensional problem.

For numerical treatment we have to limit the search for propagation constants by

setting a maximum value kf for their real parts. A reasonable estimation of this

maximum value is derived for the lossy case including PML for inhomogeneously

�lled waveguides in [8]:

<(kz) � kf = !<(
p
�m�m): (34)

�m and �m are properties of the material that yields the largest value of the right-

hand side of Equation (34). Using the limited kf and a preset maximum value

9



�m of the imaginary part of the propagation constants the region containing the

interesting constants is de�ned as a rectangle F̂ bounded by the lines (see Fig. 3)

� = �kf and � = ��m: (35)

We can use the approximation sin(x) � x in (32) if we choose h to be small enough,

which is necessary in any case in order to get small discretization errors:

 = �4 sin2(hkz) � �4(hkz)2 = u+ |v: (36)

With the aid of the approximation (36) the conformal mapping (33) between the

plane of eigenvalues (-plane, see Fig. 2) and the plane of propagation constants

(kz-plane, see Fig. 3) simpli�es to:

u = �4h2(�2 � �2); v = 8h2��: (37)

Under this mapping the rectangle F̂ of the kz-plane is transformed into a region F

of the -plane bounded by the two parabolas

v = �4hkf
q
u+ 4h2kf

2 and v = �4h�m

p
�u+ 4h2�m

2: (38)

This means, we have to �nd all eigenvalues of the region bounded by the parabolas.

Figure 2: -plane

6 Computation of Eigenmodes

We need an algorithm that computes just a few selected eigenvalues and eigenvectors

of a complex sparse matrix. A state-of-the-art algorithm for such problems is the

10



Figure 3: kz-plane

Arnoldi method. In general, the Arnoldi method converges for our problem only

using the invert mode and looking for eigenvalues of largest magnitude. Thus, a

simple way to �nd the eigenvalues located in the region F would be to look for

all eigenvalues of smallest magnitude, which are located in a circle centered on the

origin and covering the region F . Because of the high wavenumber kf , the number
of eigenvalues located in this circle is too large in general for a feasible computation

using an iterative method. We can solve this problem covering the region F with

s � 1 circles Ci; i = 1(1)s, centered on the u-axis and calculating the eigenvalues

located in these circles. That is done in the following way. First s points

P̂i(�i; �m); i = 1(1)s; �1 =
kf

s
� ��; �s = kf ; with �� =

p
3�m (39)

are de�ned on the interval [0; kf ] of the line � = �m. The distance between the points

is controlled as shown below. Even the meaning of the distance �� is discussed below.

The points P̂i are transformed into the points Pi of the -plane. They are located

on the parabola ((38), right formula). The s circles Ci of the -plane (see Fig. 2)

(u�mi)
2 + v2 = ri

2; ri =
p

(<(Pi)�mi)2 + (=(Pi))2; i = 1(1)s; (40)

with

m1 = 0; mi =
(<(Pi))

2 � (<(Pi�1))
2 + (=(Pi))

2 � (=(Pi�1))
2

2j<(Pi)� <(Pi�1)j
(41)

are centered on the u-axis, covering the region bounded by the parabolas.

In order to �nd all eigenvalues, located in the circle Ci, l points Qj are de�ned on

the periphery of Ci. The matrix C is extended by the diagonal matrix Q. The
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diagonal elements of Q are the l complex elements Qj:

�C =

�
Q

C

�
; Q = diag(Q1; :::; Ql): (42)

The s eigenvalue problems

( �C �miI)~e = ( �mi)~e; i = 1(1)s; (43)

are solved with the aid of the implicitly restarted Arnoldi method using the invert

mode. The eigenvalue problems can be solved separately. The eigenvalue problems

can also be computed for subintervals de�ned by

i = i1(1)i2 or i = i2(�1)i1; 1 � i1 < i2 � s: (44)

The user can pro�t from this property, if he knows something about the location of

the interesting modes. (44) can also be used to parallelize the computation of the

propagating modes (see section 10).

We consider one circle Ci; i � 2. The number m of eigenvalues to be computed for

this circle must be l on the �rst call to the Arnoldi procedure. The main idea is

to raise m by l until at least one value Qj was found. But, since m � �n (�n is the

order of matrix �C) for a feasible computation, one has to restrict the number m of

required eigenvalues by mmax. If m exceeds mmax, we insert a point P̂
i� 1

2
between

P̂i�1 and P̂i and restart with m = l. The same procedure is used if a given number

�max of iterations in the Arnoldi method is exceeded. We de�ne a minimum distance

between two points P̂i�1 and P̂
i� 1

2
in order to restrict the overlapping size of the

circles. If the condition

�P̂ = <(P̂i�1)�<(P̂i� 1
2
) � 2�m (45)

cannot be ful�lled, we restart with new parameters mmax, �max and possibly �m. If

all eigenvalues Qj are found in case of m > l, we look for the eigenvalue max of

largest magnitude. If
p
jmaxj > ri, a new circle ~Ci of radius

p
jmaxj with the same

center as Ci is de�ned. The left intersection point of this circle with the parabola

((38), right formula) is used as new point Pi, and �P̂ = <(P̂i)�<(P̂i�1) as distance

for the next step. m is reduced by the number of eigenvalues with
p
jj > ri for the

next circle.

Because in general the Arnoldi method does not converge using the regular mode

for our eigenvalue problem the invert mode with shifting (see (43)) is applied. A

time and memory consuming system of partly ill-conditioned nonsymmetric complex

linear algebraic equations has to be solved on each iteration step in this case. The

linear sparse solver PARDISO [13], [14] is applied in order to ful�ll the high accuracy

requirements of the eigenvalue problem. The algorithm is split into three phases:

symbolic factorization, numerical factorization, and forward and backward solve.

The symbolic factorization can be used for all modi�ed matrices of our problem. The
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numerical factorization has to be repeated for every new shift. The factorization is

applied to matrix C. The diagonal matrix Q (see (42)) is considered in the forward

and backward solve phase.

The typical ratio of factorization time to solution time on a single CPU can be

used to de�ne �max in the subinterval control process. This ratio amounts on the

average to 20 using the linear sparse solver PARDISO. That means, the costs using

�max = 60 Arnoldi iterations for the computation of m eigenmodes in a circle Ci

de�ned by the points Pi�1; Pi are comparable with the costs, de�ned by the costs

for two circles de�ned by the points Pi�1; Pi� 1
2
and and P

i� 1
2
; Pi using �max = 20

iterations. On the other hand the time is lost, interrupting the computation of

m eigenmodes after �max = 60 iterations and starting a new iteration process for

two reduced circles. Thus, we use a greater �max (see section 11 for an example).

Moreover, due to the signi�cant di�erence between the length and the height of the

rectangular region F̂ in the kz-plane we have to solve a large number s of eigenvalue

problems (see section 10). In order to diminish this number we use large intervals in

the kz-plane, i.e., circles with relatively large diameters in the -plane. That means,

a number of non desired eigenvalues outside of the area F has to be calculated. In

general the computation of a large number m of eigenvalues in one circle needs more

iterations than a small number.

Separating the new values on each eigenvalue problem i, we are sure to have found all
eigenvalues which are located in the corresponding circles Ci. Applying the mapping

(37) the circles Ci (see (40)) are transformed into Cassinian curves Ĉi (see Fig. 3)

(�2 + �2)2 �
mi

2h2
(�2 � �2) =

ri
2

16h4
�

mi
2

16h4
; (46)

which cover the rectangle F̂ containing all desired propagation constants. Propaga-

tion constants outside of F̂ and PML-modes are eliminated.

The Cassinian curves Ĉi; i = 2(1)s, consist of two disjoint ovals [3], if

ri < mi: (47)

That means, the circles Ci may neither cut nor be tangent to the v-axis. (47) can

be ful�lled by a special choice of P̂1:
Because of m1 = 0 (see (41)) the Cassinian curve Ĉ1 (see (46)) is a circle:

�2 + �2 = r̂21 =
r1

4h2
: (48)

The radius r1 of C1 may be de�ned by P̂1( ��; �m) (see (39) and (48)). A circle

C2 : (u+ r1)
2 + v2 = r1

2 (49)

of radius r2 = r1 with the center M2(�r1; 0) is evidently tangent to the v-axis.

Because of (37) and (48) the point P1(u1 = � r1

2
; v1 =

p
3
2
r1) is an intersection point
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of C2 with the parabola ((38), right formula), if �� =
p
3�m. All circles Ci with a

center left ofM2 and the intersection point P1 cut the u-axis left of the v-axis. Thus,

using �� as minimum distance between the origin and P̂1 (see (39)) other shapes of

Cassinian curves (e.g. waisted ovals, see Fig. 4 and 5), which would lead to higher

execution times, are avoided.

Figure 4: -plane, circle C2 cut the v-axis

7 Power Part Criterion

The PML is applied in order to compute the eigen modes of open waveguide struc-

tures simulating the in�nite space. Introducing the PML permits the calculation of

radiation e�ects. Additionally the absorbing boundary suppresses the interaction

between the waveguide modes and higher order modes, caused by the �nite simu-

lation domain. However, undesired so-called PML-modes are generated, due to the

electric or magnetic walls behind these absorbing boundary layers, and the PML

shifts only gently these box modes within the area F̂ (see (35)). Therefore we need

an additional tool to distinguish these PML-modes from the desired ones. As a result

of our numerical calculations we found that examination of the eigenfunctions pro-

vides a usefull criterion to select the modes of interest. As a criterion to distinguish

between waveguide modes and undesired modes we use the power concentration of

all modes by way of comparison. Undesired modes are characterized by a high power

concentration inside the PML region, while propagating modes are concentrated in

the waveguide area. Thus, to eliminate the PML-modes we calculate the magnitude

of the power �ow (see section 8) of each computed mode in the PML (P (P )), in the
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Figure 5: kz-plane, waisted oval Ĉ2

waveguide region (P (W )), and in the total computational domain (P ):

P = P (P ) + P (W ) =

Z

(P )

�
~Et � ~H�

t;m

�
� d~
 +

Z

(W )

�
~Et � ~H�

t;m

�
� d~
 : (50)

A mode is speci�ed as PML-mode if the ratio

r(P ) =
P (P )

P
> � ; (51)

with values � = 0:2; : : : ; 0:6, found empirically, is satis�ed.

8 Computation of the Integral

We have to calculate numerically the surface integral (3) for the mode m

= =

Z



( ~Et � ~Ht;m) � d~
 =

Z



(ExHy;m � EyHx;m)d
; (52)

in order

- to compute the electric �eld Et;m (see (6)) for the scattering matrix and

- to orthogonalize the eigenfunctions in case of multiple eigenvalues (see

section 9).


 is the area of a port of the cross-sectional plane p. The power �ux (see (50)),

diverging out of a cross-sectional plane p, can be calculated in the same way, if we

apply the conjugate expression ~H�
t;m

rather than ~Ht;m in (52).

15



(52) can be written as (see (24)):

= =

Z



(ExHy;m � EyHx;m)d
 =

Z



(Ex[�]
�1By;m � Ey[�]

�1Bx;m)d
: (53)

Because the components of the electric �eld ~Et are de�ned on the centers of the

edges of the elementary cells and the components of the magnetic �eld ~Ht;m are

normal to the face centers (see Fig. 6) both are located on di�erent grid planes.

Let 
 be the grid plane which corresponds with the area 
 of a port of the cross-
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Figure 6: Integration domain

sectional plane p. Let Exi;j;k
and Eyi;j;k

, i1 � i � i2; j1 � j � j2; k = const, be the

transverse electric �eld components on the grid plane 
, and let ~Bxi;j;k;m
and ~Byi;j;k;m

,

i1 � i � i2; j1 � j � j2; k = const, be the transverse magnetic �ux density on

the same grid plane (see Fig. 6). We use the lowest order integration formula (27)

to approximate the integral (53). The material constants can be di�erent between

two di�erent elementary cells of the primary grid. Thus, we have to divide the

integration domain. The grid plane 
 consists of (i2 � i1 + 1)(j2 � j1 + 1) partial

planes, and we get the following approximation of the integral:

= =
P

i1�i�i2
j1�j�j2

Exi;j;k
(

xi;j;k

2yi;j�1;k

1
�y;i;j�1;k

~Byi;j;k;m
+

xi;j;k

2yi;j;k

1
�y;i;j;k

~Byi;j;k;m
)

�
P

i1�i�i2
j1�j�j2

Eyi;j;k
(
xi�1;j;k

2yi;j;k

1
�x;i�1;j;k

~Bxi;j;k;m
+

xi;j;k

2yi;j;k

1
�x;i;j;k

~Bxi;j;k;m
)

(54)
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or

= =
X

i1�i�i2
j1�j�j2

Exi;j;k
Gxi;j;k;m

+
X

i1�i�i2
j1�j�j2

Eyi;j;k
Gyi;j;k;m

(55)

with
Gxi;j;k;m

=
xi;j;k

2
(

yi;j�1;k

�y;i;j�1;k
+

yi;j;k

�y;i;j;k
) ~Byi;j;k;m

;

Gyi;j;k;m
= �yi;j;k

2
(

xi�1;j;k

�x;i�1;j;k
+

xi;j;k

�x;i;j;k
) ~Bxi;j;k;m

(56)

or

= = ~Et � ~Gm with ~Gm = ( ~Gx;m; ~Gy;m)
T : (57)

The components Gxi;j;k;m
and Gyi;j;k;m

(see (56)) contain the unknown quantities
~Bxi;j;k;m

and ~Byi;j;k;m
. They can be computed using the known electric �eld as follows.

Because of the longitudinal homogeneity of the transmission lines we determine

similar to (31)

Byi;j;k;m
= ~Byi;j;k;m

e�|kzmh; Byi;j;k�1;m
= ~Byi;j;k ;m

e+|kzmh (58)

with

h =
zi;j;k
2

=
zi;j;k�1

2
: (59)

Using this ansatz and the left-hand sides of the formulae (28) and (29) the quantities
~Bxi;j;k;m

and ~Byi;j;k;m
can be expressed by the electric �eld components.

9 Orthogonalization

The orthogonality relation (3) is valid for nondegenerate modes. However, for degen-

erate modes we may choose a suitable linear combination of the degenerate modes

such that this subset of modes is an orthogonal set. We consider the eigenvalue

problem for a selected port as an example (see Fig. 7). The vector

~a� = ~e
(�)

l
= ~e = (~e

x
; ~e

y
)T ; ~e

x
= (e

x1
; e

x2
; : : : ; e

xnxy
) ; e

x`
= Exi;j;k

;

~e
y
= (e

y1
; e

y2
; : : : ; e

ynxy
) ; e

y`
= Eyi;j;k

;
(60)

with
` = (j � 1)nx + i; i = 1(1)nx; j = 1(1)ny;

nxy = nxny; and k = 1 or k = nz;
(61)

consists of the electric �eld intensity components of a port. The cross-sectional

planes (see Fig. 1) can be located on the 6 di�erent planes of the three-dimensional

rectangular structure. The assumption k = 1 corresponds with the case, in which

the cross-sectional plane (see Fig. 1) is located on the left-handed (x; y)-plane of

the enclosure. We consider the boundary condition ~E � ~n = 0 (see (26)) on the

left-hand side and at the bottom of the port, that is,

e
x`

= Exi;1;1
= 0; ` = i; i = 1(1)nx; (62)
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Figure 7: Boundary conditions on the port of the structure

and

e
y`

= Ey1;j;1
= 0; ` = (j � 1)nx + 1; j = 1(1)ny: (63)

That means, these components of the eigenvector are known, and the dimension of

the eigenvalue problem (32) to be computed is reduced to

n = nxny � nb; nb = nx + ny: (64)

Let �l be an eigenvalue of the matrix C (see (32) and (33)), and let � be the algebraic

multiplicity of �l. Then the eigenvectors ~a� = ~e
(�)

l
; � = 1(1)�, associated with �l,

form a n-by-� matrix A with n � �. The corresponding vectors ~b� = ~h
(�)

l
of the

magnetic �ux density components (see (65)) can be calculated as decribed in section

8.

The eigenvectors ~a� = ~e
(�)

l
; � = 1(1)�, generally do not ful�ll the orthogonality

relation (see (3), and (60) - (64))Z



(~e
(�1)

l
� ~h

(�2)

l
) � d~
 = Æ�1;�2; �1; �2 = 1(1)�; (65)

but, the ~a� are linear independent. That means, that A has full column rank.

Then there exists a unique n-by-� matrix Q of vectors (modes), which ful�lls the

orthogonality relation (65), and an unique �-by-� upper triangular matrix U with

positive diagonals u�;� > 0 such that A = QU .

We can use the Gram-Schmidt algorithm [17] to orthogonalize each vector of A
against the previously computed vectors according the orthogonality relation (65).
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The Gram-Schmidt process determines the columns of Q and U recursively as fol-

lows:

We begin with

u11 =

vuutZ



�
~a1 �~b1

�
� d~
; ~q1 =

~a1

u11
with ~b1 = ~h

(1)

l
: (66)

We assume that the vectors ~q1; :::; ~q��1 ofQ have been already calculated by applying

the Gram-Schmidt algorithm to the linear independent vectors ~a1; :::;~a��1 of A such

that the orthogonality relationZ



(~qi �~bj) � d~
 = Æi;j; i; j = 1(1)�� 1; (67)

is ful�lled, and that the corresponding vectors ~bj of the magnetic �ux density com-

ponents have been computed as described in section 8. In order to �nd ~q� with aid

of ~a� we construct a vector

~x = ~a� �
��1X
j=1

uj;�~qj; (68)

which ful�lls the orthogonality relation (67) for the vectors ~q1; :::; ~q��1. That gives

uj;� =

Z



(~qj �~b�) � d~
; j = 1(1)�� 1: (69)

We get ~q� by normalizing the vector ~x (see (67) and (68)):

~qk = ~x=u�;� (70)

with

u�;� =

vuutZ



(~x�~b�) � d~
: (71)

After reformulation, (68) and (70) can be written as matrix equation: A = QU .

10 Optoelectronic Devices

For optoelectronic devices frequencies about several hundred THz are common. The

region containing potentially propagating modes grows substantially. A signi�cant

higher number of eigenvalue problems have to be solved within our algorithm. Ad-

ditionally, the maximum cell size of the discretization should be less than �

10
, where

� denotes the wavelength in the material with the highest <(�). Additional mesh

re�nements have to be used for structure regions with highly varying �elds. Besides,
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large cross sections are common for the waveguides under investigation. Thus, high

dimensional problems have to be handled.

Due to electric and magnetic walls terminating the PML regions, undesired modes

are generated inside the computation domain. These non-physical modes can be

detected by examining the eigenfunctions (see section 7). Anyway, the number of

eigen modes to be calculated increases because of the shifted modes.

Because of the signi�cant di�erence between the magnitude of the real and imaginary

part of the propagation constant a high computational accuracy is required. That

means, the numerical e�ort increases signi�cantly.

To overcome these problems new strategies have been realized.

The few interesting modes are located in a partial region of the longsome rectangle

F̂ . By covering the corresponding area F in the plane of eigenvalues with circles (see

(40) and (41)) a set of eigenpairs is scanned, which include the interesting modes.

PML modes as well as propagating constants, that are located in the corresponding

Cassinian curves (see (46)), but outside of F̂ , are eliminated. Additionally, the user

might give an additional limit of mode numbers to be calculated. Therefore, only

the remaining set of eigenpairs have to be computed with high accuracy.

Thus, to reduce the execution times, in a �rst step the problem is solved using a

coarse grid with lower accuracy requirements in order to �nd approximately the

locations of the interesting propagation constants. Anyway, the number of modi�ed

eigenvalue problems to be solved is high. Thus, we split the interval [0; kf ] (see
(39)) into subintervals (see (44)), and compute the corresponding eigenpairs inde-

pendently and in parallel, for instance on di�erent workstations or shared memory

multiprocessors.

Finally the modes of interest are calculated in a second step for an essentially reduced

region using a �ne grid, that ful�lls higher accuracy requirements. The parallel

CPU mode of PARDISO provides the additional possibility to reduce the computing

times for this high dimensional problem on shared memory multiprocessors without

essential additional memory requirements.

11 Laser Application

As an example we have calculated the guided mode of an optoelectronic device which

leads to a more moderate dimension of the corresponding eigenvalue problem. A so-

called self aligned stripe (SAS) laser is investigated (see Fig. 8). The laser structure

contains an additional, antiguided layer (marked with yellow color in Figure 8)

outside the emitting stripe (marked with red color). This high power laser diode

excites only the fundamental mode. The frequency is �xed to 300 � 1012Hz, which
corresponds to a vacuum wavelengths of 1000 nm.

A graded mesh of 121 times 127 elementary cells, including 10-cell PML regions, is
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Figure 8: Laser (ampli�er)

used as a coarse grid. The maximum cell size amounts 80nm, and the minimum cell

size 4nm. Maximum cell size is scaled down exponentially in the vertical direction

near the emitting zone and in the horizontal direction near the material cut at the

end of the active zone. The dimension of the eigenvalue problem is 29 625. 84

Cassinian curves have been used to cover the long small region of the complex plane

(�m = 2500m�1, kf = 21 765 592m�1, see (35)) containing potential guided modes.

The eigenpairs have been computed with the relative accuracy tol = 10�7, and

with mmax = 16; l = 5 (see section 6). A maximum number �max = 120 of Arnoldi

iteration has been used. The total computational time amounts approximately 1 145

s. One guided mode according to the fundamental mode of the laser, was found.

The circle that contains the guided mode is known after this step. The computed

complex propagation constant is given by kz = (20 818 302+ j 1 401)m�1 using this

coarse grid.

A graded mesh of 283 times 345 elementary cells, including 10-cell PML regions, is

used as a �ne grid. The maximum cell size amounts �

12
= 25nm, where � denotes

the wavelength in the material with the highest <(�). The minimum cell size is

1nm. The dimension of the eigenvalue problem is 192 423. The eigenpairs have been

calculated with the relative accuracy tol = 10�10. The time to �nd the accurate value

of the guided mode in the reduced region using the �ne grid amounts only 70 s. The

computed complex propagation constant is given by kz = (20 817 578+ j 1 488)m�1

using the �ne grid.

The calculation of all eigenvalues within the long small region F̂ using the �ne

grid, needs a total computational time amount of approximately 3h and 23 minutes.
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Thus, the computational time is reduced by a factor of 10 using a coarse and a �ne

grid. A Compaq Professional Workstation with processor XP1000 alpha 667 MHz

has been used for the computations.

Splitting the interval [0; kf ] into q subintervals (see (44)) and solving the corre-

sponding eigenvalue problems in parallel the time for the coarse grid computation is

reduced by a factor of q. Additionally, applying the parallel CPU mode of PARDISO

to the �ne grid computation in the reduced region the computing times for LU de-

composition and for the solve phase could be reduced to 68% and 86%, respectively,

using two processors.

12 System of Linear Algebraic Equations

Multiplying (30) by D
1=2
s yields a symmetric form of linear algebraic equations:

�A~x = 0; �A = (D1=2
s

ATDs=�D
�1
A�
AD1=2

s
� k20DA�

) (72)

with ~x = D
1=2
s ~e. Four kinds of preconditioning and a block quasi-minimal residual

algorithm are applied to solve the large scale systems of linear algebraic equations.

Details are given with [15].

The gradient of the electric �eld divergence (see (22), right formula)

[�]r([�]�2r � [�] ~E) = 0 (73)

is equivalent to the matrix equation

�B~x = 0; �B = D�1=2
s

DA�
BTD�1

V��
BDA�

D�1=2
s

: (74)

The diagonal matrix DV�� is a volume matrix for the 8 partial volumes of the dual

elementary cell. Taking into account the boundary conditions Equations (72) and

(74) yields the form
~A~x = ~b; ~B~x = 0: (75)

The e�ect of the addition of Equations (75) can be interpreted as preconditioning

with the preconditioner (I + ~B ~A�1)�1 for system ((75), left equation):

( ~A+ ~B)~x = ~b: (76)

( ~A+ ~B) is a complex inde�nite symmetric matrix.

In addition, independent set orderings [11] , Jacobi and SSOR preconditioning using

Eisenstat's trick [5] are applied to accelerate the speed of convergence of the used

block Krylov subspace method [6] for the system of linear algebraic equations (76)

that has to be solved with the same coe�cient matrix, but multiple right-hand sides.

The number ms (see (2)) of right-hand sides depends on the number of ports and

guided modes.
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Independent set orderings are permutations Pi (see Fig. 9) to transform the matrix

Ai with A0 = ~A+ ~B in the form

Ai �! PiAiP
T

i
=

�
Di ET

i

Ei Hi

�
; (77)

where Di is a diagonal, Ei, and Hi are sparse matrices. The unknows of the inde-

pendent set Di are eliminated to get the next reduced matrix

Ai+1 = Hi � EiD
�1
i
ET

i
: (78)

We get a system of linear equations

PiAiP
T

i
Pi~xi = Pi

~bi (79)

with ~yi = Pi~xi = (~yi;1; ~yi;2)
T and ~ci = Pi

~bi = (~ci;1;~ci;2)
T and have to solve the reduced

system of linear equations

Ai+1~xi+1 = ~bi+1; ~xi+1 = ~yi;2; ~bi+1 = ~ci;2 � EiD
�1
i
~ci;1 (80)

for ~yi;2, and then we get

~yi;1 = D�1
i

(~ci;1 � ET

i
~yi;2): (81)

Then we have to permute the solution vector ~yi back to the vector ~xi.

In comparison to the simple lossy case the number of iterations of Krylov subspace

methods increases signi�cantly in the presence of Perfectly Matched Layers (see

Tab. I). The speed of convergence depends on the relations of the edges in a

elementary cell of the nonequidistant rectangular grid in this case. The best results

can be obtained using nearly cubic cells. Moreover, overlapping PML conditions

on the corner regions of the computational domain downgrade the properties of the

coe�cient matrix, and should be avoided. Otherwise, eigenvalues of the matrix are

shifted into the negative half plane. That means, the Krylov subspace methods need

more iterations.
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Figure 9: Independent set ordering

Table I: In�uence of the PML setup on computational e�ort. The order of the system

of linear algebraic equations is 40 824. We consider overlapping PML conditions on

the corner regions.

Number of Iterations Number of Nonzero Elements

Structure without PML 55 235 696

Structure with PML

in z-direction
489 379 220

Structure with PML

in yz-direction
37 719 387 806

Structure with PML

in xyz-direction
54 815 394 378

Structure with PML

in xyz-direction 458 394 378

(nonoverlapping)
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